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Introduction

Since the last century, gastric cancer (GC) has been one of 
the most common cancers in the US and worldwide, and 
is the most common cancer in East Asia. GC is also the 
second leading cause of cancer-related deaths worldwide (1). 

Adenocarcinoma accounts for about 90% of all GC cases, 
originating in the superficial glands or mucous membranes 
of the stomach. Thus, unless otherwise noted, discussions 
of GC are primarily concerned with adenocarcinoma (2). 
However, other kinds of cancer are also derived from the 
stomach, including leiomyosarcoma (derived from the 
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muscles surrounding the mucous membrane) and mucosa-
associated lymphoid tissue lymphoma (derived from 
gastric lymphoid tissue) (3). Specifically, since the 1970s, 
the relative 5-year survival rate for GC has markedly 
increased, rising from 15% in 1975 to 29% in 2009 in the 
US, though the rate of survival is still low. In the majority 
of countries, except for Japan, the rate is approximately 
20%, and according to reports, the 5-year survival rate of 
stage I and II GC is more than 70% (4). Surgical treatment 
is the first choice for advanced GC. For some patients who 
do not have the opportunity to undergo surgery, extending 
the survival period and improving the living conditions (5).  
Therefore, there is an urgent need to find new tumor 
prognostic indicators to predict the prognosis of GC 
patients.

At present, tumor immunity has become a research 
hotspot because of its unique clinical effect on many kinds 
of cancers. As a new therapeutic method, immunotherapy 
has achieved good results in the treatment of many tumors 
(6,7). Endothelial cells, mesenchymal cells, extracellular 
matrix molecules, and immune cells constitute the tumor 
microenvironment. There are numerous inflammatory 
cell infiltrates in GC (8). Different immune cells play 
different roles in tumors. It has been shown that the density 
of CD8+ T cells in GC (cytotoxic T cells) is significantly 
related to the prognosis of GC, and the higher the density, 
the worse the prognosis (9). Studies have also shown that 
tumor-associated macrophages in GC are closely related 
to immune evasion and are strongly associated with 
GC prognosis (10). However, the specific mechanisms 
underlying the actions of immune cells in tumors need to be 
further explored.

In recent decades, molecular biology research has 
mostly paid attention to protein-coding genes and their 
critical genomic diversification in GC pathogenesis (11,12). 
However, protein-coding genes make up less than 2% of 
the total genome sequence, and the remaining non-coding 
genes are transcribed as non-coding RNAs (ncRNAs) (13).  
According to their size, ncRNAs fall into two main 
categories: long non-coding RNAs (lncRNAs, >200 
nucleotides) and small ncRNAs [18–200 nucleotides, such 
as microRNAs (miRNAs) and small interfering RNAs] (14).  
According to the latest evidence of the pathogenesis of 
cancer, ncRNAs exert significant functions, offering a 
fresh perspective on the biology of GC. LncRNAs are 
abnormally expressed in GC (15), esophageal cancer (16), 
liver cancer (17), and other cancers (18). LncRNAs play a 

significant regulatory role in migration, apoptosis, and cell 
propagation, thereby attracting much attention. A large 
number of studies have shown that lncRNA plays a very 
important role in tumor microenvironment. Wilkerson’s 
study showed that lncRNA could stimulate T to regulate 
cell differentiation and promote immune escape of liver 
cancer cells (19). Another study showed that hypoxic 
bladder cancer cells can secrete cancer-rich lncRNA in 
human serum to reshape tumor microenvironment and 
promote tumor growth and development, which may be 
used as diagnostic biomarkers for bladder cancer (20). 

In terms of GC, a significant number of lncRNAs are 
specifically expressed, suggesting that they may serve as 
biomarkers and may predict clinical outcomes. One paper 
investigated competing endogenous RNA (CeRNA) 
regulatory axes associated with immune microenvironment 
in gastric cancer (GC) (21). In this study, we further 
explored the impact of lncRNA on prognosis and its 
correlation with clinical features, and constructed a 
prognostic model.

