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Background: Esophageal cancer is one of the most common gastrointestinal malignancies worldwide, 
with high morbidity and mortality in China. The clinical importance of the interaction between hypoxia and 
immune status in the tumor microenvironment has been established in esophageal squamous cell carcinoma 
(ESCC). This study aims to develop a new hypoxia- and immune-based gene signature to predict the survival 
of ESCC patients.
Methods: The RNA-sequencing and clinical data of 173 cases of ESCC and 271 normal tissues were 
obtained from The Cancer Genome Atlas (TCGA) data portal and the Genotype-Tissue Expression (GTEx) 
database. Hypoxia-related genes (HRGs) and immune-related genes (IRGs) were retrieved from publicly 
shared data. Differentially expressed gene (DEG) analyses were carried out by the DESeq2 method using the 
edgeR package in R. Based on the intersection of the DEGs and HRGs/IRGs, differentially expressed HRGs 
(DEHRGs) and differentially expressed IRGs (DEIRGs) were obtained. DEHRGs and DEIRGs associated 
with prognosis were evaluated using univariate Cox proportional hazards analysis. A prognostic risk score 
model was constructed according to the genes acquired through Cox regression. Univariate analysis and 
Cox proportional hazards analysis were used to determine the independent prognostic factors related to 
prognosis. A nomogram was developed to predict the 1-, 2-, and 3-year overall survival (OS) probability. 
Results: A total of 73 intersecting genes were obtained as DEHRGs and a total of 548 intersecting genes 
were obtained as DEIRGs. The risk score was established using 8 genes (FABP7, TLR1, SYTL1, APLN, 
OSM, EGFR, IL17RD, MYH9) acquired from univariate Cox analysis. Based on this 8-gene-based risk score, 
a risk prognosis classifier was constructed to classify the samples into high- and low-risk groups according to 
the median risk score. The nomogram model was constructed to predict the OS of ESCC patients.
Conclusions: The hypoxia- and immune-based gene signature might serve as a prognostic classifier for 
clinical decision-making regarding individualized management, follow-up plans, and treatment strategies for 
ESCC patients.
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Introduction

Esophagea l  cancer  i s  one  o f  the  mos t  common 
gastrointestinal malignancies worldwide, with high 
morbidity and mortality in China (1). Despite the rapid 
development of multidisciplinary therapies in recent 
years, the prognosis of esophageal cancer patients is still 
unsatisfactory (2). Esophageal squamous cell carcinoma 
(ESCC) and esophageal adenocarcinoma (EAC) are the 
predominant histological subtypes of esophageal cancer (3).  
In contrast to western countries, ESCC accounts for 
approximately 90% of all esophageal cancers in China, and 
is characterized by rapid progression and poor prognosis.

Hypoxia promotes ESCC progression and metastasis 
by accelerating tumor angiogenesis and stimulating tumor 
glycolysis (4,5). Hypoxic environment is significantly 
related to the poor prognosis in patients with ESCC (6). 
In addition, hypoxia plays an important role in promoting 
tumor immunosuppression and immune escape (7). Immune 
cells including cytotoxic T cells, natural killer cells (NK 
cells), regulatory T cells (Tregs), activated macrophages, 
and dendritic cells form the tumor microenvironment 
(TME) and are involved in the processes of tumor invasion, 
metastasis, and anti-tumor immune responses (8,9). There 
is a direct and indirect interaction between hypoxia and 
immune status in the TME of ESCC (10,11). Nevertheless, 
the molecular characteristics and mechanisms have not yet 
been clarified.

Tan et al. (12). revealed that hypoxia is correlated with 
prognosis and the incidence of immune cell infiltration 
in patients with esophageal cancer. Our study aimed to 
develop a prognostic signature composed of hypoxia- 
and immune-associated genes. Furthermore, we analyzed 
the correlation between the model and many kinds of 
infiltrating immune cells. Based on these, we constructed 
a nomogram model to predict the overall survival (OS) of 
ESCC patients by integrating the risk score and well-known 
prognostic factors, with an aim to improve the prognosis of 
ESCC. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://jgo.
amegroups.com/article/view/10.21037/jgo-22-69/rc).

