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Introduction

Gastric cancer is a leading cause of mortality from digestive 
tract cancer, which is particularly prevalent in Asian 
populations (1,2). The incidence of gastric cancer has 
increased annually worldwide. Following the development 
of the electronic gastroscope, the detection rate of early 

gastric cancer has greatly increased, but its pathogenesis is 
still obscure.

Telomere and telomerase are hot topics in basic tumor 
research in recent years. A telomere is a specific DNA-
protein complex in eukaryotic linear chromosomes, which 
contributes to the stability of chromosome structure and 
functions. Telomerase is an RNA-containing reverse 
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transcriptase composed of protein and RNA in the vast 
majority of tumors (3), which is crucial for the survival of 
cancer cells. Given that the activation of telomerase and 
the maintenance of telomere length are the bases of cell 
immortalization and unlimited proliferation (4), they have 
become new tumor markers and anti-cancer targets. Human 
telomerase reverse transcriptase (h-TERT) is the main 
component of human telomerase, and recurrent mutations 
in the promoter of h-TERT (5,6) is closely associated 
with telomerase activity. Telomeric repeat binding factor 
1 (TRF1) is a telomeres double-stranded DNA binding 
protein in mammals, which has negative regulation effects 
on telomere length (7,8). A previous study has shown that 
tankyrase (TANK), a member of the poly (ADP-ribose) 
polymerase (PARP) superfamily, is identified to bind with the 
telomeric protein TRF1 and regulate telomere function (9).  
It is known that TANK induces ADP ribosylation of TRF1 
and inhibits its binding to telomeres, suggesting that 
TANK is a positive regulator of telomere length and may 
be a target of tumor gene therapy. Recently, researchers 
have confirmed that TANK1 is highly expressed in 
neuroblastoma and bladder cancer (10,11).

Telomere, telomerase, and telomere binding proteins 
partaking in the regulation of DNA damage repair, cell cycle, 
mitosis, and cell apoptosis, are in close association with aging 
and tumors. It has been reported that the ablation of h-TERT 
induces cellular senescence and inhibits the growth of gastric 
cancer cells (12). Down-regulation of TRF1 and TRF2 is 
important for the maintenance of telomeric DNA (13).  
In addition, co-inhibition of TANK1 and telomerase activity 
exerts a synergistic effect on telomere length shortening in 
gastric cancer cells (14). A considerable body of evidence 
indicates that human telomerase antisense oligonucleotides 
(ASON) coupled with oligoadenylic acid has significant 
inhibitory effects on the growth of prostate cancer, glioma and 
liver cancer (15-17). These findings suggest that inhibition 
of telomerase activity by ASON technology can inhibit 
tumor cell growth, indicating that if TANK1 is inhibited 
by ASON, tumor cell growth may also be suppressed. Ji et 
al constructed antisense human TANK1 RNA retroviral 
vector and revealed its inhibition on tongue cancer cells (18).  
A previous study has reported that TANK1 was up-regulated 
in osteosarcoma cells and TANK1-ASODN could suppress 
the proliferation, migration and invasion through Hippo/
YAP pathway in human osteosarcoma cells (19). It was 
previously identified that TANK1 is significantly upregulated 
in gastric cancer tissues (20); however, another study 
presented that TANK is not increased in gastric cancer (13). 

These controversial results caught our attention. Thus, 
the purpose of this study was to investigate the expression 
of TANK1 in cancer and adjacent cancer tissues in gastric 
adenocarcinoma patients. The effects of TANK1 ASODN on 
the tumor formation and cell apoptosis were analyzed both 
in SGC-7901 tumor-bearing mice and SGC-7901 cells to 
further elucidate the underlying mechanism. We present the 
following article in accordance with the ARRIVE reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-22-82/rc).

Methods

Patients and clinical specimens

This study was approved by the institutional ethics 
committee board of Suqian First Hospital (No. 20200093). 
All involved patients (n=15) were informed of the study 
and signed consent forms. The study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013). The anonymous medical records of the patients 
were reviewed, and the exclusion criteria were as follows: 
non-adenocarcinomas, radiotherapy or chemotherapy prior 
to surgery, and incomplete clinical data. Paired gastric 
cancer and adjacent non-tumor tissues were collected from  
15 patients diagnosed with gastric adenocarcinoma at 
Suqian First Hospital between January 2021 and June 2021, 
and then preserved in liquid nitrogen.