At present, a method for lncRNA expression profiling 
using microarray data has been established. The expression 
data set of lncRNAs in The Cancer Genome Atlas (TCGA) 
was analyzed in this study. Through ESTIMATE, single-
sample gene set enrichment analysis (ssGSEA), Cox 
regression analyses, and other approaches, lncRNAs related 
to tumor phenotypes were screened. The main purpose of 
this study was to uncover immune-related lncRNAs as novel 
biomarkers for predicting GC prognosis. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-21-833/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

Cell lines and culture

Human stomach adenocarcinoma (STAD) cell lines (MKNA, 
AGS, MGC803) and the normal control cell line (GES-1) 
were purchased from the American Type Culture Collection 
(ATCC, Rockville, IN, USA). Cells were cultured in RPMI-
1640 (Gibco, MA, USA) supplemented with 10% fetal calf 
serum and 1% streptomycin and penicillin and maintained 
at 37 ℃ under a 5% CO2 atmosphere.

https://jgo.amegroups.com/article/view/10.21037/jgo-21-833/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-21-833/rc
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RNA extraction and quantitative real-time PCR

Total RNA was extracted from STAD cell lines (MKNA, 
AGS, MGC803) and the normal control cel l  l ine 
(GES-1) using Trizol reagent (Invitrogen) according 
to the manufacturer’s instructions. After synthesizing 
cDNA, real-time fluorescent quantitative PCR was 
immediately conducted to detect the expression of 
BMPER ,  PRUNE2 ,  and RBPMS2 .  Glyceraldehyde-
3-phosphate  dehydrogenase  (GAPDH) was  used 
as an endogenous reference. The primers used in 
this experiment were as follows: GAPDH forward, 
5'-CACCATGAAGATCAAGATCATTGC-3', GAPDH 
reverse, 5'-GGCCGGACTCATCGTACTCCTGC-3'; 
B M P E R  f o r w a r d ,  5 ' - G G G T G C G C T G T G T T 
GTTCATT-3', BMPER reverse, 5'-CTAAGGTGCT 
G G G G A C A G G A G - 3 ' ;  P R U N E 2  f o r w a r d , 
5'-CAGTTCAGTGCTCAGGGTTT-3',  PRUNE2 
reverse, 5'-CCAAACTTGTCTGTAAATGCTT-3'; 
RBPMS2 forward, 5'-CTCCCATGCTGCGTTCA-3', 
RBPMS2 reverse, 5'-GGGTGGTGTCAGAGGAAG-3'. 
The levels of BMPER, PRUNE2, and RBPMS2 were 
calculated with the comparative quantification cycle (Cq) 
method (2-ΔΔCq) (Table S1).

Data retrieval and pre-processing

From the TCGA database, transcriptome data [fragments 
per kilobase million (FPKM) value] of STAD (32 normal 
cases and 375 tumor samples) were downloaded and 
converted into transcripts per kilobase million (TPM) data. 

Tumor immune infiltration and cluster analysis

We used ssGSEA to evaluate the enrichment of different 
types of immune cell-related gene sets in each tumor sample 
to determine the degree of tumor immune cell infiltration. 
The enriched components obtained from ssGSEA were 
used for unsupervised clustering of tumor samples from 
patients with GC, and two different subtypes were obtained 
based on immune cell infiltration. We performed the above 
steps using the ConsensuClusterPlus package in R (19).

We used the ESTIMATE algorithm in R to calculate 
the ImmuneScore, ESTIMATEScore, and StromalScore 
of each tumor sample. The difference between PD-
L1 (CD274) and CTLA4 in the two subtypes was also 
calculated. We used ssGSEA to obtain the enriched 
components of different immune cell gene sets and explored 

whether the two subtypes were significantly different from 
each other. According to the degree of immune infiltration, 
we divided different clusters into the immune-inflammatory 
type and immune desert type.