Methods

Patients

The RNA-sequencing and clinical data of 173 cases of 
ESCC and 271 normal tissue samples were obtained from 
The Cancer Genome Atlas (TCGA) data portal (https://
xenabrowser.net/datapages/?dataset=TCGA-ESCA.htseq_
counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&
removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.
edu%3A443) and the Genotype-Tissue Expression (GTEx) 
database (https://xenabrowser.net/datapages/?dataset=gtex_
RSEM_Hugo_norm_count&host=https%3A%2F%2Ftoil.
xenahubs.net&removeHub=http%3A%2F%2F127.0.0. 
1%3A7222). Then, we combined the 2 sets of samples 
and performed batch processing on the training set data 
for analysis. The study was conducted in accordance the 
Helsinki Declaration (as revised in 2013).

Hypoxia-related genes (HRGs) and immune-related genes 
(IRGs)

The HRGs list containing 200 genes was downloaded 
from https://www.gsea-msigdb.org/gsea/msigdb/cards/
HALLMARK_HYPOXIA (Table S1). The IRGs list 
consisting of 1793 genes was retrieved from ImmPort 
Shared Data (https://immport.org/shared/home), which 
shares basic cancer immunological data. The IRGs list is 
shown in the additional file, website: https://cdn.amegroups.
cn/static/public/jgo-22-69-1.pdf. 

Identification of differentially expressed genes (DEGs), 
differentially expressed HRGs (DEHRGs), and 
differentially expressed IRGs (DEIRGs)

DEG analyses were carried out by the DESeq2 method 
using the edgeR package in the R statistical environment 
(http://bioconductor.org/packages/edgeR/) (R Development 
Core Team, Vienna, Austria). A total of 6299 DEGs, 
including 2164 up-regulated genes and 4135 down-
regulated genes, were obtained (with the thresholds of 
|log2 fold change (FC)| >2.0 and adjusted P<0.05), and 
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the heat map and volcano plot were generated. Based on 
the intersection of the DEGs and HRGs, 73 genes were 
obtained as DEHRGs. Similarly, DEIRGs were obtained by 
intersecting DEGs with IRGs.

Functional enrichment analysis

According to the mRNA expression of the DEHRGs and 
DEIRGs, Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis 
were performed using the R package Cluster Profiler. GO 
annotation and KEGG pathways were plotted using the 
GOplot package in R. 

Development of a risk score model and validation model 

DEHRGs and DEIRGs associated with prognosis were 
evaluated using univariate Cox proportional hazards 
analysis. The genes with prognostic significance were 
selected with P<0.05 as the threshold and the results 
were illustrated in a forest plot. Then, the least absolute 
shrinkage and selection operator (LASSO) method (13) 
was performed for dimensionality reduction filtering using 
the glmnet package of R. Redundant factors were removed 
and corresponding genes were selected. In addition, a 
prognostic risk score model was constructed according to 
the genes acquired through Cox regression. 

( ) ( )
1=

= ×∑
n

i i
i

Risk Score RS Coef X  [1]

In this formula, Coefi is the risk coefficient of signature 
genes and Xi indicates the identified genes. Coefi was 
obtained from Cox analysis. Based on the individual risk 
scores, the samples were classified into high-risk and 
low-risk categories using the median risk score as the 
cut-off, and survival curves were plotted using Kaplan-
Meier (KM) analysis. In order to verify the stability of the 
model, subgroup survival curves were generated based 
on the high- and low-risk groups combined with clinical 
variables [including smoking status, body mass index (BMI), 
radiotherapy status, TNM stage, and gender].

Analysis of the relationship between the risk score model 
and immune cell infiltration

The relative ratios of 22 infiltrating immune cell types in 
the specimens were calculated by using the CIBERSORT 

software (14). CIBERSORT is a deconvolution algorithm 
that uses a set of reference gene expression values (547 
genes) to predict the proportions of 22 infiltrating immune 
cell types from sample expression data by using support 
vector regression. The association between the risk score 
model and immune cell infiltration was analyzed. 

