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Background: Methylation plays an important role in hepatocellular carcinoma (HCC) by altering the 
expression of key genes. The aim of this study was to screen the aberrantly methylated-differentially 
expressed genes (DEGs) in HCC and elucidate their underlying molecular mechanism.
Methods: Gene expression microarrays (GSE101685) and gene methylation microarrays (GSE44909) were 
selected. DEGs and differentially methylated genes (DMGs) were screened. Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the Database for Annotation, 
Visualization, and Integrated discovery (DAVID). The Search Tool for the Retrieval of Interacting Genes 
(STRING) database was used to analyze the functional protein-protein interaction (PPI) network. Molecular 
Complex Detection (MCODE) analysis was performed using the Cytoscape software. Hub genes were 
verified in The Cancer Genome Atlas (TCGA) database.
Results: A total of 80 hypomethylation-high expression genes (Hypo-HGs) were identified. Pathway 
enrichment analysis showed DNA replication, cell cycle, viral carcinogenesis, and the spliceosome. The 
top 5 hub genes were minichromosome maintenance complex component 3 (MCM3), checkpoint kinase 
1 (CHEK1), kinesin family member 11 (KIF11), PDZ binding kinase (PBK), and Rac GTPase activating 
protein 1 (RACGAP1). In addition, 189 hypermethylation-low expression genes (Hyper-LGs) were 
identified. Pathway enrichment analysis indicated enrichment in metabolic pathways, drug metabolism-
other enzymes, and chemical carcinogenesis. The top 5 hub genes were leukocyte immunoglobulin like 
receptor B2 (LILRB2), formyl peptide receptor 1 (FPR1), S100 calcium binding protein A9 (S100A9),  
S100 calcium binding protein A8 (S100A8), and myeloid cell nuclear differentiation antigen (MNDA). The 
methylation status and mRNA expression of MCM3, CHEK1, KIF11, PBK, and S100A9 were consistent in 
the TCGA database and significantly correlated with the prognosis of patients.
Conclusions: Combined screening of aberrantly methylated–DEGs based on bioinformatic analysis may 
provide new clues for elucidating the epigenetic mechanism in HCC. Hub genes, including MCM3, CHEK1, 
KIF11, PBK, and S100A9, may serve as biomarkers for the precise diagnosis of HCC.
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Introduction

Liver hepatocellular carcinoma (HCC) is a common and 
fatal malignant tumor that seriously threatens human life 
and health (1). In recent years, the incidence of HCC 
has increased in most countries and regions around the 
world (2). Despite constant advancement in the screening, 
diagnosis, and treatment of HCC, the prognosis of this 
cancer remains poor (3). There has been almost no change 
in the survival rate of HCC over a 20-year period in 
most countries (4). Many patients are at the final stage of 
the disease or have distant metastases when diagnosed. 
Therefore, there is an urgent need to identify more 
sensitive and specific biomarkers related to the occurrence 
and progression of HCC for the accurate early diagnosis 
and prognosis of patients.

Studies have shown that the occurrence of HCC is 
largely determined by the combined effects of genetic and 
environmental factors (5). The occurrence and progression 
of HCC are usually characterized by genetic and genomic 
changes; however, in recent years, various studies have 
pointed out that HCC is also associated with epigenetics (6).  
DNA methylation (7), the most common epigenetic 
modification, is catalyzed by DNA methyltransferases 
(DNMTs). The active methyl group is transferred from 
S-adenosyl methionine (SAM) to the 5-position carbon 
of cytosine to form 5-methylcytosine (5MC) without 
altering the DNA sequence. This causes changes in DNA 
conformation, DNA stability, and the manner in which 
DNA interacts with proteins, thus controlling gene 
expression. The abnormal methylation status includes 
hypermethylation and hypomethylation, which are closely 
related to the occurrence and development of tumors (8). 
In tumor cells, the hypermethylation of the promoters of 
the tumor suppressor gene hinders the expression of tumor 
suppressor gene, leading to the occurrence of tumor. In 
addition, the hypomethylation of the specific gene can 
cause oncogene activation and promote tumor growth and 
metastasis.