Cell lines

We cultured SGC-7901 cells (Procell, Wuhan, China) in 
Roswell Park Memorial Institute (RPMI) 1640 (Procell) 
containing 10% fetal bovine serum (FBS; Procell) in a 
humidified incubator with 5% CO2 at 37 ℃.

Tumor-bearing model

A total of 15 male BALC/C nude mice (5–6 weeks old; 
weighing 20±2 g, ~18–22 g) were randomly divided into  
3 groups (n=5 in each group): vehicle group, TANK1 sense 
oligonucleotides (TANK1 SODN) group, and TANK1 
ASODN group. Random numbers were generated using 
the standard = RAND () function in Microsoft Excel 
(Microsoft Corp., Redmond, WA, USA). All animals 
were housed under a standardized condition with a light-
dark cycle at 22±2 ℃ and 55%±5% humidity. Animal 
experiments were performed under a project license (No. 

https://jgo.amegroups.com/article/view/10.21037/jgo-22-82/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-22-82/rc
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IACUC-20200922-01) granted by institutional ethics 
committee board of Zhaofenghua Biotechnology (Nanjing) 
Co., Ltd., in compliance with the National Institutes of 
Health guidelines for the care and use of animals. And 
the animal experiments were done in the Zhaofenghua 
Biotechnology (Nanjing) Co., Ltd. A protocol was prepared 
before the study without registration.

TANK1 SODN and TANK1 ASODN were synthesized 
by General Biol (General Biosystems, Anhui, China) 
according to the initial codon of the protein translation site 
of TANK1 complementary DNA (cDNA) sequence. The 
SGC-7901 cells in logarithmic growth phase were collected 
and re-suspended in normal saline. We then injected 100 μL  
suspension (1 million cells) subcutaneously at the right 
inguinal site of each nude mouse. Liposomes-encased 
TANK1 SODN and TANK1 ASODN were diluted with 
normal saline to a final concentration of 0.5 μg/μL. Each 
mouse was injected with 50 μL mixture for 3 times every 
5 days until a tumor diameter of 0.5 cm was achieved. 
The vehicle group, injected with equivalent normal saline 
containing liposomes, was used as the negative control 
group. Tumor volumes were recorded every 3 days. At 
24 days later, mice were sacrificed, and tumor weight was 
measured. Tumor volume was calculated based on the 
formula: tumor volume (mm3) = (width) × (height)2/2. All 
animals were sacrificed with an intraperitoneal injection of 
200 mg/kg sodium pentobarbital (body weight). After death 
verification by cessation of the heartbeat, the tumor tissues 
were obtained for further investigation.

TUNEL staining

Formaldehyde was utilized to fix tumor tissues, and part of the 
tissues were embedded in paraffin. Tissue slices were prepared 
and stained with terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) mixture (Roche, 
Shanghai, China) following deparaffinization, hydration, and 
permeation. Subsequently, slices were washed with phosphate-
buffered saline (PBS), mixed with 3,3’-diaminobenzidine 
(DAB) solution, redyed with hematoxylin, and washed 
with flowing water. After dehydration and vitrification, the 
apoptotic cells were observed under microscope (Leica, 
Heidelberg, Germany; magnification, ×100).

Immunohistochemistry

Briefly, tissue slices were subjected to incubation with 
primary antibodies against Ki67 and h-TERT (Abcam, 

Cambridge, UK) at 4 ℃ following deparaffinization, antigen 
retrieval, and blockade. Then, slices were incubated with 
corresponding secondary antibody (Abcam). Pictures were 
taken under a microscope (Leica; magnification, ×100).

