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Background: Gastric cancer (GC) is one of is one of the most common malignancy among digestive 
system cancers worldwide. Increasing evidence has revealed that microsatellite instability (MSI) status can 
affect the survival in various cancers. However, the role of MSI status in GC remains uncertain. 
Methods: The RNA-seq and clinicopathological features and mutation data of GC was obtained from The 
Cancer Genome Atlas (TCGA). Different bioinformatic and statistical methods were combined to construct 
a robust MSI-related gene signature for prognosis. Gene set enrichment analysis was conducted to explore 
Kyoto Encyclopedia of Genes and Genomes pathways associated with the MSI-related risk signature. 
Moreover, Kaplan-Meier (K-M) survival and receiver operating characteristic (ROC) analyses evaluate that 
the MSI-related risk signature. Immune-associated miRNAs were identified using immune scores calculated 
by the ssGSEA. In addition, ‘pRRophetic’ R package was used to assess the chemotherapeutic response by 
the GDSC website.
Results: We firstly analyzed the influence of MSI status to GC survival based on the data from the TCGA 
database. GC patients in the TCGA database were divided into MSI-H and MSI-L/MSS groups. We counted 
the survival conditions of GC patients in these two groups. In addition, we also calculated the difference of 
TMB between these two groups and found that MSI-H group had a relatively high survival rate. Next, we 
identified 99 highly mutated genes in MSI-H group and constructed a MSI-related risk signature based on 
10 robust genes for predicting the overall survival (OS) of GC patients. Moreover, analyses indicated that 
the MSI-related risk signature can accurately predict 1-, 3- and 5-year OS of GC patients. Furthermore, 
enrichment analysis suggested that genes between the high- and low-risk groups mainly involved in mutation 
and DNA repair related pathways. Finally, we also found that the MSI-related risk signature can affect the 
TME immune cell infiltration in GC and can be used to predict the clinical response to immunotherapy.
Conclusions: In the present study, we develop a MSI-related risk signature for predicting the survival and 
therapy of GC, which may contribute to the clinical treatment of GC.
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Introduction

Gast r i c  cancer  (GC) ,  wh ich  ma in ly  cons i s t s  o f 
adenocarcinoma, squamous cell carcinoma, adenosquamous 
carcinoma, and carcinoid tumors, is one of the most 
common malignancies among digestive system cancers 
worldwide and is the third major leading cause of death 
from cancers (1). According to the 2018 global statistics, 
more than one million people were diagnosed with GC, 
and 782,685 patients died (1). Although there have been 
major advances in the treatment of GC using surgical 
techniques, chemotherapy, and radiotherapy, the survival 
of GC (especially for patients with advanced GC) 
remains unsatisfactory due to high mortality rates (2-4). 
Unfortunately, existing clinical indicators cannot accurately 
predict the prognosis of GC. Hence, identifying novel 
and sensitive biomarkers for predicting the prognosis and 
treatment of GC is of utmost importance.

Microsatellite instability (MSI), a molecular feature of 
cancer, often occurs when DNA mismatch repair (dMMR) 
is disrupted (5). Increasing evidence reveals that MSI is 
common in several cancers, such as esophageal, gastric, 
colorectal, and endometrial cancers, and is regarded as 
a promising biomarker for diagnosis and treatment (6).  
In particular, MSI is considered to be a prognostic factor 
associated with adjuvant chemotherapy outcomes in 
colorectal cancer (7). Emerging data reveal that GC 
patients in The Cancer Genome Atlas (TCGA) can be 
stratified into different subgroups, including MSI-high 
(MSI-H) tumors (8,9). More importantly, MSI-H tumors 
constitute 22% of GC cases in Western countries (8) 
and have been identified as a separate entity of GC (8,9). 
However, except for a few prospective data studies, the 
association between MSI and GC’s clinical features and 
prognosis remains unexplored (10-12). 

Interestingly, recent research has demonstrated that 
MSI is associated with immunotherapy, especially immune 
checkpoint blockade (ICB) treatment (13). For example, the 
dMMR-MSI subtype in colon cancer was shown to benefit 
from immunotherapy due to a high tumor mutational 
burden (TMB), infiltration of activated CD8+ cytotoxic 
T lymphocytes, and activated Th1 cells with (interferon-
gamma, IFN-γ) production (14). Moreover, it has been 
suggested that pembrolizumab can improve the progression-
free survival of MSI-H/dMMR metastatic colorectal  
cancer (15). Furthermore, MSI-H is positively correlated 
with the expression of PD-L1 (16,17). Microsatellite 
stability (MSS) colon cancer is not sensitive to ICB 

treatment due to the lack of immune infiltration and low 
TMB (16). On the other hand, the tumor microenvironment 
(TME) of MSI-H in primary colorectal cancer shows a 
high infiltration of T-helper 1/cytotoxic lymphocytes and 
a widespread expression of the main immune-checkpoint 
molecules (18,19). However, the role of MSI in the TME 
and immunotherapy remains ambiguous.

