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Introduction

Clinically, hepatic cavernous hemangioma (HCH) and 
hepatocellular carcinoma (HCC) are common liver  
tumors (1). However, HCHs are usually stable and require 
only regular follow-up visits. HCC is a common malignant 
tumor worldwide (2), causing a heavy healthcare burden in 
many countries (3). Therefore, diagnosis and treatment of 

HCC or HCH are of particular importance (4). 
Computed tomography (CT) examination is one of 

diagnosis tools for liver tumors (5). However, the imaging 
appearances of HCH and HCC on non-contrast CT images 
are similar, and it is difficult to distinguish them based on 
tumor morphological characteristics and intensity values. 
By intravenously injecting contrast media, radiologists 
diagnose liver tumors by observing the enhanced area of the 
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tumor. However, the use of contrast medium may lead to 
acute kidney injury or other side effects (6).

Convolutional neural network (CNN) has been widely 
used to address many difficult medical problems because 
more discriminative image features can be extracted than 
the human eye (1,7-10). Such capabilities have been verified 
in brain tumor classification. However, the use of DL 
models to classify liver tumors on non-contrast CT images 
has not yet been reported. In this study, we proposed a 
CNN model that can classify liver tumors on non-contrast 
CT images. We present the following article in accordance 
with the STARD reporting checklist (available at https://
jgo.amegroups.com/article/view/10.21037/jgo-22-197/rc).

Methods

This retrospective study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was approved by institutional ethics committee of 
Institution for National Drug Clinical Trials, Tangdu 
Hospital (No. K202108-43) and individual consent for this 
retrospective analysis was waived. An overview of the model 
training and validation is illustrated in Figure 1.

Dataset 

The liver tumor dataset consisted of 774 non-contrast 
CT images, which were collected from 50 patients with 
HCC or HCH, and the ground truth was given by three 

radiologists based on contrast-enhanced CT. All patients 
met the following criteria: (I) diagnosed HCC or HCH 
based on liver biopsy or clinical findings (based on clinical 
signs such as laboratory tests, imaging examinations); and (II) 
no contraindications to contrast medium and has undergone 
upper abdominal contrast-enhanced CT scans. The non-
contrast CT images dataset were randomly divided into a 
training set (n=559) and a test set (n=215).

Image preprocessing

CT image preprocessing consisted of 2 steps. Firstly, 
we truncated the intensity value of all CT images to the 
range of [−100, 200] Hounsfield units (HU) to remove 
the irrelevant details. Each image in the training set was 
augmented by randomly rotation, translation, scaling, and 
intensity shifting to increase the number of training samples. 
Secondly, in order to increase the detailed information of 
the image, we performed a pseudo-color conversion to the 
CT image after the first step of preprocessing, as shown in 
Figure 2. 

The total dataset was randomly divided into the training 
set (559 images) and test set (215 images). The training set 
was used to train the CNN model and the test set was used 
to test the accuracy of the model.

CNN model development

The CNN model was trained on a NVIDIA TITAN 

Figure 1 Flow diagram for deep learning model training and testing. CT, computed tomography; HCH, hepatic cavernous hemangioma; 
HCC, hepatocellular carcinoma.
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RTX GPU (NVIDIA, Suzhou, China) and the code was 
built using Python 3.6 and Pytorch 1.4. The architecture 
of our model is described in Figure 3. The model mainly 
consisted of Resnet-50 for image feature map extraction 

and fully connected layers for classification. The pre-
trained Resnet-50 model was already trained on CT images 
from Liver Tumor Segmentation Challenge (https://
competitions.codalab.org/competitions/17094). As we 

A

B

Figure 2 CT image preprocessing. (A) Truncation of the intensity values of all CT images to the range of [−100, 200] HU. (B) Pseudo-color 
conversion. CT, computed tomography; HU, Hounsfield units.

Figure 3 CNN model for liver tumor classification. CNN, convolutional neural network. HCH, hepatic cavernous hemangioma. HCC, 
hepatocellular carcinoma.
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needed to train our CNN model to classify CT images 
into 2 classes (HCH and HCC), the output layer was set 
as a 2-class output layer. The following solver parameters 
were used for training: 200 iterations; learning rate, 0.0001; 
Adaptive Moment Estimation.

Statistics 

The performance of the model was analyzed using 
precision, recall, and accuracy. The formulas are as follows:

Precision TP
TP FP

=
+  [1]

Recall TP
TP FN

=
+  [2]

Accuracy TP TN
TP FP TN FN

+
=

+ + +
 [3]

where, TP and TN represent true positive and true negative 
respectively, FP and FN represent false positive and false 
negative respectively. The closer the precision, recall, and 
accuracy are to 1, the more accurate the classification.

Results

The diagnostic accuracy of the proposed model is shown in 
Table 1. The final CNN demonstrated a training accuracy 
of 95.02% across the 2 tumor types. The test accuracy was 
84.25% among individual lesions. For the training dataset, 
the model precision was 96.10%, with a recall of 97.14%. 
The model precision for the test dataset was 81.36%. The 
corresponding model recall for the test dataset was 82.18%. 

Discussion

This study developed a CNN model for classifying liver 
tumors on non-contrast CT images, demonstrating high 

performance. The diagnosis results showed the potential 
of the CNN model to help radiologists classify HCH and 
HCC (model accuracy of 84.25%), which not only improves 
the accuracy of diagnosis on non-contrast CT images 
but also avoids the potential risks of contrast medium to 
patients.

Previous study has demonstrated that contrast-enhanced 
CT can accurately differentiate HCC from HCH (5). 
However, the use of contrast medium may lead to acute 
kidney injury or other side effects (6). Moving towards 
clinical implementation, non-contrast CT image-based 
tumor classification becomes increasingly challenging 
because of the intensity similarity. In this case, more 
discriminative image features must be learned. The 
CNN model is an effective algorithm which can discover 
more image information that may be invisible but is very 
important for image classification. As expected, the accuracy 
was higher with 2 classes (84.25%) when a radiologist 
cannot use non-contrast CT for classification.

This study faces the problem of insufficient data. In 
terms of network training, we expanded the data by rotating 
and horizontally flipping the original image. In terms of 
testing, we also need to conduct a wider range of tests on 
this basis to verify the stability and robustness of the model.

In summary, this study provides evidence for a CNN 
model for liver tumor classification that is effective in 
improving diagnostic accuracy when classifying HCC and 
HCH on non-contrast CT images. With the increasing 
clinical needs, the CNN model will be of great significance 
in the medical field.
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Table 1 Accuracy of classifying liver tumors into HCH/HCC using 
the deep learning model

Datasets Accuracy (%) Precision (%) Recall (%)

Training dataset 95.02 96.10 97.14

Test dataset 84.25 81.36 82.18

HCH, hepatic cavernous hemangioma; HCC, hepatocellular 
carcinoma.
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