Real-time quantitative polymerase chain reaction 

We used TRIzol (Invitrogen, Carlsbad, CA, USA) to extract 
the total RNA, followed by reverse transcription using 
tRevertAid™ H Minus First Strand cDNA Synthesis Kit 
(Fermantas, St. Leon-Rot, Germany). The polymerase 
chain reaction (PCR) was carried out using a PCR 7500 
System and Power SYBR Green PCR master mix (both 
Applied Biosystems; Thermo Fisher Scientific Inc., 
Waltham, MA, USA) according to the manufacturer’s 
instructions. The following thermocycling conditions were 
used: 30 s at 95 ℃ for 1 cycle; 3 s at 95 ℃, 30 s at 60 ℃ and 
30 s at 72 ℃ for 40 cycles; and 5 min at 72 ℃ for 1 cycle. 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was 
used as the internal reference gene. Relative gene expression 
levels were calculated using the 2−ΔΔCq method (21).

Cell proliferation assay

The SGC-7901 cells in logarithmic growth phase were 
seeded in a 96-well culture plate. Cell proliferation ability was 
assessed by cell counting kit-8 (CCK-8; KeyGen, Nanjing, 
China) at 24, 48, and 72 h. Then, 10 μL CCK-8 solution was 
added to the medium and incubated for an additional 3 h. 
The absorbance at 450 nm was measured using a microplate 
reader (BioRad Laboratories, Hercules, CA, USA).

Flow cytometry analysis

Cells in each group were collected by centrifugation, washed 
twice with pre-cooled PBS, and then re-suspended in 500 μL 
buffer solution. We mixed 100 μL buffer solution with 5 μL 
Annexin V-APC (KeyGen), and subsequently, 5 μL propidium 
iodide (PI; KeyGen) was added for incubation of 15 min at 
room temperature (avoiding light). Next, 400 μL PBS was 
added to re-suspend cells and filtered with a 400-mesh sieve. 
Flow cytometry (Becton Dickinson and Co., Franklin Lakes, 
NJ, USA) was conducted to analyze apoptotic cells.

Statistical analysis

Data was represented as mean ± standard deviation and 
analyzed by Student’s t-test or one-way analysis of variance 



Liu et al. Role of tankyrase 1 in gastric adenocarcinoma562

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(2):559-568 | https://dx.doi.org/10.21037/jgo-22-82

(ANOVA) followed by Tukey’s post hoc test with GraphPad 
Prism 8.0 (GraphPad Software, Inc., La Jolla, CA, USA). 
Each experiment was performed at least 3 times. Statistical 
significance was considered when P<0.05.

Results

The expression levels of TANK1, h-TERT, and TRF1 in 
gastric adenocarcinoma

In order to clarify the expression levels of TANK1, h-TERT, 
and TRF1, 15 pairs of gastric adenocarcinoma and adjacent 
non-tumor tissues were prepared for reverse transcription 
quantitative polymerase chain reaction (RT-qPCR) analysis. 
The results showed that the expression of TANK1 was 
significantly increased in tumor tissues compared with non-
tumor tissues (Figure 1A). Likewise, h-TERT was obviously 
elevated in tumor tissues in comparison to the adjacent non-
tumor tissues (Figure 1B). However, it was observed that 
the mRNA level of TRF1 was decreased in tumor tissues 
compared with non-tumor tissues (Figure 1C). These results 
indicated that the high levels TANK1 and h-TERT, along 
with low expression of TRF1, were associated with the 
development of gastric adenocarcinoma.

TANK1 ASODN delays tumor formation and promotes 
cell apoptosis in SGC-7901 tumor-bearing mice

Subsequently, tumor-bearing mice were established to validate 

the role of TANK1 in vivo. We injected TANK1 SODN and 
TANK1 ASODN into SGC-7901 tumor-bearing mice to 
observe the function of TANK1 in vivo. Following 24 days-
treatment of TANK1 SODN or TANK1 ASODN, tumor 
tissues from nude mice were harvested and photographed. 
It was obvious that TANK1 ASODN markedly lessened the 
tumor diameter compared to vehicle group; whereas, there 
were no significant distinctions between TANK1 SODN 
group and vehicle group (Figure 2A). In addition, TUNEL 
staining was employed to investigate the cell apoptosis in 
tumor tissues. The results exhibited that TANK1 ASODN 
prominently promoted cell apoptosis when compared with 
the vehicle group. Contrastingly, limited inhibition of cell 
apoptosis was presented in the TANK1 SODN group 
(Figure 2B). In brief, compared with TANK1 SODN, 
TANK1 ASODN appeared to be more effective in reducing 
tumor formation and enhancing cell apoptosis.