In this study, we firstly analyzed the correlation 
between MSI status and survival in GC based on the 
TCGA database.  Next,  we assessed the mutation 
landscape of MSI-H and MSI-L/MSS groups. Then, 
we constructed an MSI-related risk signature based on 
the mutated genes in the MSI-H group. Finally, we 
investigated the association between the MSI-related risk 
signature and immunotherapeutic and chemotherapeutic 
responses. We present the following article in accordance 
with the TRIPOD reporting checklist (available at 
https://jgo.amegroups.com/article/view/10.21037/jgo-21-
808/rc).

Methods

Data acquisition

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

The gene-expression profiles, somatic mutations, and 
clinical data of GC samples were acquired from the TCGA 
database. We also extracted the MSI status [MSI-H, 
MSS, and MSI-low (MSI-L) tumors] of each patient in 
the TCGA database, as outlined by Bonneville et al. (20). 
Furthermore, 109 GC samples from the GSE26901 dataset 
were downloaded from the Gene Expression Omnibus 
(GEO) database to act as a validation set. 

Evaluation of MSI in GC

GC patients in the TCGA database were divided into 
MSI-H and MSI-L/MSS groups according to their MSI 
status. We compared the survival data of GC patients in 
these two groups and also calculated the difference in TMB 
using the Wilcoxon test. 

Mutation landscape differences between the MSI-H and 
MSI-L/MSS groups

To investigate the mutation landscape differences of patients 
in the MSI-H and MSI-L/MSS groups, the ‘maftools’ 

https://jgo.amegroups.com/article/view/10.21037/jgo-21-808/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-21-808/rc
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R package was used to analyze and visualize the somatic 
mutation data of each GC patient (21).

Construction and verification of an MSI-related risk 
signature in GC

Based on the mutated gene data obtained from GC patients 
in the TCGA database, we established an MSI-related risk 
signature by conducting a univariate Cox regression analysis 
to screen genes with expression levels related to survival. 
Next, the genes identified as significant by univariate Cox 
regression analysis were entered into a multivariate Cox 
regression analysis to remove false-positive genes through 
the ‘step’ R function. Using this method, an MSI-related 
risk signature was established based on the expression 
level of each gene and its corresponding Cox coefficient 
derived from the multivariate Cox regression analysis; 
namely, the risk score of each patient was defined as follows: 

( )irisk score express coeffn
ii=1

 = ×∑ . In this formula, expressi 
represents the expression level of patient i, and coeffi 
represents the Cox coefficient of gene i obtained from the 
multivariate Cox regression analysis. Therefore, patients 
in the TCGA database were classified into high- and low-
risk groups based on the median risk score. Finally, a 
Kaplan-Meier (K-M) survival analysis was used to compare 
the difference in overall survival (OS) between the high- 
and low-risk groups using the log-rank test. Using the 
‘survivalROC’ R package, receiver operating characteristic 
(ROC) analyses were conducted to evaluate the effectiveness 
of the MSI-related risk signature in predicting the 1-, 3-, 
and 5-year OS of GC patients (22). Meanwhile, patients in 
the GSE26901 dataset were also stratified into high- and 
low-risk groups according to the median risk score obtained 
by using the above formula. Subsequently, K-M and ROC 
curves were plotted to further validate the efficacy of the 
MSI-related risk signature.

Association between the MSI-related risk signature and 
clinical features

To further explore the association between the MSI-related 
risk signature and clinical features, including age, gender, 
pathological T stage, pathological N stage, pathological 
M stage, pathological tumor stage, TMB status, and MSI 
status, we compared the distribution of risk scores with 

different clinical variables using the Wilcoxon test or one-
way ANOVA test. 

Independent prognostic analysis 

Univariate and multivariate Cox regression analyses were 
performed to investigate whether the MSI-related risk 
signature could predict the OS of GC patients from the 
TCGA database independent of other clinical features, such 
as age, race, gender, pathological T stage, pathological N 
stage, pathological M stage, pathological tumor stage, TMB 
status, and MSI status. 

Functional enrichment analysis

To further investigate the biological function of the MSI-
related risk signature, Gene set enrichment analysis 
(GSEA, https://www.broadinstitute.org/gsea/index.jsp) 
was conducted to explore Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways associated with the MSI-
related risk signature based on genes in the high- and low-
risk groups in the TCGA database (23). Moreover, to 
investigate the differences in the mutation-related pathways 
between high- and low-risk groups, we calculated and 
compared the enrichment scores of the mutation-related 
pathways [including nucleotide excision repair (NER), 
mismatch repair (MMR), homologous recombination 
(HMR), and base excision repair (BER)] between the 
high- and low-risk groups by using a single sample GSEA 
(ssGSEA) through the ‘GSVA’ R package (24). 