Unsupervised clustering of differential lncRNAs 

We analyzed the differences in lncRNAs between every 2 
clusters, and adjusted P<0.05 and log |fold change| >2 were 
considered as the thresholds for differential gene expression. 
A total of 425 lncRNAs were found as the characteristic 
lncRNAs of different immune subtypes. Then, univariate 
Cox analysis was performed for these differential lncRNAs. 
Of these lncRNAs, we found a total of 57 lncRNAs with 
prognostic value (P<0.05). Based on the expression of the 
57 lncRNAs, we applied unsupervised cluster analysis to 
distinguish these patterns and categorize patients for further 
analysis.

Construction of a competitive endogenous RNA (ceRNA) 
network and functional annotation

In order to further explore the biological roles of the 
differential lncRNAs, we further identified differential 
mRNAs in the two immune subtypes. We found 1,601 
differential genes using adjusted P value <0.05 and |FC| 
>2 as thresholds. Then, we searched the miRNAs targeted 
by these different lncRNAs through the miRcode database 
(http://www.mircode.org/) (20). The mRNAs targeted 
by these miRNAs in the miRDB (21), miRTarBase (22), 
and TargetScan (23) databases were intersected with the 
differential mRNAs of the immune subtypes, and a total 
of 44 mRNAs were obtained. We used these lncRNAs, 
miRNAs, and mRNAs to construct a ceRNA network. To 
determine the functional annotations associated with the 
44 mRNAs, we used the Metascape database to analyze the 
enrichment of these mRNAs (24).

Survival analysis

To evaluate the overall survival (OS) and expression 
relationship of the 57 differential lncRNAs (univariate Cox, 
P<0.05), we performed multivariate analysis to construct a 
prognostic model using the prognostic value. The model 
for prognostic prediction was developed as described below, 
using the coefficient and prognostic lncRNA expression 
level based on multiple regression analysis:

https://cdn.amegroups.cn/static/public/JGO-21-833-supplementary.pdf
http://www.mircode.org/
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( ) ( ) ( )1
ln exp lnn

i
Risk score patient = coef cRNAi r cRNAi

=
×∑  [1]

Where for the GC patient, risk score (patient) represented 
the prognostic risk score, lncRNAi represented the prognostic 
lncRNA, and expr (lncRNAi) represented the lncRNAi 
expression level. The coefficient (lncRNAi) represented the 
lncRNAi contribution to the prognostic risk score, which was 
acquired by the regression coefficient from multivariate Cox 
analysis. We divided patients into low and high-risk groups, 
and used the median score of patients in the training set as 
the risk threshold. To assess the difference in survival between 
the two groups, we used the Kaplan-Meier (KM) method. 
For assessing the independence of the risk score from the 
other clinical factors, stratified analyses were conducted. To 
assess the risk score performance, a time-dependent receiver 
operating characteristic (ROC) curve was generated.

Nomogram

This study applied the Cox regression algorithm to predict 
the survival rate of patients using indicators such as gender, 
age, T stage, risk score, and N stage. We also generated 
the calibration curve of the prediction model to assess the 
prediction effect of the nomogram. 

Statistical analysis

R version 4.0.3 and the R software package “survival” were 
used for all statistical analyses. This study used the log-
rank test and KM analysis to evaluate survival and compare 
survival differences between clusters and risk groups. 
P<0.05 was considered as statistically significant. 