TANK1 ASODN decreases the expression levels of Ki67 
and h-TERT in SGC 7901 cells tumor-bearing mice

The marker Ki67 serves as a proliferation marker, the 
function of which is strongly related to mitosis, and it is 
indispensable to tumor cell proliferation and growth (22).  
The expression of Ki67 is widely used as a predictive 
indicator for the assessment of tumor outcomes (23,24). 
Immunohistochemistry (IHC) assay suggested that the 
Ki67 positive area in the TANK1 ASODN group was 
dramatically reduced compared to the vehicle group and 
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Figure 1 The expression levels of TANK1, h-TERT, and TRF1 in gastric adenocarcinoma and adjacent non-tumor tissues. (A) The mRNA 
levels of TANK1 in clinical specimens; (B) the mRNA levels of h-TERT in clinical specimens; (C) the mRNA levels of TRF1 in clinical 
specimens. Data are represented as mean ± standard deviation, ***P<0.001. mRNA, messenger RNA.
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Figure 2 TANK1 ASODN delays tumor growth and promotes cell apoptosis in SGC-7901 tumor-bearing mice. (A) The photos of tumor 
tissues and the growth curves of SGC-7901 tumor volume growth in each group; (B) TUNEL assay was used to stain the apoptotic cells in 
tumor tissues. Magnification, ×100. Data are represented as mean ± standard deviation, **P<0.01, ***P<0.001 vs. the vehicle group. TUNEL, 
terminal deoxynucleotidyl transferase dUTP nick end labeling.
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TANK1 SODN groups (Figure 3A). Of note, TANK1 
SODN also decreased the expression of Ki67 (Figure 3A).  
Moreover, the level of h-TERT was estimated, which 
indicated that TANK1 ASODN remarkably restrained the 

expression of h-TERT relative to the vehicle group and 
TANK1 SODN group (Figure 3B). These results illustrated 
that TANK1 ASODN could limit tumor growth and 
decrease the expression of h-TERT.
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Figure 3 TANK1 ASODN delays tumor growth and increases cell apoptosis in in SGC-7901 tumor-bearing mice. (A) The distribution of 
Ki67 was stained by IHC assay; (B) IHC assay was used for measurement of h-TERT expression. Magnification, ×100. Data is represented as 
mean ± standard deviation, *P<0.05, **P<0.01 vs. the vehicle group; #P<0.05 vs. the TANK1 SODN group. IHC, immunohistochemistry.
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Silencing TANK1 inhibits the proliferation and promotes 
the apoptosis of SGC-7901 cells

To invest igate  the funct ion of  TANK1  in  gastr ic 
adenocarcinoma in vitro, TANK1 ASODN was transfected 
into SGC-7901 cells. As shown in Figure 4A, TANK1 
ASODN inhibited the expression of TANK1 as compared to 
the vehicle group. The CCK-8 assay suggested that TANK1 
ASODN remarkably inhibited proliferation of SGC-
7901 cells compared with the vehicle group (Figure 4B).  
To further investigate the effect of TANK1 ASODN on 
the apoptosis of SGC-7901 cells, flow cytometry analysis 
was conducted. The results revealed that the apoptotic rate 
of cells transfected with TANK1 ASODN was apparently 

higher than control group or vehicle group (Figure 4C,4D). 
Collectively, TANK1 ASODN exhibited a powerfully 
suppressive effect on cell proliferation and a significantly 
promotive effect on cell apoptosis.