Estimation of immune infiltration in the GC TME

Firstly, we download 29 immune signatures, including 
immune cells, immune functions, and pathways from the 
Molecular Signature Database v5.1 (MSigDB) (https://
www.broad.mit.edu/gsea/msigdb/) (23). Next, ssGSEA was 
used to calculate the ssGSEA scores of these 29 immune 
signatures (24), and the Wilcoxon test was used to detect 
differences in the 29 ssGSEA scores between the high- 
and low-risk groups in the TCGA database. Moreover, we 
also compared the differences in cytolytic activity between 
the high- and low-risk groups based on the expression of 
GZMA and PRF1 in the TCGA database (25). Finally, 
antigen presentation mechanism scores between the high- 

https://www.broadinstitute.
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and low-risk groups were compared based on seven genes 
(HLA-A/B/C, B2M, TAP1, TAP2, and TAPBP37) in the 
TCGA database (26).

Assessment of the immunotherapeutic and 
chemotherapeutic response

A Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm was selected to estimate whether the MSI-
related risk signature could predict the immunotherapeutic 
response of patients in the TCGA database as described 
previously (27). In addition, the ‘pRRophetic’ R package 
was used to assess the chemotherapeutic response based on 
the half-maximal inhibitory concentration (the half maximal 
inhibitory concentration, IC50) for each GC patient on the 
Genomics of Drug Sensitivity in Cancer (GDSC) website 
(28,29).

Statistical analyses

All statistical analyses in this study were achieved by R 
software. The Wilcoxon test was selected to compare the 
differences between the two groups. Using a two-tailed test 
of significance, a P value <0.05 was considered statistically 
significant.

Results

MSI was related to the survival and TMB of GC patients

We firstly downloaded somatic mutation data from 433 GC  
patients in the TCGA database. After removing the samples 
without MSI or survival status information, the data from 
378 GC patients were used to estimate the correlation 
between MSI status and survival. The sample information 
is presented in Table 1. As shown in Figure 1A, the MSI-H 
group had a relatively higher survival rate. The MSI-H 
group also showed a higher TMB than the MSI-L/MSS 
group (Figure 1B,1C). Thus, MSI is related to genetic 
mutations and the survival of GC patients.

Mutation landscape differences between the MSI-H and 
MSI-L/MSS groups

To show the mutation landscape differences between 
the MSI-H and MSI-L/MSS groups, the mutation 
information of each gene in 378 GC patients was 
summarized and visualized by the ‘maftools’ R package. 

It clearly demonstrated that the MSI-H group showed 
higher mutation rates in 99 of the top 100 mutated genes 
than the MSI-L/MSS group (Figure 2A,2B). For example, 
the mutation rate of TTN was 94% in the MSI-H group 
but 37% in the MSI-L/MSS group. Moreover, in both 
the MSI-H and MSI-L/MSS groups, the highest variant 
classification was the missense mutation, the highest variant 
type was single nucleotide polymorphism (SNP), and C>T 
was the highest form of SNP. Furthermore, we found the 
variation frequency of each sample in the MSI-H group 
was significantly higher than that in the MSI-L/MSS 
group (Figure 2B-2D). These results further demonstrated 
that MSI may affect genetic mutations in GC patients. 
Finally, we also presented the top 10 mutated genes in these  
two groups with ranked percentages. In the MSI-H group, 
the top 10 mutated genes were ARID1A (79%), FAT4 (51%), 
KMT2D (67%), LRP1B (55%), MUC16 (63%), OBSCN 
(52%), PLEC (52%), and RNF213 (54%), SYNE1 (57%), 
TTN (94%). The top 10 mutated genes in the MSI-L/MSS 
group were ARIDIA (12%) CSMD3 (14%), FAT4 (11%), 
FLG (15%), LRP1B (17%), MUC16 (23%), SPTA1 (11%), 
SYNE1 (13%), TP53 (46%) and TTN (37%) (Figure 2B,2D).