Abnormal DNA methylation plays important roles 
in the occurrence and development of HCC. Abnormal 
methylation changes the spatial structure of chromatin 
by recruiting methylation binding proteins and related 
complexes, and makes it difficult for transcription factors 
to approach DNA double strand, and then prevents gene 
transcription, leading to the formation of HCC (9). At 
present, it has been found that a series of the genes have 
abnormal methylation changes in HCC (10). The functions 

of these genes are related to cell cycle regulation, apoptosis 
regulation, DNA repair, cell signal transduction, etc. The 
study of genes with abnormal methylation can help us to 
understand the regulation of tumor gene expression and 
may provide a new theoretical basis for the diagnosis and 
treatment of HCC.

In recent years, microarray chip technology has been 
widely used in the fields of medicine and biology research, 
as it provides a large amount of high-throughput data 
for genes and plays an important role in the study of 
tumor gene expression profiles and the search for key 
genes associated with cancer (11). The emergence of 
bioinformatics and its massive data resources can aid in 
exploring and identifying valuable gene network maps 
and functional pathways related to HCC (12). Our study 
analyzed the gene expression profiles and methylation chip 
microarray data of HCC using a series of bioinformatic 
tools. With this approach, we hope to identify aberrantly 
methylated genes and pathways and elucidate their 
underlying molecular mechanisms in HCC. 

Methods

Identification of differently methylated-differentially 
expressed genes (DEGs) in HCC

In this study, we selected the gene expression profiling 
dataset GSE101685 and gene methylation profiling dataset 
GSE44909 from the Gene Expression Omnibus (GEO) of 
the National Center for Biotechnology Information (https://
www.ncbi.nlm.nih.gov/geo/). The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

The GSE101685 dataset included 24 HCC and 8 
normal liver specimens (platform: GPL570 Affymetrix 
Human Genome U133  P lus  2 .0  Array,  Thermo 
Fisher Scientific, Waltham, MA, USA). For the gene 
methylation profiling microarray, the GSE44909 dataset 
included a total of 12 HCC samples and 8 normal samples 
(platform: GPL8490 HumanMethylation27_270596_
v.1.2). In the GSE44909 dataset, The Illumina Infinium 
27k Human DNA methylation Beadchip v1.2 was used to 
obtain DNA methylation profiles across approximately 
27,000 CpGs.

The GEO2R software (https://www.ncbi.nlm.nih.
gov/geo/geo2r/) was used to analyze the DEGs and 
differentially methylated genes (DMGs) in the microarray 
data from GSE101685 and GSE44909, using P<0.05, and  

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Figure 1 Identification of aberrantly methylated–differentially expressed genes in gene expression datasets (GSE101685) and gene 
methylation datasets (GSE44909). (A) upregulated and hypomethylation genes; (B) downregulated and hypermethylation genes.

t >2 as the cut-off criteria. Subsequently, hypomethylation-
high expression genes (Hypo-HGs) were obtained by 
overlapping the hypomethylation and upregulated genes. 
Hypermethylation-low expression genes (Hyper-LGs) 
were obtained by overlapping the hypermethylation and 
downregulated genes (http://bioinformatics.psb.ugent.be/
webtools/Venn/).

Functional and pathway enrichment analysis

After obtaining the Hypo-HGs and Hyper-LGs, Gene 
Ontology (GO) analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis were 
performed using the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID, https://david.ncifcrf.
gov/). Statistical significance was set at P<0.05.

Protein-protein interaction (PPI) network analysis and the 
Molecular Complex Detection (MCODE) 

In this study, the Search Tool for the Retrieval of 
Interacting Genes database (STRING, https://www.string-
db.org/) was used to analyze the functional PPI network of 
Hypo-HGs and Hyper-LGs, with the aim of interpreting 
the molecular mechanisms of key cellular activities in HCC. 
An interaction score of 0.4 was regarded as the cut-off 
criterion. 

Subsequently, MCODE was performed using the 
Cytoscape software (13) to screen modules (MCODE score 
>3 and number of nodes >4) within the PPI network. We 
also analyzed the functional enrichment of the genes in the 
screened modules using DAVID (P<0.05). Afterwards, we 
selected the hub genes (connection degree >10) using the 
cytoHubba app in the Cytoscape software. 

Verification of the hub genes in The Cancer Genome Atlas 
(TCGA) database

We then verified the mRNA expression levels and 
methylation status of the selected hub genes in the TCGA 
database. Additionally, we studied the survival curves of hub 
genes using the Kaplan–Meier method (http://ualcan.path.
uab.edu/).