Knockdown of TANK1 affects the expression levels of 
h-TERT and TRF1 in SGC-7901 cells

After the above exploration, the possible mechanism was 
further probed. The TANK1 gene could weaken the binding 
of TRF1 to telomeres, which provides a premise for the 
activation of telomerase and its binding with telomere (9). 
The TRF1 gene is an inhibitor of telomere elongation and 
related to the negative feedback mechanism of stabilizing 

Figure 4 Silencing TANK1 inhibits the proliferation and promotes the apoptosis of gastric adenocarcinoma cells. (A) RT-qPCR was 
conducted to investigate the mRNA levels of TANK1; (B) cell viability was measured by CCK-8 assay; (C,D) flow cytometry analysis was 
utilized to examine apoptotic cells. Data are represented as mean ± standard deviation, **P<0.01, ***P<0.001 vs. the vehicle group; #P<0.05, 

##P<0.01, ###P<0.001 vs. the Control group. RT-qPCR, reverse transcription quantitative polymerase chain reaction; mRNA, messenger 
RNA; CCK-8, cell counting Kit-8.
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telomere length. When compared to the vehicle group, 
the expression of h-TERT was decreased in the TANK1 
ASODN group (Figure 5A). Moreover, it was noted that 
TANK1 ASODN simultaneously elevated the mRNA level 
of TRF1 compared with the vehicle group (Figure 5B).  
Taken together, these results indicated that TANK1 
ASODN could downregulate but upregulate the mRNA 
levels of h-TERT and TRF1, respectively.

Discussion

Telomere, telomerase, and telomere binding proteins play 
pivotal roles in cellular immortality and tumorigenesis. 
The gene TANK1 is a regulator of telomerase activation 
and telomere prolongation (25). The level of TANK 
negatively correlates with poor survival of lung cancer 
patients (26). Recent studies have demonstrated that 
inhibition of TANK significantly reduces prostate cancer 
cell proliferation and inhibits the growth of human 
osteosarcoma xenograft (27,28). Besides, TANK promotes 
proliferation of ovarian cancer through activation of 
Wnt/β-catenin signaling (29). However, the expression of 
TANK1 in gastric cancer is still controversial. A previous 
study suggested that TANK1 is significantly upregulated 
in gastric cancer tissues (20), while contrary findings were 
revealed by Yamada et al. (13). The most common type 
of gastric cancer is adenocarcinoma. In the present study, 
15 matched gastric adenocarcinoma and adjacent non-
tumor tissues were collected according to the exclusion 
criteria. After detection, we disclosed that the mRNA 
levels of TANK1 and h-TERT were elevated while TRF1 
was downregulated in gastric adenocarcinoma tissues, 

together indicating that the overexpression of TANK1 may 
be strongly correlated with gastric carcinogenesis.

To further evaluate the specific functions of TANK1 
on gastric adenocarcinoma, a tumor-bearing model was 
established by injection with TANK1 ASODN. It was 
observed that TANK1 ASODN inhibited the progression 
of gastric adenocarcinoma and affected the expression of 
h-TERT. Furthermore, SGC-7901 cells were cultured 
in vivo and transfected with TANK1 ASODN. The 
cell proliferation was markedly inhibited, but the cell 
apoptosis was significantly increased by TANK1 ASODN. 
It has been reported that TANK knockdown using small 
interfering RNA (siRNA) could suppress the proliferation 
of the hepatocellular cancer (HCC) cell lines (30). The 
proliferation of human tumor cells is antagonized by TANK 
inhibitors via stabilization of angiomotin (31). In addition, 
TANK inhibition impairs directional migration and 
invasion of lung cancer cells (32). These findings highlight 
an anti-tumor effect of TANK inhibitors, consistent with 
the results presented in the current study.

In conclusion, the present study illustrated that TANK1 
was increased in gastric adenocarcinoma, and TANK1 
ASODN developed an anti-tumor role possibly through 
manipulating the expressions of h-TERT and TRF1. 
However, telomerase activity and telomere length were not 
included in this study, and to improve the research, further 
investigation is indispensable.
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Figure 5 Knockdown of TANK1 affects the expression levels of h-TERT and TRF1. (A) The relative expression of h-TERT was evaluated 
by RT-qPCR; (B) RT-qPCR was performed to estimate the mRNA levels of TRF1. Data was represented as mean ± standard deviation, 
**P<0.01 vs. the vehicle group. RT-qPCR, reverse transcription quantitative polymerase chain reaction; mRNA, messenger RNA.
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