Construction and verification of an MSI-related risk 
signature in GC

After removing GC samples with a survival time of less 
than 30 days or without survival information in the TCGA 
database, the gene expression profiles of 338 GC patients 
were selected to construct an MSI-related risk signature 
based on the 99 genes with higher mutation rates in the 
MSI-H group. Firstly, univariate Cox regression analysis 
indicated that 31 genes be retained for the multivariate Cox 
regression analysis (P<0.2, Table S1). Next, the multivariate 
Cox regression analysis identified 10 robust genes (CUBN, 
DMD, FAT4, LRP1, MUC16, PXDN, RNF43, RP1, SLC3A2 
and SYNE1) that could constitute an MSI-related risk 
signature (P<0.1, Table 2). Therefore, the MSI-related risk 
signature was established according to the expression levels 
of the 10 genes, and its regression coefficient was derived 
from the multivariate Cox regression analysis. Based on 
the risk score of each GC patient, 338 GC patients in the 
TCGA database and 109 GC patients in the GSE26901 
dataset were stratified into high- and low-risk groups, 
respectively. The K-M analysis revealed that patients in the 
high-risk group of both the TCGA database and GSE26901 
dataset exhibited significantly poorer OS than those in the 
low-risk group (Figure 3A,3B). Moreover, as illustrated by 

https://cdn.amegroups.cn/static/public/JGO-21-808-supplementary.pdf
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Table 1 The clinical information of 378 GC patients in the TCGA database 

Variable Alive (N=227) Dead (N=151) P value Overall (N=378)

Age

Mean (SD) 65.1 (11.1) 67.1 (10.1) 0.073 (−1.8) 65.9 (10.7)

Median [Min, Max] 66.0 [35.0, 90.0] 68.0 [41.0, 90.0] 67.0 [35.0, 90.0]

Missing, n (%) 4 (1.8) 0 (0.0) 4 (1.1)

Gender, n (%)

Female 91 (40.1) 46 (30.5) 0.07 (3.635) 137 (36.2)

Male 136 (59.9) 105 (69.5) 241 (63.8)

Race, n (%)

Asian 55 (24.2) 19 (12.6) 0.007 (13.438) 74 (19.6)

Black or African American 3 (1.3) 8 (5.3) 11 (2.9)

Not reported 30 (13.2) 24 (15.9) 54 (14.3)

White 139 (61.2) 99 (65.6) 238 (63.0)

Native Hawaiian or other pacific islander 0 (0.0) 1 (0.7) 1 (0.3)

AJCC_pathologic_m, n (%)

M0 203 (89.4) 129 (85.4) 0.334 (2.259) 332 (87.8)

M1 12 (5.3) 14 (9.3) 26 (6.9)

MX 12 (5.3) 8 (5.3) 20 (5.3)

AJCC_pathologic_n, n (%)

N0 83 (36.6) 30 (19.9) 0.001 (19.57) 113 (29.9)

N1 55 (24.2) 42 (27.8) 97 (25.7)

N2 45 (19.8) 31 (20.5) 76 (20.1)

N3 31 (13.7) 43 (28.5) 74 (19.6)

NX 11 (4.8) 5 (3.3) 16 (4.2)

Missing 2 (0.9) 0 (0.0) 2 (0.5)

AJCC_pathologic_t, n (%)

T1 16 (7.0) 3 (2.0) 0.083 (8.37) 19 (5.0)

T2 56 (24.7) 28 (18.5) 84 (22.2)

T3 94 (41.4) 74 (49.0) 168 (44.4)

T4 58 (25.6) 42 (27.8) 100 (26.5)

TX 3 (1.3) 4 (2.6) 7 (1.9)

AJCC_pathologic_stage, n (%)

Stage I 41 (18.1) 13 (8.6) <0.001 (17.709) 54 (14.3)

Stage II 77 (33.9) 35 (23.2) 112 (29.6)

Stage III 81 (35.7) 70 (46.4) 151 (39.9)

Stage IV 16 (7.0) 23 (15.2) 39 (10.3)

Missing 12 (5.3) 10 (6.6) 22 (5.8)

Table 1 (continued)
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Table 1 (continued)

Variable Alive (N=227) Dead (N=151) P value Overall (N=378)

Grade, n (%)

G1 8 (3.5) 2 (1.3) 0.326 (3.562) 10 (2.6)

G2 87 (38.3) 49 (32.5) 136 (36.0)

G3 125 (55.1) 95 (62.9) 220 (58.2)

GX 5 (2.2) 4 (2.6) 9 (2.4)

Missing 2 (0.9) 1 (0.7) 3 (0.8)

MSI, n (%)

MSI-H 43 (18.9) 26 (17.2) 0.676 (0.181) 69 (18.3)

MSI-L/MSS 184 (81.1) 125 (82.8) 309 (81.7)

GC, gastric cancer; TCGA, The Cancer Genome Atlas; MSI, microsatellite instability; MSI-H, MSI-high; MSI-L, MSI-low; MSS, 
microsatellite stability.

the ROC curves, the area under the curves (AUCs) of the 
MSI-related risk signature for predicting the 1-, 3-, and 
5-year OS of GC patients in the TCGA database were 
0.686, 0.707, and 0.720, respectively (Figure 3C), and those 
in the GSE26091 dataset were 0.645, 0.650, and 0.650, 
respectively (Figure 3D), indicating that the MSI-related 
risk signature performed well in predicting the OS of GC 
patients. Finally, we found that CUBN, DMD, SYNE1, 
FAT4, LRP1, PXDN, MUC16, and RP1 were significantly 
more highly expressed in the high-risk group in the TCGA 
database, while other genes showed lower expressions in 
the high-risk group (Figure 3E). However, CUBN, LRP1, 
PXDN, SLC3A2, FAT4, and DMD were significantly more 
highly expressed in the high-risk group in the GSE26091 
dataset, but other genes showed lower expressions in the 
high-risk group (Figure 3F). These differences may reflect 
the samples differences between these two datasets.