Results

Identification of the Hypo-HGs and Hyper-LGs in HCC 

DEGs and DMGs were screened from the microarray 
data of GSE101685 and GSE44909 using the GEO2R 
software online. A total of 80 Hypo-HGs were obtained 
by overlapping 2,305 hypomethylation genes and 907 
upregulated genes. Contrastingly, a total of 189 Hyper-
LGs were obtained by overlapping 3,758 hypermethylation 
genes and 1,260 downregulated genes (Figure 1). 

GO and KEGG pathway analysis

The top 5 significant terms of the GO enrichment analysis 
of 80 Hypo-HGs and 189 Hyper-LGs in DAVID are 
separately illustrated in Tables 1 and 2, respectively. 

As shown in Table 1, a total of 80 Hypo-HGs were 
enriched in the biological processes (BPs) of DNA 
replication, DNA replication initiation, response to 
unfolded protein, mitotic nuclear division, and regulation 
of signal transduction by the p53 class mediator. As for the 
molecular function (MF), these genes showed enrichment 
in protein binding, protein kinase binding, adenosine 
triphosphate (ATP) binding, DNA binding, and single-
stranded DNA binding. The cell component (CC) indicated 

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006260
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006260
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006270
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006986
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006986
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007067
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1901796
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1901796
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005515
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0019901
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005524
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0003677
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0003697
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0003697
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Table 1 Gene ontology analysis of Hypo-HGs in HCC

Go analysis Term Count % P value

GOTERM_BP DNA replication 7 8.8 7.8E-5

GOTERM_BP DNA replication initiation 4 5.0 4.2E-4

GOTERM_BP Response to unfolded protein 4 5.0 9.4E-4

GOTERM_BP Mitotic nuclear division 7 8.8 9.7E-4

GOTERM_BP Regulation of signal transduction by p53 class mediator 5 6.2 2.5E-3

GOTERM_CC Nucleus 46 57.5 2.5E-7

GOTERM_CC Nucleoplasm 30 37.5 1.8E-6

GOTERM_CC Nuclear chromosome, telomeric region 7 8.8 2.0E-5

GOTERM_CC Nucleosome 6 7.5 5.1E-5

GOTERM_CC Senescence-associated heterochromatin focus 3 3.8 1.1E-4

GOTERM_MF Protein binding 57 71.2 4.8E-5

GOTERM_MF Protein kinase binding 8 10.0 1.4E-3

GOTERM_MF ATP binding 15 18.8 5.6E-3

GOTERM_MF DNA binding 16 20.0 6.2E-3

GOTERM_MF Single-stranded DNA binding 4 5.0 8.2E-3

Hypo-HGs, hypomethylation-high expression genes; HCC, hepatocellular carcinoma; ATP, adenosine triphosphate.

Table 2 Gene ontology analysis of Hyper-LGs in HCC

GO analysis Term Count % P value

GOTERM_BP Cell adhesion 16 8.5 1.0E-4

GOTERM_BP Positive regulation of inflammatory response 7 3.7 1.2E-4

GOTERM_BP Immune response 15 7.9 1.4E-4

GOTERM_BP Metabolic process 9 4.8 4.0E-4

GOTERM_BP Positive regulation of NF-kappaB transcription factor activity 8 4.2 5.1E-4

GOTERM_CC Plasma membrane 67 35.4 2.8E-5

GOTERM_CC Extracellular region 34 18.0 6.7E-5

GOTERM_CC Integral component of plasma membrane 31 16.4 8.3E-5

GOTERM_CC Mitochondrial matrix 13 6.9 1.3E-4

GOTERM_CC Extracellular space 29 15.3 2.0E-4

GOTERM_MF Receptor activity 11 5.8 1.0E-4

GOTERM_MF RAGE receptor binding 4 2.1 1.8E-4

GOTERM_MF pyridoxal phosphate binding 5 2.6 3.0E-3

GOTERM_MF Carbohydrate binding 8 4.2 4.7E-3

GOTERM_MF Oxidoreductase activity 8 4.2 5.2E-3

Hyper-LGs, hypermethylation-low expression genes; HCC, hepatocellular carcinoma; NF-kappaB, nuclear factor kappa B; RAGE, receptor 
for advanced glycation endproducts.