Development and evaluation of the nomogram

Univariate analysis and Cox proportional hazards analysis 
were used to determine the independent prognostic factors 
related to prognosis, including the risk score model and 
clinicopathological characteristics of the patients. The 
nomograms were developed to predict the 1-, 2-, and 3-year 
OS probability (15,16). A calibration curve was drawn 
to determine the divergence between the nomogram’s 
predicted probability and the actual incidence. A calibration 
curve was drawn to define the discrepancy between the 
predicted probability of the nomogram and the actual 
incidence. 

Statistical analysis

All statistical analyses were carried out using R software 
v3.5.2. Independent prognostic factors were determined 
by using a multivariate Cox regression model. Patient 
survival time was analyzed using KM curves, and the 
log-rank test was used for statistical analysis. The area 
under the curve (AUC) of the survival receiver operating 
characteristic (ROC) curve was calculated via the survival 
ROC R software package to validate the performance of the 
prognostic signature (16). P<0.05 was considered to indicate 
a statistically significant difference.

Results

Identification DEGs, DEIRGs, and DEHRGs

DEG analysis was carried out using the DESeq2 method. 
A total of 6,299 DEGs were obtained, including 2,164 
up-regulated and 4,135 down-regulated genes (based on 
log2 FC). The heat map and volcano plot were drawn as 
shown in Figure 1A,1B. The DEGs and 200 HRGs were 
intersected, and 73 intersection genes were obtained as 
DEIRGs (Figure 1C). The DEGs and known IRGs were 
intersected, and 548 intersection genes were obtained as 
DEHRGs (Figure 1D).



Journal of Gastrointestinal Oncology, Vol 13, No 2 April 2022 465

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(2):462-477 | https://dx.doi.org/10.21037/jgo-22-69

Functional enrichment analysis of DEIRGs and DEHRGs

The biological functions of DEIRGs and DEHRGs were 
investigated using GO annotation and KEGG pathway 
analyses. Several hypoxia-related GO terms were identified, 
such as “small molecule metabolic process”, “extracellular 
region”, and “transferase activity” (Figure 2A-2C). The 
most significant hypoxia-related KEGG term was “HIF-1  
signaling pathway” (Figure 2D). Several immune-related 
GO terms were identified, such as “response to chemical”, 
“extracellular region”, and “signaling receptor binding” 
(Figure 2E-2G). The most significant immune-related 
KEGG term was “cytokine-cytokine receptor interaction” 
(Figure 2H).

Development of the risk score signature and assessment of 
its predictive ability

To identified hypoxia-and immune-related prognostic 
DEGs, 73 DEHRGs and 548 DEIRGs were screened 
using univariate Cox regression analyses. We obtained 3 
DEHRGs genes and 8 DEIRGs genes with significantly 
effects on patient prognosis, respectively. The results of the 
Cox analysis are illustrated by forest plots (Figure 3A). Using 
the LASSO method, a total of 10 genes were obtained 
by combining 2 sets of factors. Redundant factors were 
removed, 8 related factors were retained, and a prognostic 
risk score model was constructed according to the 
expression values of the 8 factors (Figure 3B-3E). By using 