Association between the MSI-related risk signature and 
clinical features

Meanwhile, we also explored the relationships between the 
MSI-related risk signature and clinical features in the TCGA 
database. The results of the Wilcoxon or one-way ANOVA 
test revealed that the MSI-related risk signature was not 
correlated with other clinical features, such as age, gender, 
pathological T stage, pathological N stage, pathological M 
stage, and pathological tumor stage (Figure 4A-4F). Only 
related to TMB and MSI status (Figure 4G,4H).

The MSI-related risk signature is an independent 
prognostic factor

We performed an independent prognostic analysis to 
explore whether the MSI-related risk signature could 
predict the OS of GC patients independent of other clinical 
features. The results of the univariate and multivariate Cox 
regression analyses suggested that the MSI-related risk 
signature remained as an independent prognostic factor 
for GC patients after adjusting for clinical features such 
as age, race, gender, pathological T stage, pathological N 
stage, pathological M stage, pathological tumor stage, TMB 
status, and MSI status (Figure 5A,5B).

Functional enrichment analysis of the MSI-related risk 
signature

GSEA was used to explore the KEGG pathways associated 
with the MSI-related risk signature. As expected, we found 
that genes involved mainly in the mutation and DNA repair-
related pathways differed between the high- and low-risk 
groups. For example, KEGG pathways related to BER were 
enriched in the high-risk group, while NER and RNA_
degradation were enriched in the low-risk group (Figure 6A). 
Moreover, we further examined the ssGSEA scores for four 
DNA repair-related pathways, including NER, MR, HR, 
and BER. Interestingly, the high-risk group showed lower 
ssGSEA scores than the low-risk group (Figure 6B). Thus, 
these results suggested that the MSI-related risk signature 
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Mortality rates of GC in TCGA
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Figure 1 MSI status is associated with the survival and TMB of GC patients. (A) Survival rates of patients between the MSI-H and MSI-L/
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Table 2 Multivariate Cox regression screened robust genes to construction a MSI-related risk signature

ID coef HR HR.95L HR.95H P value

CUBN 1.389242884 4.011811498 1.672614374 9.622440024 0.001855963

MUC16 0.240709835 1.272151847 0.997266839 1.622805711 0.052631828

RNF43 −0.330014247 0.718913491 0.610498793 0.846580883 7.59E-05

LRP1 0.446161201 1.562303291 1.211285968 2.015041566 0.00058976

SYNE1 −0.915776698 0.400205667 0.221519424 0.723027229 0.002408284

PXDN 0.284598749 1.329228566 1.028178449 1.718426003 0.02985215

FAT4 −0.466003359 0.627505176 0.37317874 1.055158571 0.078836928

SLC3A2 −0.370499216 0.690389591 0.498202146 0.956715645 0.026028088

RP1 1.678261542 5.356236281 1.244163384 23.0590833 0.024241584

DMD 0.452524681 1.572276676 1.127011086 2.193460186 0.007726009

MSI, microsatellite instability; HR, hazard ratio.

may be mainly involved in the DNA repair pathway in the 
low-risk group, ultimately leading to MSI.

Correlation between the MSI-related risk signature and 
TME immune cell infiltration in GC

To investigate whether the MSI-related risk signature 
influenced TME immune cell infiltration in GC, ssGSEA 
was selected to explore the enrichment scores of 29 immune 
signatures. The results showed that CD8 T cells, cytolytic 
activity, inflammation promotion, mast cells, MHC 
class I, NK cells, pDCs, T cell co-inhibition, T cell co-
stimulation, Tfh, Th1 cells, Th2_cells, and type II IFN 
responses were significantly different between the high- and 
low-risk groups (Figure 7A), and most of them presented 
higher enrichment scores in the low-risk group (Figure 7A). 
Moreover, considering that natural anti-tumor immunity 
requires a cytolytic immune response, we further compared 
the immune cell-mediated cytolytic activity between the 
high- and low-risk groups. Interestingly, we found that 
the cytolytic scores of patients in the low-risk group were 
significantly higher than those in the high-risk group  
(Figure 7B). Furthermore, we calculated the (antigen 
processing machinery, AMP) between the high- and low-
risk groups and found that the low-risk group had higher 
AMP scores than the high-risk group (Figure 7C). In brief, 
these results revealed that the MSI-related risk signature 
may be associated with TME immune cell infiltration and 
enhances the anti-tumor immune response.