https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=30&d-16544-s=5
https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=30&d-16544-s=6
https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=30&d-16544-s=7
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006260
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006270
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006986
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007067
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1901796
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005634
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005654
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000784
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000786
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0035985
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005515
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0019901
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005524
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0003677
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0003697
https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=30&d-16544-s=5
https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=30&d-16544-s=6
https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=30&d-16544-s=7
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007155
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050729
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006955
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0008152
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051092
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005886
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005576
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005887
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005759
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005615
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0004872
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050786
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030170
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030246
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016491
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Table 3 KEGG pathways analysis of Hypo-HGs in HCC

Pathway name Genes Count % P value

DNA replication RFC5, FEN1, PRIM1, MCM3, MCM4 5 6.2 5.0E-5

Cell cycle CDKN2B, PTTG1, CDKN2A, CHEK1, MCM3, MCM4, E2F3 7 8.8 7.1E-5

Systemic lupus erythematosus H2AFZ, HIST1H2AE, HIST1H3F, HIST1H2BH, HIST2H2BE, 
HIST1H3E, SNRPB

7 8.8 1.1E-4

Alcoholism H2AFZ, HIST1H2AE, HIST1H3F, HIST1H2BH, HIST2H2BE, 
HIST1H3E

6 7.5 3.4E-3

Viral carcinogenesis CDKN2B, CDKN2A, CHEK1, HIST1H2BH, HIST2H2BE 5 6.2 3.0E-2

Spliceosome SF3B4, HSPA2, LSM4, SNRPB 4 5.0 4.2E-2

KEGG, Kyoto Encyclopedia of Genes and Genomes; Hypo-HGs, hypomethylation-high expression genes; HCC, hepatocellular carcinoma.

enrichment predominantly in the nucleus, nucleoplasm, 
nuclear chromosome, telomeric region, nucleosome, and 
senescence-associated heterochromatin foci. 

As shown in Table 2, a total of 189 Hyper-LGs were 
enriched in the BPs, including cell adhesion, positive 
regulation of inflammatory response, immune response, 
metabolic process, and positive regulation of nuclear 
factor kappa B (NF-kappaB) transcription factor activity. 
MF enrichment indicated receptor activity, receptor for 
advanced glycation endproducts (RAGE) receptor binding, 
pyridoxal phosphate binding, carbohydrate binding, and 
oxidoreductase activity. In addition, the CC displayed 
the plasma membrane, extracellular region, integral 
component of plasma membrane, mitochondrial matrix, and 
extracellular space.

The KEGG pathway enrichment analysis results showed 
that a total of 80 Hypo-HGs were significantly enriched 
in pathways such as DNA replication, cell cycle, systemic 
lupus erythematosus, alcoholism, viral carcinogenesis, and 
spliceosome (Table 3 and Figure 2A).

As shown in Table 4 and Figure 2B, a total of 189 Hyper-
LGs were significantly enriched in metabolic pathways; drug 
metabolism; enzymes; chemical carcinogenesis; glycine, 
serine, and threonine metabolism; fatty acid degradation; 
histidine metabolism; metabolism of xenobiotics by 
cytochrome P450; steroid hormone biosynthesis; retinol 
metabolism; drug metabolism—cytochrome P450; pyruvate 
metabolism; cytokine–cytokine receptor interaction; valine 
leucine and isoleucine degradation; malaria; and NF-kappaB 
signaling.

PPI network construction, module analysis, and hub gene 
selection

The PPI network analysis of Hypo-HGs and Hyper-LGs 
was performed using the STRING database, and MCODE 
analysis was performed using the Cytoscape software. 

The results of the PPI network of Hypo-HGs are 
shown in Figure 3A, and the top 2 modules are displayed in 
Figure 3B. The genes in the significant core modules were 
enriched in pathways of DNA replication and systemic 
lupus erythematosus, as shown in Table 5. 

The results of the PPI network of the Hyper-LGs are 
illustrated in Figure 4A, and the top 4 modules are displayed 
in Figure 4B. Significantly enriched pathways included the 
interleukin-17 (IL-17) signaling pathway; steroid hormone 
biosynthesis; the prolactin signaling pathway; and glycine, 
serine, and threonine metabolism (Table 6). 

The top 5 hub genes selected for Hypo-HGs were 
minichromosome maintenance complex component 3 
(MCM3), checkpoint kinase 1 (CHEK1), kinesin family 
member 11 (KIF11), PDZ binding kinase (PBK), and Rac 
GTPase activating protein 1 (RACGAP1; Figure 5A).