Results

The landscape of immune cell infiltration in STAD

First, the data of 375 GC samples from TCGA were 
collected. We then applied ssGSEA to sequencing data 
from GC samples to assess immune cell infiltration. 
Lastly, the abundance and types of 23 immune-related 
cells from GC samples were determined (https://cdn.
amegroups.cn/static/public/jgo-21-833-1.xlsx). The 
STAD cohort was divided into different groups based on 
the ConsensusClusterPlus R package. When the uniform 
matrix K value was 2, the crossover between STAD samples 
was minimal (Figure 1A-1C). As shown in Figure 1D,  
GC samples, based on immune infiltration, were divided 
into a low immune cell infiltration cluster (n=160) and a 

high immune cell infiltration cluster (n=215). 
The enriched fractions of different immune cell sets 

obtained by ssGSEA between the two subtypes were 
significantly different (Figure 2A). In cluster A, several 
immune cells were significantly higher compared to cluster 
B. In order to verify the above clustering results, the 
ESTIMATEScore, ImmuneScore, and StromalScore were 
calculated for each tumor sample. The results showed that 
cluster A had a higher ESTIMATEScore, ImmuneScore, 
and StromalScore than cluster B (Figure 2B-2D; all 
P<0.05). Since tumor purity was negatively correlated with 
ESTIMATEScore, we determined that tumor purity was 
higher in cluster B. There were also significant differences 
between PD-L1 (CD274) and CTLA4 expression in the two 
subtypes (Figure 2E). Therefore, we speculated that cluster 
A was of the tumor immune-inflammatory type and cluster 
B was of the immune desert type. These results further 
suggest that cluster A has a better effect on immunotherapy.

Unsupervised clustering of differential lncRNAs between 
high and low immune cell infiltration clusters

We analyzed the differentially expressed lncRNAs between 
every 2 clusters by setting thresholds of adjusted P<0.05 
and |FC| >2. There were 425 lncRNAs that were the 
characteristic lncRNAs of different immune subtypes 
(Figure 3A). Univariate Cox analysis was conducted for 
these differential lncRNAs, and 57 lncRNAs were found 
to have prognostic value (P<0.05). According to the 
expression of these 57 lncRNAs, we applied unsupervised 
cluster analysis to confirm these patterns and categorize 
patients for further analysis. As shown in Figure 3B, we 
used the unsupervised hierarchical clustering algorithm 
to separate GC samples into 2 clusters (gene cluster A 
and B) based on the expression of 57 lncRNAs. Then, we 
performed prognostic analysis, and the results showed that 
gene cluster A had a worse prognosis than gene cluster B 
(Figure 3C; P=0.021). Figure 3D shows the correlations 
between different clusters and clinical characteristics 
such as sex, age, T stage, and N stage, among others. 
The enrichment of different immune cell gene sets 
between the 2 gene clusters obtained by ssGSEA was also 
significantly different (Figure 3E). The results showed 
that gene cluster A had higher enrichment of activated 
B cells, activated CD8 T cells, gamma delta T cells, 
immature B cells, regulatory T cells, T follicular helper 
cells, type I T helper cells, type 2 T helper cells, activated 
dendritic cells, eosinophils, immature dendritic cells, 

https://cdn.amegroups.cn/static/public/jgo-21-833-1.xlsx
https://cdn.amegroups.cn/static/public/jgo-21-833-1.xlsx
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macrophages, mast cells, myeloid-derived suppressor cells, 
monocytes, natural killer cells, natural killer T cells, and 
plasmacytoid dendritic cells, but had lower enrichment 
of type 17 T helper cells, CD56 dim natural killer cells, 
and neutrophils than gene cluster B. Furthermore, there 
were no differences in activated CD4 T cells and CD56 
bright natural killer cells between gene cluster A and 

B. The difference in the distribution of immune cells 
between gene cluster A and B may reveal the difference in 
prognosis between these groups.

Construction of a ceRNA network and functional annotation

As shown in Figure 4A, we further identified 1,601 
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Figure 3 Different lncRNAs were found among different clusters. A total of 425 lncRNAs were determined as the characteristic lncRNAs of 
different immune subtypes (A). A total of 57 genes were found to have prognostic value (B). gene cluster B had the best prognosis between 
the 2 groups (C). The correlations between different clusters and clinical characteristics (D). The enrichment of different immune cell gene 
sets obtained by single-sample gene set enrichment analysis (ssGSEA) was significantly different between the 2 gene clusters (E). *, P<0.05; 
**, P<0.01; ***, P<0.001; ****, P<0.0001. ns, no significance.
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Figure 4 Construction of a ceRNA network, functional annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis. The 1601 differential mRNAs as determined by FC >2 (R software, EDGR) (A). The ceRNA network was constructed by 44 
mRNAs, 27 lncRNAs, and 25 miRNAs (B). The major signaling pathways associated with these genes (C).