Figure 1 Differentially expressed hypoxia-related genes (DEHRGs) and differentially expressed immune-related genes (DEIRGs) in 
patients with esophageal squamous cell carcinoma (ESCC). Heat map (A) and volcano plot (B) of differentially expressed genes (DEGs) in 
ESCC and normal esophageal tissues. Heat map of DEHRGs (C) and DEIRGs (D) in ESCC and normal esophageal tissues.
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Figure 2 Functional enrichment analysis of differentially expressed hypoxia-related genes (DEHRGs) and differentially expressed 
immunerelated genes (DEIRGs). (A-C) Functional enrichment of Gene Ontology (GO) terms of DEHRGs; (D) functional enrichment 
of Kyoto Encyclopedia of Genes and Genomes (KEGG) terms of DEHRGs; (E-G) functional enrichment of GO terms of DEIRGs; (H) 
functional enrichment of KEGG terms of DEIRGs.
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Figure 3 Hypoxia- and immune-associated prognosis signature. (A) Forest plot of hazard ratios for 10 hypoxia- and immune-associated 
prognostic differentially expressed genes (DEGs). (B) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the 
hypoxia- and immune-associated prognostic DEGs. Each curve in the figure represents the changing trajectory of each independent variable 
coefficient. The Y axis indicates the value of the coefficient. The lower X axis shows log (λ) and the upper X axis shows the number of non-
zero coefficients in the model. (C) Three-fold cross-validation of the tuning parameter selection in the LASSO model. The lower X axis 
indicates log (λ), and the upper X axis indicates the average number of genes associated with prognosis. Partial likelihood deviance values are 
shown, with error bars representing standard error (SE). The vertical black dotted lines are drawn at the optimal values by minimum criteria 
and 1 − SE criteria, which provides the best fit; (D) Forest plot of hazard ratios for 8 hypoxia- and immune-associated prognostic DEGs;  
(E) Distributions of risk score and survival status. The predicted value of event 1 (death) is significantly higher than event 0 (survival).
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the Cox regression model, the risk score of each patient 
was calculated as follows: risk score = (−0.079 × expression 
of FABP7) + (−0.143 × expression of TLR1) + (−0.063 × 
expression of SYTL1) + (0.115 × expression of APLN) + 
(0.146 × expression of OSM) + (−0.196 × expression of 
EGFR) + (−0.023 × expression of IL17RD) + (−0.183 × 
expression of MYH9). Based on this 8-gene-based risk 
score, a risk prognosis classifier was constructed to classify 
the samples into high- and low-risk groups according to the 
median risk score (Figure 4A). Survival curves of high- and 
low-risk samples were plotted (Figure 4B), which showed 
that the survival rate of high-risk samples was significantly 
lower than that of low-risk samples. The risk curve and 
signature DEG expression patterns are plotted in Figure 4C.  
In this model, the AUC was 0.715, suggesting that the 
model could be used for predicting survival (Figure 4D). 
Heat map of the expression distribution of 8 genes in the 
model was shown in Figure 4E.

Risk model stability analysis

To determine model stability, the survival curve was 
plotted based on known clinical variables (including 
smoking, BMI, radiotherapy, TMN staging, and sex). The 
clinicopathological characteristics of patients divided into 
the low- and high-risk groups are listed in Table 1. The risk 
score model of the 8 clinical variables, such as N0, N1, M0, 
and male, showed significant intergroup differences (high- 
and low-risk grouping) in these clinical characteristics, 
indicating that the predictive efficiency and stability of the 
model were favorable (Figure 5).

Relationship between the risk score model and immune cell 
infiltration

As the tumors of the high-risk group were proven to be 
infiltrated with a large number of immune cells, we further 
analyzed the correlation between risk score and subtypes 
of infiltrating immune cells. The results indicated that the 
levels of infiltrating resting dendritic cells and naïve CD4+ 
T cells in the high-risk group were lower than those of 
the low-risk group (P<0.05, Figure 6A-6D). In contrast, 
the levels of infiltrating activated mast cells, Tregs, and 
neutrophils in the high-risk group were higher than those 
of the low-risk group (P<0.05, Figure 6E-6J). Consequently, 
the high-risk group had abundant immunosuppressive 
cells, resulting in an immunosuppressive TME, which 
corresponds to poor prognosis.

Nomogram model can predict the OS probability of ESCC

The nomogram model was constructed to predict the OS 
of ESCC patients at 1, 2, and 3 years by integrating the 
risk score and well-known prognostic factors, including 
age, BMI, histological grade, and tumor TNM staging 
information (Figure 7A). The calibration curve approached 
the ideal curve (black straight line) in the calibration 
diagram, indicating that the predicted OS probability was 
compatible with the actual probability (Figure 7B).

Discussion

Considering the significant differences between the 
prognoses of ESCC patients, it is crucial to develop a 
reliable, convenient, and cost-effective prognostic signature 
to maximize the benefits of personalized treatment and for 
guiding prognosis. The present study has important guiding 
value for determining the prognosis of ESCC patients based 
on gene information obtained from ESCC samples in this 
study.