The top 5 hub genes of Hyper-LGs included leukocyte 
immunoglobulin like receptor B2 (LILRB2), formyl peptide 
receptor 1 (FPR1), S100 calcium binding protein A9 (S100A9), 
S100 calcium binding protein A8 (S100A8), and myeloid cell 
nuclear differentiation antigen (MNDA; Figure 5B).

Verification of the hub genes in the TCGA database 

The expression of the hub genes of Hypo-HGs and Hyper-

https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=55&d-16544-s=5
https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=55&d-16544-s=6
https://david.ncifcrf.gov/chartReport.jsp?d-16544-p=1&d-16544-o=1&annot=55&d-16544-s=7
https://david.ncifcrf.gov/kegg.jsp?path=hsa03030$DNA replication&termId=550028690&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa04110$Cell cycle&termId=550028716&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa05322$Systemic lupus erythematosus&termId=550028879&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa05034$Alcoholism&termId=550028830&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa05203$Viral carcinogenesis&termId=550028856&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa03040$Spliceosome&termId=550028691&source=kegg
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005634
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005654
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000784
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000786
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0035985
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007155
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050729
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050729
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006955
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051092
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051092
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0004872
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050786
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030170
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030246
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016491
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005886
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005887
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005887
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005759
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005615
https://david.ncifcrf.gov/kegg.jsp?path=hsa03030$DNA replication&termId=550028690&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa04110$Cell cycle&termId=550028716&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa05322$Systemic lupus erythematosus&termId=550028879&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa05322$Systemic lupus erythematosus&termId=550028879&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa05034$Alcoholism&termId=550028830&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa05203$Viral carcinogenesis&termId=550028856&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa03040$Spliceosome&termId=550028691&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa00983$Drug metabolism - other enzymes&termId=550028673&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa00983$Drug metabolism - other enzymes&termId=550028673&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa05204$Chemical carcinogenesis&termId=550028857&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa00260$Glycine, serine and threonine metabolism&termId=550028610&source=kegg
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Figure 2 KEGG pathway enrichment analysis of 80 Hypo-HGs and 189 Hyper-LGs. (A) Hypo-HGs; (B) Hyper-LGs. Hypo-HGs, 
hypomethylation-high expression genes; Hyper-LG, hypermethylation-low expression gene.

LGs were then verified in the TCGA database. As shown 
in Figures 6,7, our results were consistent with the mRNA 
expression and methylation status of MCM3, CHEK1, 
KIF11, PBK, FPR1, and S100A9 (P<0.05), but not with 
those of RACGAP1, LILRB2, S100A8, and MNDA. 

The Kaplan–Meier method was used to evaluate the 
relationship between these hub genes and the prognosis of 
patients with HCC. The results showed that the abnormal 
expression of MCM3, CHEK1, KIF11, PBK, RACGAP1, and 
S100A9 was significantly correlated with the prognosis of 
patients with HCC (P<0.05, Figure 8).

Discussion

With the continuous development of techniques, an 
increasing number of biomarkers for the early diagnosis of 
HCC have been discovered, including the pathogenesis of 
cancer, early diagnosis, disease monitoring, and prognosis 
evaluation based on genes (14). Previous studies have shown 
that abnormal methylated DNA detected in tissues, blood, 
feces, urine, and other sites in the bodies of patients with 

HCC may be a biomarker for early diagnosis (15). Recently, 
an increasing number of studies have used chip technology 
to identify abnormal methylation genes in tissues to help 
improve the prognosis of HCC (16). We selected and 
analyzed gene expression microarrays (GSE101685) and 
gene methylation microarrays (GSE44909) in the GEO 
database, screened aberrantly methylated–DEGs, studied 
the important biological functions and pathways in HCC, 
and verified the core genes, aiming to provide new clues 
for exploring new tumor markers and therapeutic targets of 
HCC. In particular, Cai et al. (17) also studied the aberrantly 
methylated-DEGs and pathways in HCC using the similar 
method in their study. However, they used normal liver 
tissue sample or adjacent non-tumor samples as the control 
in their study. But we think the molecular biological 
behavior in the normal liver tissue sample and adjacent non-
tumor sample are different. In our study, we specially chose 
normal liver tissue as control, not the adjacent non-tumor 
sample, to assure the standardization and preciseness of the 
study. Besides, in our study, we screened out different hub-
genes compared to the study of Cai et al. This suggested the 
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complexity of molecular biological behavior of liver cancer.
A total of 80 Hypo-HGs were screened in this study. 