The MSI-related risk signature predicted the clinical 
response to immunotherapy and chemotherapy

Currently, immunotherapy is a promising choice for treating 
cancers (30,31), especially ICB targeting CTLA-4 and 
PD-1 (32). Therefore, we compared the clinical response 
to ICB (CTLA-4 and PD-1) between the high- and low-
risk groups based on the TIDE algorithm. Notably, we 
found that TIDE scores were remarkably lower in the low-
risk group compared with the high-risk group (Figure 8A).  
Moreover, we also estimated the chemotherapeutic response 
to chemotherapy using the ‘pRRophetic’ algorithm. 
Interestingly, we found that patients in the low-risk group 
were more sensitive to paclitaxel chemotherapy than the 
high-risk group (Figure 8B). Therefore, the MSI-related 
risk signature may be used to predict the clinical response 
to immunotherapy and chemotherapy.

Discussion

Globally, GC is a common digestive system cancer with 
high malignancy, but especially in Asia, where it causes 
a significant social burden (1). Unfortunately, although 
chemotherapy combined with targeted drug therapy 
has moderately improved the OS of GC, the prognosis 
remains poor, with a 5-year survival rate of approximately 
20% (33,34). Survival predictions can guide the clinical 
treatment of tumors. Over the past few decades, traditional 
survival predictions based on pathological information have 
played a key role in the clinical treatment of cancers (35).  
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However, relying solely on conventional methods to predict 
tumor survival has greatly limited the development of 
precision therapy. Therefore, there is an urgent need to 
identify novel molecular biomarkers for predicting survival 
in GC. Increasing evidence has suggested that MSI status 

affects survival and treatment in several cancers, including 
GC (35,36). However, the role of MSI-related genes in GC 
remains unknown.

In the present study, we firstly compared survival 
between the MSI-H and MSI-L/MSS groups. We found 
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Figure 5 The results of independent prognostic analysis. (A,B) The results of univariate (A) and multivariate (B) Cox regression analyses.

that the MSI-H group had a relatively high survival rate 
(Figure 1A), which indicated that MSI status is related 
to the survival of GC patients. Moreover, we identified 
99 genes with high mutation rates in the MSI-H group. 
Furthermore, we constructed an MSI-related risk signature 
based on the expression and corresponding coefficients of 
10 mutated genes (CUBN, MUC16, RNF43, LRP1, SYNE1, 
PXDN, FAT4, SLC3A2, RP1, and DMD). Univariate and 
multivariate Cox analyses suggested that the MSI-related 
risk signature predicted the prognosis of GC independent of 
other factors. Functional enrichment analysis revealed that 
the MSI-related risk signature was highly associated with 
mutation and DNA repair-related pathways (Figure 6A,6B),  
which further demonstrated that the MSI-related risk 
signature may be a valid representation of MSI status.

CUBN, also known as intestinal intrinsic factor, intrinsic 
factor-cobalamin receptor, or intrinsic factor-vitamin 

B12 receptor, has been reported to be involved in the 
development and progression of cancers. For example, 
CUBN expression is highly heterogeneous and affects 
the prognosis of renal cell carcinoma (37,38). Moreover, 
it has been suggested that CUBN is linked to gastric 
carcinogenesis by regulating vitamin B12 metabolism (39). 
Furthermore, the somatic mutation of CUBN changes 
isoleucine into valine, ultimately influencing the risk 
of recurrence in osteosarcoma (40). More importantly, 
mutation in CUBN is associated with the occurrence of 
GC (41). MUC16, previously known as CA125, has been 
identified as one of the top three frequently mutated 
genes in multiple cancers and is related to the growth and 
metastasis of cancer cells (42). Consistent with our results, 
MUC16 expression has been linked to prognosis in multiple 
malignancies, such as pancreatic ductal adenocarcinoma, 
pancreatic cancer, and epithelial ovarian cancer (43-45). 
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A recent study also found that MUC16 mutation may be 
associated with TMB, immune response, and survival in 
GC (46). RNF43 expression affects the DNA damage 
response in GC (47), and our study also found that the 
MSI-related risk signature was mainly associated with the 

DNA repair-related pathway. LRP1 has been revealed to be 
associated with prognosis and immune modulation in clear-
cell renal cell carcinoma (48). SYNE1 mutation can affect 
immune cell infiltration, TMB, and ICB therapy in clear-
cell renal cell carcinoma patients (49). PDXN expression can 
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affect the proliferation, invasion, and migration of ovarian 
cancer cells by regulating the PI3K/Akt pathway and has 
been proposed as a potential target for OC therapy (50). 
It has been suggested that FAT4 regulates the occurrence 
and development of colorectal cancer by regulating the 
PI3K/AKT/mTOR and PI3K/AKT/GSK-3β signaling 
pathways (51). SLC3A2 can affect the migration, invasion, 
and proliferation of oral squamous cell carcinoma (52). 
RP1 appears to play an oncogenic role in breast cancer 
by suppressing p27kip1 (53). DMD mutation has been 
demonstrated to affect survival in uterine cancer (54). In 
brief, our study also found that CUBN, MUC16, RNF43, 
LRP1, SYNE1, PXDN, FAT4, SLC3A2, RP1, and DMD may 
play key roles in GC. 