Previous studies have indicated that long non-coding 
RNA (lncRNA) signatures could be used as prognostic 
tools for patients with ESCC (17,18). Nevertheless, the 
application of lncRNAs is limited due to their technical 
specifications and expensive testing costs. A recent study 
identified an immune-related risk signature to predict the 
outcome of ESCC patients (19). However, the heterogeneity 
of the tumor immune microenvironment and tumor hypoxia 
were not considered in the research. In this study, the 
comprehensive mining of hypoxia- and immune-associated 
genes was used to construct a model to aid in prognosis 
prediction. We identified a series of HRGs and IRGs 
associated with prognosis in ESCC patients. Moreover, a 
hypoxia- and immune-associated signature composed of 8 
genes was developed as a prognostic classification tool with 
promising effectiveness and stability. Finally, the nomogram 
model was constructed to predict the OS of ESCC patients, 
demonstrating favorable prediction ability.

Hypoxia is a strong aggravator of ESCC progression. 
It can accelerate tumor glycolysis, angiogenesis, cell 
proliferation, metastasis, and radio- and chemo-resistance 
(5,20). Hypoxia, or hypoxic tension, has become one of the 
hallmarks of the TME (21). Rapid tumor growth requires a 
large amount of nutrients and oxygen supply, which triggers 
tumor angiogenesis. However, tumor angiogenesis is highly 
abnormal and inefficient. Oxygenation of the perivascular 
tumor area depends on the diffusion gradient relative to the 
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Figure 4 Validation of the effectiveness of the hypoxia- and immune-associated prognosis prediction model. (A) The high- and low-risk 
groups according to the median risk score; (B) Kaplan-Meier curves of overall survival (OS) in 172 patients of the training cohort based on 
risk score; (C) distributions of risk score and survival status; (D) survival-dependent receiver operating characteristic (ROC) curve validation 
of the model for prognosis; (E) heat map of the expression distribution of 8 genes in the prognosis model. Red indicates high expression and 
blue indicates low expression.

intravascular oxygen partial pressure (PO2), which leads 
to hypoxia in remote areas (22,23). Studies have confirmed 
the existence of tumor hypoxia in ESCC, and hypoxia is 

considered to be a key risk factor of poor prognosis in 
ESCC patients (23,24).

Furthermore, hypoxia can promote and maintain 

SYTL1 

EGFR 

MYH9 

FABP7  

OSM 

APLN 

TLR1 

IL17RD

R
is

k 
sc

or
e

0.6

0.4

0.2

0.0

15

10

5

0

1.0

0.8

0.6

0.4

0.2

0.0

1.00 

0.75 

0.50 

0.25 

0.00

2
1
0

4
8

4

2

0

S
ur

vi
va

l t
im

e,
 y

ea
rs

S
ur

vi
va

l p
ro

ba
bi

lit
y

n.
 c

en
so

r
Tr

ue
 p

os
iti

ve
 r

at
e

High risk
Low risk

High risk 
Low riskHigh risk 

Low risk

Risk class

P=0.00042

Number at risk

Number of censoring

0

86
86

0

0

1

46
65

0

1

2

18
22

0

2

3

10
6

0

3

4

5
3

0

4

5

1
2

0

5

6

0
0

0

6

Time, year

0   50   100 150

0   50    100 150

Patients (increasing risk score)

Patients (increasing risk score)

Status
Alive 
Dead

TypeType
High risk
Low risk

AUC =0.715

0.0   0.2   0.4    0.6   0.8 1.0

False positive rate

A B

C

E

D



Lian et al. Hypoxia- and immune-associated prognosis signature for ESCC470

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(2):462-477 | https://dx.doi.org/10.21037/jgo-22-69

an immunosuppressive TME (25). Hypoxia mediates 
immunosuppression mainly by restraining T cell migration 
into tumor tissue or accelerating T cell apoptosis (26). 
Besides, hypoxia drives immune evasion through the up-
regulation of HIF-1α secretion (27).