The results of the GO analysis suggest that Hypo-HGs 
are associated with BPs such as DNA replication, DNA 
replication initiation, response to unfolded proteins, 
mitotic division, and regulation of signal transduction by 
p53 mediators. The KEGG analysis revealed that Hypo-
HGs were associated with DNA replication, cell cycle, viral 
carcinogenesis, and spliceosome pathways. During cell 
division, the precise transmission of epigenetic information 
to the next generation, such as DNA methylation and 
histone modification, requires the participation of DNA 
replication elements to ensure genome stability (18). 
Abnormal DNA methylation leads to disorders of the DNA 
replication process, eventually resulting in reduced genomic 
stability and the occurrence of cancer (19). Abnormal 
regulation of the cell cycle and mitosis can lead to excessive 
cell proliferation and the occurrence and development of 

malignant tumors. This suggests that these hypomethylated 
and overexpressed genes may play an important role in 
regulating the growth of HCC cells by influencing the 
cell cycle and mitosis (20). Although the causes of HCC 
are complex, the most common is hepatitis virus infection, 
including hepatitis B (HBV) and hepatitis C (HCV). Long-
term chronic viral infection can lead to hepatitis cirrhosis, 
which eventually develops into HCC (21). Various studies 
have found that abnormal methylation plays an important 
regulatory role in the occurrence and development of 
HCC caused by viral hepatitis and could be an independent 
risk factor for HCC recurrence (22). The spliceosome is 
a complex ribosomal protein complex that is responsible 
for the splicing of the precursor mRNA (23). Recently, 
studies on the regulation mechanism of aberrant splicing 
and related diseases have found that splicing abnormalities 
are common in cancer processes, particularly in the 
migration and metabolism of cancer cells, regulation of cell 

Table 4 KEGG pathway analysis of Hyper-LGs in HCC

Pathways Genes Count % P value

Metabolic pathways CDA, ALAS1, NNMT, B4GALT1, GDA, ADH1A, ADK, 
UGT2B28, PLA2G5, COMT, CYP3A4, CSAD, CYP3A5, 
CNDP1, ACAT1, HSD11B1, ALDH2, ACADL, KYNU, PLCG2, 
MAN1C1, ENPP1, UPP2, ACADM, AASS, AGXT2, GALNT2, 
MUT, GSTZ1, GRHPR, GATM, CYP2A6, HAL, BDH2, NAT1, 
SARDH, ASPA

37 19.6 3.8E-5

Drug metabolism – other enzymes CDA, CYP2A6, NAT1, UGT2B28, UPP2, CYP3A4 6 3.2 6.6E-4

Chemical carcinogenesis HSD11B1, CYP2A6, NAT1, ADH1A, UGT2B28, CYP3A4, 
CYP3A5

7 3.7 1.4E-3

Glycine, serine, and threonine metabolism GRHPR, GATM, ALAS1, AGXT2, SARDH 5 2.6 2.9E-3

Fatty acid degradation ACADL, ALDH2, ADH1A, ACADM, ACAT1 5 2.6 3.8E-3

Histidine metabolism HAL, ALDH2, ASPA, CNDP1 4 2.1 4.4E-3

Metabolism of xenobiotics by cytochrome P450 HSD11B1, CYP2A6, ADH1A, UGT2B28, CYP3A4, CYP3A5 6 3.2 5.5E-3

Steroid hormone biosynthesis HSD11B1, UGT2B28, COMT, CYP3A4, CYP3A5 5 2.6 1.2E-2

Retinol metabolism CYP2A6, ADH1A, UGT2B28, CYP3A4, CYP3A5 5 2.6 1.7E-2

Drug metabolism – cytochrome P450 CYP2A6, ADH1A, UGT2B28, CYP3A4, CYP3A5 5 2.6 2.0E-2

Pyruvate metabolism GRHPR, ALDH2, LDHD, ACAT1 4 2.1 2.3E-2

Cytokine-cytokine receptor interaction CX3CR1, TSLP, IL2RB, CCL4, TNFSF11, LIFR, CCL19, 
CXCL14, IL18R1

9 4.8 3.3E-2

Valine, leucine, and isoleucine degradation ALDH2, ACADM, MUT, ACAT1 4 2.1 3.5E-2