differential mRNAs in the two immune subtypes by using 
adjusted P value <0.05 and |FC| >2 as thresholds. Then, we 
searched the miRNAs targeted by these different lncRNAs 
through the miRcode database. The mRNAs targeted by 
these miRNAs in the miRDB, miRTarBase, and TargetScan 
databases were intersected with the differential mRNAs, 
and 44 mRNAs were obtained. We used these lncRNAs, 
miRNAs, and mRNAs to construct a ceRNA network. 
There were 44 mRNAs, 27 lncRNAs, and 25 miRNAs 
in total (Figure 4B). We used the Metascape database to 
analyze the biological roles of these mRNAs. As shown in 

Figure 4C, these genes correlated with pathways in cancer, 
interleukin-4 and interleukin-13 signaling, and negative 
regulation of BMP signaling pathway. 

BMPER, PRUNE2, and RBPMS2 expression in STAD cell 
lines in vitro

We detected the relative mRNA expression levels of 
BMPER, PRUNE2, and RBPMS2 in 3 human STAD cell 
lines (MKNA, AGS, and MGC803). We used the normal 
cell line GES-1 as the control. The mRNA expression 
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Figure 5 Different expression levels of BMPER, PRUNE2, and RBPMS2 in stomach adenocarcinoma (STAD) cell lines and bioinformatics 
analysis (normal and tumor samples). (A-C) The mRNA expression levels of BMPER, PRUNE2, and RBPMS2 in STAD cell lines (MKNA, 
AGS, MGC803) and the normal cell line (GES-1) were detected by quantitative real-time PCR (RT-qPCR). (D-F) The expression of 
BMPER, PRUNE2, RBPMS2 in STAD (normal and tumor samples) determined by bioinformatics analysis. **, P<0.01; ***, P<0.001.

levels of BMPER, PRUNE2, and RBPMS2 were significantly 
decreased in all STAD cell lines compared with the GES-
1 cell line (***P<0.001, Figure 5A,5B; **P<0.01, Figure 5C). 
These findings were consistent with the bioinformatics 
analysis (Figure 5D-5F).

LncRNA signature construction and survival analysis

Univariate regression was used to analyze the prognosis of 
the TCGA cohort according to the prognostic lncRNAs. 
We screened 57 prognostic lncRNAs. Then, we performed 
multivariate analysis to construct a prognostic model using 
the 57 lnRNAs. The hazard ratio (HR), 95% confidence 
interval (CI), and P values for 19 lncRNAs in the 
multivariate analysis are shown in Table 1. The risk score 
of each patient was calculated according to the following 
risk formula: risk score = AC129926.1*0.345432553 + 
MACORIS*0.378648877 + AL355922.1*0.31149596 + 
AC008808.1*0.600771598 + LINC01980*0.124498202 + 
AC087521.1*0.684070491 + AC007277.1*-0.676014589 + 
AC090825.1*0.39490309 + AC037198.2*-0.333425791 + 