In the present study, we found that hypoxia and immune 
status were correlated with the prognosis of ESCC. The 
HRGs MYH9 and EGFR were associated with ESCC 
prognosis, while the IRGs FABP7, TLR1, SYTL1, APLN, 
OSM, EGFR, and IL17RD were associated with ESCC 
prognosis. Furthermore, a correlation was also observed 
between hypoxia, immune status, and survival information. 
Therefore, these HRGs and IRGs deserve further 
investigation.

The important roles of the characteristic genes identified 
in this study have been reported in a variety of cancer types 
including ESCC. Myosin heavy chain 9 (MYH9) deletion 
inhibits glycolysis, migration, and invasion of gastric cancer 
cells in the hypoxic TME (28). MHY9 is a novel mutant 
gene in ESCC. The expression of MYH9 was significantly 
up-regulated in ESCC, and was associated with lymph node 
metastasis in ESCC patients. Moreover, down-regulation of 
MYH9 gene expression can inhibit cell migration, invasion, 
and gene expression changes related to angiogenesis 
and epithelial-mesenchymal transition (EMT) (29). In 
addition, as the substrate of protein tyrosine phosphatase 
1B (PTP1B), MYH9 can be dephosphorylated by PTP1B, 
thereby up-regulating the expression of epidermal growth 
factor receptor (EGFR) and enhancing cell migration and 
invasion in ESCC (30). EGFR is a key molecule in the 
pathophysiology of ESCC and is highly expressed on the 
surface of ESCC cells (31). Genetic variants in EGFR 
are associated with the prognosis of ESCC patients after 

Table 1 The clinicopathologic characteristics of patients with 
esophageal squamous cell carcinoma

Characteristic Low risk (%) High risk (%) P value

Age 0.479

≤65 years 50 (79.4) 10 (66.7)

>65 years 13 (20.6) 5 (33.3)

Sex 0.878

Female 9 (14.3) 3 (20.0)

Male 54 (85.7) 12 (80.0)

Pathologic M 0.667

M0 57 (90.5) 14 (93.3)

M1 3 (4.8) 0 (0)

MX 3 (4.8) 1 (6.7)

Pathologic N 0.189

N0 35 (55.6) 10 (66.7)

N1 22 (34.9) 4 (26.7)

N2 5 (7.9) 0 (0)

N3 0 (0) 1 (6.7)

NX 1 (1.6) 0 (0)

Pathologic T 0.009

T1 7 (11.1) 1 (6.7)

T2 18 (28.6) 9 (60.0)

T3 37 (58.7) 3 (20.0)

T4 1 (1.6) 2 (13.3)

Neoplasm histologic grade 0.029

G1 9 (14.3) 6 (40.0)

G2 35 (55.6) 3 (20.0)

G3 14 (22.2) 3 (20.0)

Missing 5 (7.9) 3 (20.0)

Radiation therapy 0.115

Not reported 13 (20.6) 7 (46.7)

No 30 (47.6) 5 (33.3)

Yes 20 (31.7) 3 (20.0)

BMI exposures 0.403

≤24 45 (71.4) 9 (60.0)

>24 15 (23.8) 6 (40.0)

Missing 3 (4.8) 0 (0)

Table 1 (continued)

Table 1 (continued)

Characteristic Low risk (%) High risk (%) P value

Cigarettes per day exposures 1.000

≤1 9 (14.3) 3 (20.0)

>1 27 (42.9) 7 (46.7)

Missing 27 (42.9) 5 (33.3)

Alcohol history exposures 0.392

No 17 (27.0) 2 (13.3)

Not reported 2 (3.2) 0 (0)

Yes 44 (69.8) 13 (86.7)
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Figure 5 Validation of the stability of the hypoxia- and immune-associated prognosis prediction model. Kaplan-Meier plot of overall 
survival by risk groups according to smoking status (A); more than 1 cigarette per day (B); body mass index (BMI) ≤24 kg/m2 (C); patients 
who received radiotherapy (D); N0 staging (E); N1 staging (F); M0 staging (G); and male gender (H).
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radical resection (32). Oncostatin M (OSM) regulates 
tumor infiltration of immune cells and is associated with 
the outcome of cholangiocarcinoma (33). The expression 
of OSM is up-regulated in hepatocellular carcinoma 
(HCC) (34). OSM induces tumor necrosis factor-α 
(TNF-α) secretion and CD68+ macrophage aggregation. 
In addition, the expression of OSM is correlated with a low 
OS rate in HCC (34). Apelin (APLN) is abnormally up-
regulated in HCC and is correlated with poor outcome (35).  
Inhibition of APLN can potently remodel the TME, 
reduce angiogenesis, and effectively inhibit tumor growth. 