Interestingly, the results of the ssGSEA based on 29 
immune signatures revealed that TME immune cell 
infiltration was markedly different between the high- and 
low-risk groups (Figure 7A). Consistent with our results, it 
has been suggested that MSI status is associated with the 
TME component in primary colorectal cancer samples 
(18,19). Moreover, MSI-H colorectal cancer also shows 
more immune cell infiltration, especially tumor-infiltrating 
lymphocytes (18). Similarly, our study also revealed that 
MSI status affects the TME immune cell infiltration of GC, 
which may contribute to GC treatment. TME immune 

cell infiltration is considered one of the most important 
factors in predicting clinical response to immunotherapy in 
many cancers (55,56). For instance, NK cells and CD8+ T 
cells can secrete TNF, perforin, and granzyme, leading to 
cytotoxic effects (57). Considering that the MSI-related risk 
signature affects TME immune cell infiltration, we further 
explored whether the MSI-related risk signature could 
predict the clinical response to immunotherapy. Just as we 
assumed, we found that the TIDE score was significantly 
different between the high- and low-risk groups (Figure 8A). 
Therefore, the MSI-related risk signature could be used to 
predict the clinical response to immunotherapy. Similarly, 
a recent study has suggested that MSI status affects the 
TME and increases sensitivity to ICB (58). Moreover, we 
also found that the MSI-related risk signature was related to 
paclitaxel chemotherapy (Figure 8B). MSI has been revealed 
to have a differentially negative prognostic effect in patients 
treated with chemotherapy (12). Hence, our study further 
revealed that MSI status may be related to chemotherapy.

Conclusions

In summary, our study developed an MSI-related risk 
signature for predicting the OS of GC patients based 
on 10 robust and MSI-related genes (CUBN, MUC16, 
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RNF43, LRP1, SYNE1, PXDN, FAT4, SLC3A2, RP1, 
and DMD). Moreover, univariate and multivariate Cox 
analysis suggested that the MSI-related risk signature 
was an independent prognostic factor for GC patients. 
Furthermore, we revealed that the MSI-related risk 
signature affects the TME immune cell infiltration in 
GC and can be used to predict the clinical response to 
immunotherapy. Therefore, these findings may indicate 
that MSI status plays a key role in GC and may contribute 
to the clinical treatment of GC. However, further research 
is needed to verify these findings. 
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Supplementary

Table S1 The results of univariate Cox regression analysis base on the 99 higher mutated genes in the MSI-H group