LINC02677*0.238647705 + ZNF667-AS1*-0.349806418 
+ GACAT3*0.333015708 + AP001189.1*-0.46590347 + 
AC110995.1*0.643141834 + AC037198.1*0.473234061 + 
LINC01197*0.528838193 + LINC01614*0.239271261 + 
LINC00900*-0.870425064 + LINC00968*-0.536139139. 
According to the median cut-off value of the risk score, 
we divided the patients into low-risk and high-risk 
groups. We found that the OS of high-risk patients was 
significantly lower than that of low-risk patients (Figure 6A, 
P<0.0001). Furthermore, the 1-year area under the curve 
(AUC) was 0.71, the 3-year area under the curve (AUC) 
was 0.76, and the 5-year area under the curve (AUC) was 
0.78, demonstrating that in predicting the prognosis of 
GC, lncRNAs had excellent accuracy (Figure 6B). The 
nomogram model for predicting OS at 1, 3, and 5 years was 
then generated (Figure 6C). Through the correlation charts 
we found that the observed 5-year OS and the predicted 
OS showed ideal agreement (Figure 6D). We verified the 
expression of representative lnRNAs in gastric cancer tissues 
and their role in tumor immunity. We found that there were 
significant differences in the expression and tumor immune 



Journal of Gastrointestinal Oncology, Vol 13, No 1 February 2022 111

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(1):102-116 | https://dx.doi.org/10.21037/jgo-21-833

Table 1 The hazard ratio (HR), 95% confidence interval (CI), and P values for the multivariate analysis of the 19 lncRNAs

ID coef HR HR.95L HR.95H P value

AC129926.1 0.3454326 1.4126008 1.1181702 1.7845593 0.003773

MACORIS 0.3786489 1.4603102 0.9688083 2.2011639 0.0705124

AL355922.1 0.311496 1.3654663 0.9713673 1.9194574 0.0730101

AC008808.1 0.6007716 1.8235253 1.0051238 3.3082935 0.0480665

LINC01980 0.1244982 1.13258 0.98594 1.3010298 0.0784396

AC087521.1 0.6840705 1.9819288 0.9634832 4.0769176 0.0630446

AC007277.1 −0.676015 0.5086401 0.3381935 0.7649903 0.0011684

AC090825.1 0.3949031 1.4842403 1.0211328 2.157378 0.0384936

AC037198.2 −0.333426 0.7164651 0.4983392 1.0300659 0.071854

LINC02677 0.2386477 1.2695312 0.9751792 1.6527316 0.0761936

ZNF667-AS1 −0.349806 0.7048245 0.5302498 0.9368747 0.0159955

GACAT3 0.3330157 1.3951692 1.0558378 1.8435571 0.0191756

AP001189.1 −0.465903 0.6275679 0.3418454 1.152104 0.1328002

AC110995.1 0.6431418 1.9024487 1.1197655 3.2322045 0.0173943

AC037198.1 0.4732341 1.605177 1.1119829 2.317116 0.0115142

LINC01197 0.5288382 1.6969596 0.8989362 3.203422 0.102825

LINC01614 0.2392713 1.2703231 1.0808822 1.4929663 0.0036853

LINC00900 −0.870425 0.4187735 0.1717268 1.0212224 0.0556469

LINC00968 −0.536139 0.5850025 0.3080866 1.1108174 0.1012689

infiltration of two lcRNAs compared with normal tissues 
(Figure S1).

To further determine the independence of the risk score 
from other clinical characteristics, stratified analysis was 
performed. We separated the model into high and low-risk 
groups, and the KM survival curve was drawn for different 
patients with different clinical states. In different age 
groups of patients with GC, the survival rate of high-risk 
patients and low-risk patients was significantly different. At 
>65 years (Figure 7A, P<0.001) and <65 years (Figure 7B,  
P<0.001), the survival rate of the low-risk group was 
significantly higher. The survival rate of females in the low-
risk group was significantly higher compared with the high-
risk group (Figure 7C, P=0.004), as was the case in men 
(Figure 7D, P<0.001). In N0 and N1-3 patients at different 
TNM stages, the survival rate was significantly lower in 
the high-risk group compared with the low-risk group  
(Figures 7E,7F, P<0.001), while T1-2 (Figure 7G, P=0.135) 
showed no statistically significant difference. The survival 

rate of T3-4 patients in the high-risk group was lower than 
that of low-risk group (Figure 7H, P<0.001), indicating the 
high clinical value of this predictive model.