Malaria KLRB1, HBB, SELE, TLR4 4 2.1 3.9E-2

NF-κB signaling pathway CCL4, PLCG2, TNFSF11, CCL19, TLR4 5 2.6 4.5E-2

KEGG, Kyoto Encyclopedia of Genes and Genomes; Hyper-LGs, hypermethylation-low expression genes; HCC, hepatocellular carcinoma.
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Figure 3 PPI network and top 2 modules of Hypo-HGs. (A) PPI network; (B) top module 1–2. Hypo-HGs, hypomethylation-high 
expression genes; PPI, protein-protein interaction.
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Table 5 Enriched pathways of the genes in significant core modules (Hypo-HGs)

Term ID Term description FDR Nodes

hsa03030 DNA replication 1.29e-09 TPX2, MCM3, MCM4, PBK, GMNN, PRIM1, KIF2C, FEN1, RACGAP1, KIF11, 
PTTG1, CHEK1, ECT2, RFC5, CDCA2

hsa05322 Systemic lupus erythematosus 0.0015 CBX3, HIST1H3E, HIST1H3F, HIST2H2BE, HIST1H2AE, HIST1H2BH, CBX5

Hypo-HG, hypomethylation-high expression gene; FDR,  false discovery rate.

growth, induction of angiogenesis, and escape from growth 
inhibitory factors (24).

In this study, we identified 5 core genes in Hypo-HGs, 
including MCM3, CHEK1, KIF11, PBK, and RACGAP1. As 
an important factor in the process of cell DNA replication, 
MCM3 can be used to directly reflect the proliferation 
state of tumor cells. It is associated with the occurrence 
of a variety of tumors, and the level of MCM3 can be 
used to diagnose malignant tumors and determine their  
prognosis (25). CHEK1, an important modulator of the 
DNA repair response, is overexpressed in a variety of tumor 
cells, suggesting that tumor cells are dependent on CHEK1 
to alleviate the damage caused by stress during replication. 
Accordingly, CHEK1 could be used as a target to attack 
tumor cells (26). KIF11 is a member of the kinesin family 
and plays a key role in spindle bipolarity. Overexpression 
of KIF11 can lead to abnormal cell division and genomic 
instability, which are closely related to tumorigenesis (27). 
Studies have found that abnormal expression of KIF11 
is closely related to HCC progression and prognosis, 
indicating that it could be a biomarker for the prognosis 
and treatment of HCC (28). PBK is a T cell-derived 
protein kinase, belonging to the serine/threonine protein 
kinase, with high expression in the testis and thymus and 
low expression in normal cells (29). However, studies have 
found that PBK expression is upregulated in tumor cells, 
which could promote the occurrence and development of 
cancer by phosphorylation of downstream target genes (30).  
RACGAP1 is highly expressed in HCC and correlated 
with TNM stage, pathological grade, tumor size, and poor 
prognosis of patients, suggesting that RACGAP1 can promote 
the occurrence and progression of HCC (31). It can be used 
as a valuable tumor marker and therapeutic target for HCC.

We screened 189 Hyper-LGs, and the results of the GO 
analysis indicated that the Hyper-LGs were related to cell 
adhesion, positive regulation of inflammatory response, 
immune response, metabolic process, and positive 
regulation of NF-kappaB transcription factor activity. 
The KEGG analysis revealed that hypermethylated and 

underexpressed genes were mainly associated with amino 
acid metabolism, cytochrome P450 metabolism, the IL-17 
signaling pathway, and the NF-kappaB signaling pathway. 
Amino acid metabolism plays a decisive role in tumor 
growth and progression, and it is disordered in HCC 
cells (32). HCC cells secrete specific enzymes to regulate 
the metabolism of amino acids, and the infinite growth 
and proliferation of tumor cells require strong metabolic 
functions (33). The abnormal activity of the serine and 
glycine signaling pathways provides the main guarantee 
for satisfying the abundant nutrient requirements of tumor 
cells (34). In addition, the serine signaling pathway can 
provide biological precursors for many substances, such 
as proteins, nucleic acids, fatty acids, and cell membranes 
for tumor cell proliferation (35). Some studies have shown 
that abnormal methylation in tumor cells may affect the 
gene regulation process of this pathway (36). The key 
genes identified in our KEGG analysis could help us to 
understand the mechanism of epigenetic methylation 
regulation of amino acid metabolism in HCC cells. 
Cytochrome P450 (CYP) is involved in the metabolism of 
endogenous and exogenous substances, and any changes 
in its activity directly affect the transformation of toxic 
substances, leading eventually to the accumulation of toxic 
substances in the liver (37). Various studies have shown that 
changes in the CYP metabolic pathway are associated with 
HCC susceptibility (38). IL-17 plays an important role in 
the occurrence and development of HCC. It can promote 
the metastasis of HCC by inducing the secretion of matrix 
metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 
(MMP9) via the NF-kappaB pathway (39).