ID HR HR.95L HR.95H P value

MYCBP2 0.964681 0.698809 1.331708 0.826975

SRCAP 0.992817 0.702375 1.403361 0.967435

SDK1 1.080528 0.871956 1.338989 0.47907

CSMD3 1.156247 0.264033 5.063411 0.847217

NEB 1.060396 0.86295 1.303019 0.576956

PCLO 1.0034 0.767219 1.312287 0.980223

SPECC1 0.925485 0.662304 1.293245 0.650108

RELN 1.191931 0.982407 1.44614 0.075073

TRIO 1.187599 0.909825 1.550178 0.205951

WDFY3 1.425395 0.957216 2.122563 0.081032

ZC3H13 0.940964 0.716558 1.235648 0.661564

GLI3 1.261373 1.013539 1.56981 0.037484

CIC 1.012092 0.741796 1.38088 0.939559

PRKDC 0.95302 0.751588 1.208437 0.691227

CACNA1E 0.897154 0.611546 1.316147 0.578868

PLEKHA6 0.95736 0.793604 1.154907 0.648915

PLXNA4 1.116182 0.851694 1.462805 0.425698

UBR5 1.114975 0.81727 1.521124 0.492262

KMT2C 0.932063 0.665188 1.306008 0.682703

CUBN 2.922375 1.316618 6.486525 0.008386

FLG 1.061083 0.604137 1.863647 0.836543

MUC16 1.207855 0.972659 1.499924 0.087437

GTF3C1 0.959462 0.666401 1.3814 0.823898

ANKRD11 1.0048 0.69931 1.443743 0.97934

OBSCN 1.167135 0.820126 1.660969 0.390624

DNAH10 1.10975 0.336238 3.662712 0.864281

DNAH5 1.410982 0.807371 2.465867 0.226763

MYO15A 4.003051 0.574112 27.91165 0.161544

RPL22 1.043533 0.780617 1.394999 0.773568

ZFHX3 1.196414 0.92891 1.540952 0.164881

ZFHX4 1.23827 0.979073 1.566086 0.074509

BSN 1.025335 0.656614 1.601113 0.912386

MACF1 1.09056 0.861031 1.381275 0.472139

RNF43 0.813136 0.704933 0.937948 0.004522

ACVR2A 1.315518 0.855014 2.024046 0.212237

DST 1.243938 1.032562 1.498584 0.021608

LRP1 1.260416 1.046191 1.518508 0.014889

RYR2 1.241395 0.939598 1.640128 0.128119

ABCA12 1.001773 0.796626 1.259749 0.98791

ASPM 0.883189 0.706139 1.104631 0.27651

FAT2 1.060809 0.767607 1.466005 0.720612

KMT2A 0.91618 0.647972 1.295404 0.620336

FCGBP 0.963601 0.89286 1.039947 0.340545

DNAH9 0.815137 0.358703 1.852362 0.62552

CELSR3 0.930618 0.752752 1.150511 0.506415

ANK3 0.776879 0.520494 1.159554 0.216637

VPS13B 0.97371 0.681102 1.392026 0.883843

PIK3CA 1.317818 0.9204 1.886837 0.131806

CSMD1 1.411415 0.800125 2.489726 0.234068

Table S1 (continued)
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Table S1 (continued)

ID HR HR.95L HR.95H P value

SYNE1 1.185264 0.932934 1.505842 0.164048

AHNAK 1.131534 0.94036 1.361572 0.190628

PXDN 1.281295 1.057829 1.551968 0.011248

TRRAP 1.020093 0.7916 1.31454 0.877802

AHNAK2 1.106987 0.980997 1.249157 0.099201

FAT4 1.191584 0.953841 1.488583 0.122648

MDN1 0.910758 0.650325 1.275485 0.586457

HMCN1 1.284286 1.029768 1.601712 0.026401

XIRP2 15.28768 0.985736 237.0951 0.051213

SLC3A2 0.817782 0.636286 1.051049 0.116159

SPEN 0.805275 0.561451 1.154987 0.239223

DOCK3 1.373295 0.966391 1.951529 0.076847

COL7A1 0.99347 0.851799 1.158704 0.933486

RYR3 1.095943 0.726111 1.654141 0.662703

CELSR1 1.08891 0.910089 1.302868 0.352048

COL12A1 1.132543 0.986768 1.299854 0.076646

ZBTB20 1.121466 0.873364 1.440046 0.368869

TTN 3.971122 0.930236 16.95248 0.06256

ARID1A 0.87652 0.645159 1.190848 0.399287

KMT2D 0.873702 0.650703 1.173125 0.36919

RNF213 0.871231 0.704582 1.077297 0.203159

DNAH3 1.233547 0.562259 2.706295 0.600558

PDZD2 1.31686 0.964236 1.798439 0.083462

RGS12 0.950627 0.621949 1.453 0.815054

CHD7 0.875777 0.649503 1.180879 0.384425

LRP1B 3.444896 1.025534 11.57183 0.045419

HSPG2 1.094828 0.931877 1.286274 0.27052

NIPBL 0.935407 0.674168 1.297878 0.689445

RYR1 1.24919 0.822713 1.896742 0.296415

PCDH10 1.284878 0.939751 1.756755 0.116274

RP1 3.16097 0.845636 11.81564 0.08713

ATM 1.040774 0.764309 1.417242 0.799727

PLEC 0.966135 0.771153 1.210415 0.764515

LAMA1 1.047016 0.83021 1.320439 0.697937

LARP4B 0.865007 0.618661 1.209446 0.396444

FAT3 1.645453 1.024353 2.643149 0.03945

HERC2 0.952908 0.662977 1.369632 0.794397

XYLT2 0.849804 0.618072 1.168418 0.316425

ITPR3 0.964639 0.796439 1.168361 0.712673

SACS 1.08966 0.828485 1.433168 0.539108

TG 0.759979 0.358163 1.612588 0.474575

SYNE2 0.897274 0.712179 1.130474 0.357799

SORL1 0.990217 0.808127 1.213336 0.924457

DYNC1H1 1.195678 0.869715 1.64381 0.271142

DMD 1.161021 0.980643 1.374577 0.083084

MUC5B 1.01203 0.935932 1.094315 0.764309

KMT2B 0.902939 0.652162 1.250146 0.538521

CREBBP 1.022142 0.726265 1.438557 0.900045

DIDO1 0.907041 0.639925 1.285658 0.583564

COL6A3 1.153283 1.002742 1.326425 0.04568