To further clarify the role of the risk scoring model we 
constructed, we explored the differences among different 
immune subtypes and genotypes. As shown in Figure 8A,8B, 
compared with cluster B, the risk score of cluster A was 
significantly higher (P<0.05). This further explains why 
gene cluster A had a worse prognosis than gene cluster 
B. An alluvial diagram was used to visualize the attribute 
changes of individual patients (Figure 8C).

Discussion

As the most frequent and deadly malignant tumor 
worldwide, GC is highly heterogeneous (25). This 
heterogeneity is manifested in the tumor cell phenotypes and 
genotypes and in the microenvironment of the tumor. GC 
cells and various normal cells constitute GC tissues, such 
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Figure 6 LncRNA signature construction and survival analysis. Kaplan-Meier survival curve (A). Receiver operating characteristic (ROC) 
curve (B). The prediction model calibration curve (5 years) was constructed (C). Correlation charts demonstrated that the observed versus 
predicted rates of 5-year overall survival (OS) had ideal consistency (D). 

as mesenchymal cells, immune cells, and fibroblasts (26).  
Therefore, the interaction between tumor-infiltrating 
immune cells and GC tumor cells is under investigation, 

which will be useful for studying the mechanism of tumor 
occurrence and for developing new diagnosis and treatment 
methods. In this study, transcriptome sequencing data 
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Figure 7 Survival analysis of different clinicopathological features based on LncRNA signature. The survival probability between the 2 
groups (age >65 and <65 years) (A, P<0.001; B, P<0.001). Compared with the high-risk group, the survival rate of females in the low-risk 
group was significantly higher (C, P=0.004), which was also the case for men (D, P<0.001). Compared with the low-risk group, the survival 
rate was significantly lower in the high-risk group (E,F, P<0.001). T1-2 (G, P=0.135) showed no significant difference. Compared with the 
low-risk group, the survival rate of the high-risk group was lower for T3-4 patients (H, P<0.001).

obtained from TCGA and clinicopathological features of 
GC were used to identify and validate the immune cell 
infiltration features associated with the 19 prognostic 
lncRNAs. Many studies have shown that lncRNAs in the 
tumor microenvironment may help provide new diagnostic 
and prognostic markers for cancer (21,27). Therefore, 
lncRNAs have great prospects as prognostic markers in 
gastric cancer.

The obtained samples were classi f ied into two 
subtypes, namely cluster A and B, which were shown 
to have prominent differences in the degree of immune 
cell infiltration, suggesting that cluster A and cluster B 
belong to the immune-inflamed type and immune-desert 
type separately. Compared with cluster B, we found that 
the enrichment degree of all cluster A immune cells was 
higher, indicating that cluster A was of the immune-
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Figure 8 The differences among different immune subtypes and genotypes. The differences in risk scores between different immune 
subtypes (A) and gene clusters (B). An alluvial diagram was used to visualize the attribute changes of individual patients (C). ****, P<0.0001.

inflammatory type and cluster B was of the immune desert 
type. Studies have shown that different immune subtypes 
result in different prognoses (28). We further investigated 
whether there were significant differences between high 
and low immune cell infiltrates in terms of StromalScore, 
ImmuneScore, and ESTIMATEScore. The results showed 
that all 3 scores were higher in cluster A than in cluster B, 
indicating that cluster A had higher immune purity and 
cluster B had higher tumor purity. This suggests that cluster 
A was more likely to benefit from immunotherapy. PD-L1 
and CTLA4, as routine targets for immunotherapy, have 
made great progress in clinical treatment (29). The findings 
of this study show that PD-L1 expression and CTLA4 
expression in cluster A were higher, suggesting that these 
patients might be more sensitive to PD-L1 and CTLA4 
treatment, which further supported our conclusion.