In this study, we identified 5 core genes in Hyper-LGs, 
including LILRB2, FPR1, S100A9, S100A8, and MNDA. 
In the recent years, an increasing number of studies have 
shown that LILRB2 is a cancer-promoting molecule which 
is overexpressed in various tumor cells (40). Previous 
studies have also found that LILRB2 is highly expressed 
in HCC and that it enhances the proliferation, migration, 
and invasion abilities of HCC cells and is associated with 
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Figure 4 PPI network and top 4 modules of Hyper-LGs. (A) PPI network; (B) top module 1–4. Hyper-LG, hypermethylation-low 
expression gene; PPI, protein-protein interaction.
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Table 6 Enriched pathways of the genes in significant core modules (Hyper-LGs)

Term ID Term description FDR Nodes

hsa04657 IL-17 signaling pathway 0.0171 P2RY13, S100A8, SUCNR1, AQP9, MNDA, FPR1, S100A9, 
S100A12, CCL4, LILRB2, FGR

hsa00140 Steroid hormone biosynthesis 6.83e-09 CYP3A5, CYP2A6, CYP3A4, COMT, UGT2B28

hsa04917 Prolactin signaling pathway 0.0246 ESR1, TLR4, COL6A1, POSTN, PTPRC, TNFSF11, COL3A1, DPT, 
CLEC7A, BGN

hsa00260 Glycine, serine, and threonine metabolism 1.68e-08 ACADM, GATM, ALDH2, AGXT2, SARDH, ALAS1, ACAT1, ACADL

Hypo-HG, hypomethylation-high expression gene; FDR,  false discovery rate.
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S100A8

LILRB2 FPR1

S100A9 MNDA

KIF11

CHEK1PBK

A B

Figure 5 The top 5 hub genes selected for Hypo-HGs and Hyper-LGs. (A) Hypo-HGs; (B) Hyper-LGs. Hypo-HGs, hypomethylation-
high expression genes; Hyper-LG, hypermethylation-low expression gene.
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Figure 7 Verification of the hub genes of Hyper-LGs in the TCGA database. Hyper-LG, hypermethylation-low expression gene; TCGA, 
The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma. 

poor prognosis (41) FPR1 is abnormally expressed in 
a variety of cancers and is significantly correlated with 
patient prognosis (42) S100A9, a calcium-binding protein, 
is a member of the S100 protein family and often forms 
a heterodimer with S100A8. Studies have shown that 
S100A8 and S100A9 are closely related to the malignancy 
degree and prognosis of patients with HCC (43).

In addition, we verified 10 screened core genes in the 
TCGA database. The results showed that the methylation 
states and expression differences of MCM3, CHEK1, 
KIF11, PBK, FPR1, and S100A9 were consistent with our 
results. The results of the Kaplan–Meier survival analysis 
in the TCGA database revealed that the expression levels 
of MCM3, CHEK1, KIF11, PBK, RACGAP1, and S100A9 
were significantly correlated with patient prognosis. 
Combined with the results of the microarray and TCGA 
database analysis, we finally determined that the Hub genes, 
including MCM3, CHEK1, KIF11, PBK, and S100A9, could 
be used as the important biomarkers for the prognosis of 
HCC in patients with HCC.

Nevertheless, the exact regulatory epigenetic mechanism, 
particularly the correlation between DNA methylation 

and clinical manifestations, still lacks sufficient evidence. 
As there is a certain distance between our study results and 
the actual diagnosis and treatment of patients in clinical 
practice, and validating the expressions and functions of 
representative hub genes by real world data may better for 
elucidating the epigenetic mechanism in HCC, our findings 
need to be confirmed by further basic research and large-
scale clinical studies.

Conclusions

Combined screening of aberrantly methylated–DEGs 
based on bioinformatic analysis may provide new clues for 
elucidating the epigenetic mechanism in HCC. Hub genes, 
including MCM3, CHEK1, KIF11, PBK, and S100A9, may 
serve as biomarkers for the precise diagnosis of HCC.
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