Moreover, up-regulation of APLN was associated with 
poor outcome (36). Interleukin-17 receptor D (IL17RD), 
an immune-related gene, is correlated with the outcome 
of cervical squamous cell carcinoma (37), muscle-invasive 
bladder cancer (38), and medullary thyroid cancer (39). 
Synaptotagmin-like 1 (SYTL1), also known as Slp1, 
promotes leukemogenesis and facilitates the interaction 
between leukemic cells and bone marrow stroma (40). The 
up-regulation of toll-like receptor 1 (TLR1) is associated 
with better outcomes of pancreatic ductal adenocarcinoma 
(PDAC) patients (41). TLR1 is highly expressed in breast 

Figure 6 Relationship between the risk score and immune cell infiltration. (A,B) Resting dendritic cells; (C,D) naive CD4+ T cells; (E,F) 
activated mast cells; (G,H) regulatory T cells; (I,J) neutrophils. *P<0.05, **P<0.01, and ****P<0.0001. NES, normalized enrichment score.

0.15

0.10

0.05

0.00

0.06

0.04

0.02

0.00

0.06

0.04

0.02

0.00

0.15

0.10

0.05

0.00

N
E

S
N

E
S

Group

Group

High risk   Low risk

High risk   Low risk

**

*

Group

Group

High risk
Low risk

High risk
Low risk

0.0   0.2   0.4 0.6

0.0   0.2   0.4 0.6

Risk score

Risk score

Neutrophils

Neutrophils

T cells regulatory (Tregs)

T cells regulatory (Tregs)

R=0.18, P=0.017

R=0.25, P=0.001

G

I

H

J

https://pubmed.ncbi.nlm.nih.gov/31175175/


Lian et al. Hypoxia- and immune-associated prognosis signature for ESCC474

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(2):462-477 | https://dx.doi.org/10.21037/jgo-22-69

Figure 7 Development and evaluation of the nomogram for predicting overall survival. (A) Nomogram based on the risk score and 
clinicopathological characteristics to predict the 1-, 2-, and 3-year overall survival probability. Calibration of the nomogram according to 
the consistency between the predicted and the actual results. (B) The nomogram depicts curves relative to the black line, suggesting perfect 
prediction.

cancer and may serve as a biomarker of its pathogenesis and 
progression (42). A high level of fatty acid binding protein 
7 (FABP7) is correlated with poor prognosis in several types 

of malignant tumors (43). A recent study demonstrated 
that FABP7 was a favorable biomarker for predicting better 
response to neoadjuvant chemotherapy (NAC) in breast 
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cancer patients (44).
Immune cell infiltration is a key factor affecting tumor 

progression and prognosis. In recent years, a series of 
researchers have reported that immune cell infiltration could 
provide promising signatures for the prognostic prediction 
of colon cancer (45) and lung adenocarcinoma (46).  
In this study, we found higher infiltration of Tregs, 
activated mast cells, and neutrophils in the high-risk 
group based on our model. Zhang et al. have also reported 
higher infiltration of Tregs in high-risk patients, which was 
consistent with our results (19). These findings suggest that 
high-risk patients are more likely to present with negative 
immunomodulatory infiltrating cells. Meanwhile, our 
data contributes to the understanding of immune status 
of different risk groups, which will be helpful for clinical 
practice.