We divided patients into two groups (gene cluster 
A and B) based on 57 prognostic lncRNAs. Prognostic 
analysis showed that gene cluster B had a better prognosis 
than gene cluster A. The enrichment of different immune 
cell gene sets obtained by ssGSEA was also significantly 
different between the two gene clusters. Most of the 
immune cells were enriched in gene cluster A, which may 

have contributed to the worse prognosis in gene cluster 
A. Further enrichment analysis showed that the gene 
differences are responsible for the negative regulation of 
tumor pathways, and the interleukin-4, interleukin-13, and 
BMP signaling pathways. 

In recent years, deep transcriptome sequencing research 
has suggested that most human genome transcripts are 
non-protein coding genes, containing lncRNAs (30). As a 
result, we constructed a prognostic model according to the 
obtained lncRNAs. Based on the model, we divided patients 
into two groups. The low-risk group showed a significantly 
higher survival probability. The accuracy of diagnosis 
suggested by the model was also relatively high and seemed 
to increase over time, further confirming its reliability. 
To date, the TNM (tumor-node-metastasis) classification 
has been the most common guide for the prediction of 
prognosis, yet a more precise classification is urgently 
required. In this study, the validation of the prognostic 
model was verified in groups from different backgrounds, 
indicating promising potential for clinical use. 

At the same time, this study analyzed differentially 
expressed lncRNAs, mRNAs, and miRNAs in GC and 
explored their functions. Their interactions were elucidated 
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by constructing a ceRNA network, and three differentially 
expressed mRNAs of interest were validated by qPCR. The 
qPCR results were consistent with results of bioinformatics 
analysis. In a cohort study of 15,651 Chinese patients, 
Carlevaro-Fita et al. revealed that BMPER can be used 
as a human longevity gene locus and reduces the risk of 
many diseases (30). This was consistent with our results, 
indicating that BMPER can be regarded as a protective 
factor. In previous studies, a melatonin-attenuated lncRNA 
was identified as a potential melatonin-regulated oral cancer 
stimulator (MROS-1). The down-regulation of MROS-1 by 
melatonin inhibited TPA-induced oral cancer migration by 
supplementing the protein expression of prune homologue 
2 (PRUNE2), which played a tumor inhibitory role in 
oral cancer. This demonstrated that PRUNE2 is a tumor 
suppressor gene, which is consistent with our findings (31). 
GC shows significant biological differences between Asian 
and non-Asian populations, which makes it difficult to carry 
out unified prediction measures for all people. Previous 
researchers have identified new prognostic biomarkers. The 
prognostic model established by 4 genes (RBPMS2, RGN, 
PLEKHS, and CT83) was a reliable tool to predict the OS of 
GC patients in Asia (32), and this was also consistent with 
our bioinformatics analysis and experimental results.

There are some limitations to our study. Firstly, our 
prognostic model should be validated in more GC data sets. 
Secondly, all our results are based on public data sets and 
need to be verified experimentally.

In summary, this study identified a risk score of 19 
lncRNAs as a prognostic marker of GC. These 19 
prognostic lncRNAs were related to the infiltration of 
immune subtypes. In this study, an approach for predicting 
the prognosis of GC patients was developed, and may 
provide a new therapeutic target for immunotherapy.
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Table S1 Sequences of primers for quantitative real-time PCR

Gene 5'-3' Sequence

GAPDH Forward CACCATGAAGATCAAGATCATTGC

Reverse GGCCGGACTCATCGTACTCCTGC

BMPER Forward GGGTGCGCTGTGTTGTTCATT

Reverse CTAAGGTGCTGGGGACAGGAG

PRUNE2 Forward CAGTTCAGTGCTCAGGGTTT

Reverse TTCGCAGTTCTCATCTGACTCATACA

RBPMS2 Forward CTCCCATGCTGCGTTCA

Reverse GGGTGGTGTCAGAGGAAG

Reverse TTCTTGGGCGTCTGCTCCACAG

Figure S1 The expression of lncRNA used for model construction in GC and its role in tumor immunity were analyzed by difference, 
prognosis and immune analysis. **, P<0.01; ***, P<0.001. GC, gastric cancer.
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