However, there were several limitations in our research. 
First, we included approximately 200 HRGs and 1,793 
IRGs in the present study, which might not be sufficient 
for a comprehensive analysis. Second, tumor hypoxia and 
immunosuppressive TME were considered to be highly 
heterogeneous. Considering the characteristics of the 
tumor, the composition varies according to the location and 
time of tumor progression, and the predictive ability of our 
8-gene hypoxia- and immune-associated signature might 
vary according to different regions of tumor tissue. Lastly, 
this research lacked a large cohort and longer follow-up 
for further validation. Thus, the hypoxia- and immune-
associated signature constructed in this study requires 
further validation by more prospective, multicenter studies.

Conclusions

In conclusion, the present study identified a series of 
hypoxia- and immune-related genes associated with the 
prognosis of ESCC patients. Furthermore, we established 
a practicable and reproducible hypoxia- and immune-
associated risk signature for ESCC and revealed new 
information related to the hypoxia and immune status of 
ESCC. Ultimately, a nomogram model was constructed 
to predict the OS of ESCC which demonstrated favorable 
prediction ability. We believe that our model may 
contribute to individualized management, follow-up plans, 
and treatment strategies for ESCC patients. 
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Supplementary

Table S1 Hypoxia-related genes list

PGK1

PDK1

GBE1

PFKL

ALDOA

ENO2

PGM1

NDRG1

HK2

ALDOC

GPI

MXI1

SLC2A1

P4HA1

ADM

P4HA2

ENO1

PFKP

AK4

FAM162A

PFKFB3

VEGFA

BNIP3L

TPI1

ERO1A

KDM3A

CCNG2

LDHA

GYS1

GAPDH

BHLHE40

ANGPTL4

JUN

SERPINE1

LOX

GCK

Table S1 (continued)

Table S1 (continued)

PPFIA4

MAFF

DDIT4

SLC2A3

IGFBP3

NFIL3

FOS

RBPJ

HK1

CITED2

ISG20

GALK1

WSB1

PYGM

STC1

ZNF292

BTG1

PLIN2

CSRP2

VLDLR

JMJD6

EXT1

F3

PDK3

ANKZF1

UGP2

ALDOB

STC2

ERRFI1

ENO3

PNRC1

HMOX1

PGF

GAPDHS

CHST2

TMEM45A

Table S1 (continued)
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Table S1 (continued)

BCAN

ATF3

CAV1

AMPD3

GPC3

NDST1

IRS2

SAP30

GAA

SDC4

STBD1

IER3

PKLR

IGFBP1

PLAUR

CAVIN3

CCN5

LARGE1

NOCT

S100A4

RRAGD

ZFP36

EGFR

EDN2

IDS

CDKN1A

RORA

DUSP1

MIF

PPP1R3C

DPYSL4

KDELR3

DTNA

ADORA2B

HS3ST1

CAVIN1

Table S1 (continued)

Table S1 (continued)

NR3C1

KLF6

GPC4

CCN1

TNFAIP3

CA12

HEXA

BGN

PPP1R15A

PGM2

PIM1

PRDX5

NAGK

CDKN1B

BRS3

TKTL1

MT1E

ATP7A

MT2A

SDC3

TIPARP

PKP1

ANXA2

PGAM2

DDIT3

PRKCA

SLC37A4

CXCR4

EFNA3

CP

KLF7

CCN2

CHST3

TPD52

LXN

B4GALNT2

Table S1 (continued)
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Table S1 (continued)

PPARGC1A

BCL2

GCNT2

HAS1

KLHL24

SCARB1

SLC25A1

SDC2

CASP6

VHL

FOXO3

PDGFB

B3GALT6

SLC2A5

SRPX

EFNA1

GLRX

ACKR3

PAM

TGFBI

DCN

SIAH2

PLAC8

FBP1

TPST2

PHKG1

MYH9

CDKN1C

GRHPR

PCK1

INHA

HSPA5

NDST2

NEDD4L

TPBG

Table S1 (continued)

Table S1 (continued)

XPNPEP1

IL6

SLC6A6

MAP3K1

LDHC

AKAP12

TES

KIF5A

LALBA

COL5A1

GPC1

HDLBP

ILVBL

NCAN

TGM2

ETS1

HOXB9

SELENBP1

FOSL2

SULT2B1

TGFB3


