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Background: Hepatocellular carcinoma (HCC) is one of the malignant tumors with the highest morbidity 
and mortality worldwide, and its prognosis remains a challenge. Actinidia chinensis Planch (ACP) root has 
good efficacy against HCC. This study aimed to explore the link between ACP and potential targets of 
HCC, and to develop a novel immune-based gene signature to predict HCC patient survival.
Methods: Transcriptome data and clinical information on HCC were obtained from The Cancer Genome 
Atlas (TCGA; HCC: 374, normal: 50) and International Cancer Genome Consortium (ICGC) database 
(HCC: 243, normal: 202). Combined with the 2,483 immune-related genes from the Immport database, we 
used the least absolute shrinkage and selection operator (LASSO) to construct a prognostic model. Patients 
were divided into high-risk and low-risk groups by the median of the risk scores of the TCGA cohort. 
Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were used to estimate 
the predictability of the model in HCC prognosis, and carried out external validation based on ICGC 
cohort. We analyzed the correlation of this model with immune cells and immune checkpoint genes. Finally, 
molecular docking of these genes and the corresponding ACP components.
Results: We constructed a prognostic model composed of 3 immune-related genes [epidermal growth 
factor (EGF), baculoviral inhibitor of apoptosis repeat-containing protein 5 (BIRC5), and secreted 
phosphoprotein 1 (SPP1)]. And the high-risk group had a lower overall survival (OS) rate compared to the 
low-risk group (TCGA cohort: P=1.761e-05, ICGC cohort: P=8.716e-04). The outcomes of the AUC of 
ROC of prognostic risk model to predict for 1-, 2-, and 3-year OS: TCGA cohort: 0.749, 0.710, and 0.653 
and ICGC cohort: 0.698, 0.736, and 0.753. Molecular docking results showed that quercetin had good 
binding activities with SPP1, BIRC5, and EGF, and ursolic acid (UA) and BIRC5 also had this feature.
Conclusions: Our study speculates that ACP root anti-HCC may be involved in the immune regulation 
of the body by targeting EGF, BIRC5 and SPP1, which possess great potential and value as early warning 
molecules for HCC. This model may provide a reference for individualized diagnosis and treatment for 
HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) has the characteristics 
of insidious onset, strong invasiveness, and easy metastasis 
and recurrence. For these reasons, it has one of the 
highest incidence and death rates of all malignant tumors 
worldwide. Therefore, liver cancer patients tend to have 
a poor prognosis. At present, the main treatment means 
for liver cancer include surgery, targeted therapy, and 
immunotherapy, among others. However, in practical clinical 
applications, due to factors such as resistance to targeted 
drugs and immune-related toxicity, patients have limited 
treatment efficacy, which also affects their quality of life (1,2). 
Therefore, it is imperative to explore complementary and 
alternative medicines for the treatment of HCC. 

In recent years, traditional Chinese medicine has 
been used as an increasingly vital component of the 
comprehensive treatment of HCC. It has unique advantages 
in improving the symptoms of patients, enhancing immune 
function, and prolonging survival (3,4). In a literature 
review on the anti-cancer effects of traditional Chinese 
medicine, we found that the root of Actinidia chinensis 
Planch (ACP) has a wide range of anti-cancer activities, 
especially in digestive tract tumors (5-9). Therefore, the 
root of ACP is expected to bring new hope for conquering 
cancer in clinical practice. The ACP root, also known as 
Radix Actinidia chinensis, belongs to the Actinidiaceae 
family and has a long history. It has been recorded 
from Erya to Compendium of Materia Medica more than  
2,000 years ago in China. It mainly grows in the southern 
region of China. Its taste is salty, sour, astringent, cool in 
nature, and non-toxic. It has the functions of tonifying 
the spleen and eliminating dampness, dissolving phlegm 
and dissipating stagnation, heat-clearing and detoxifying, 
improving blood circulation and reducing swelling, and 
heat dissipation to stop bleeding. The root of ACP contains 
a variety of medicinal ingredients, such as triterpenoids, 
flavonoids, enquinones, and alkaloids, among others (10).  
Currently, there are many compound preparations 
containing ACP root used in the folk treatment of cancer, 

such as Jiedu Sangen Decoction, which is composed of 
roots of Polygonum cuspidatum Sieb. et Zucc., Root of 
Adina rubella Hance, and Radix Actinidia chinensis (11). 
The root of ACP has good curative effect in inhibiting 
the proliferation, migration, invasion and promoting 
apoptosis of liver cancer cells. For example, Fang et al. 
applied Actinidia chinensis Planch root extract (acRoots)  
(10 mg/mL) to normal liver epithelial cell line (L02) and 
human HCC cell lines (Hep3B, HepG2 and SMMC7721). 
It was found that acRoots was not cytotoxic to L02 cells, but 
it significantly inhibited the proliferation of HCC cells (12).  
The scholar also found that acRoots can inhibit the 
proliferation and metastasis of liver cancer cells by down-
regulating EP3 expression and blocking the DLX2/TARBP2/
JNK/AKT signaling pathway (13,14). Hou et al. found that 
the extract from root of Actinidia chinensis (ERAC) could 
effectively attenuate the cell growth of human hepatoma 
cell lines LM3, HepG2, 97H, 97L, SMMC-7721, Hep3B, 
Huh7 and HCCC-9810, which may be due to ERAC 
inhibiting the proliferation of highly metastatic hepatoma 
cells through the gene encoding laminin subunit beta-
3 (LAMB3) (15). It can be seen that the root of ACP has 
good curative effect and certain safety in anti-hepatocellular 
carcinoma. However, due to the synergistic effect of various 
chemical components and multiple targets in ACP root, 
its curative effect is more diversified, and it is as a result of 
these characteristics that it has a complex mechanism, which 
has not yet been fully elucidated. This limits the research, 
development, and clinical application of ACP root. For 
this reason, it is necessary to further study the underlying 
molecular mechanisms of its potential anti-HCC effects.

Many scholars believe that the main pathogenesis of 
HCC is asthenia in origin and asthenia in superficiality, of 
which “spleen deficiency” is the root (16). The spleen has an 
important immune function in our body. “Spleen deficiency” 
is closely related to the decline of the body’s immune 
function, which is also consistent with modern medicine. 
Patients with liver cancer usually have low immune function, 
which weakens the immune system’s ability to fight cancer 
cells. This results in immune escape, leading to tumor 
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progression, invasion, or metastasis. It is well known that 
HCC immune escape is an important feature of HCC (17).  
Currently, in clinical practice, targeting programmed cell 
death ligand 1 (PD-L1), programmed cell death 1 (PD-1) 
and cytotoxic Tlymphocyte antigen-4 (CTLA-4) targets, 
inhibiting their expression to enhance the body’s immune 
response and/or destroy tumors immunosuppression and 
other pathways to delay the progression of tumors (18). In 
addition, PD-L1/PD-1 and CTLA-4 play important roles in 
predicting the survival time of HCC patients and evaluating 
the efficacy of immunotherapy, but their sensitivity and 
specificity in HCC cells are not high. Therefore, it is very 
necessary to discover new immune-related tumor markers 
and new therapeutic targets in liver cancer.

According to the “treating deficiency syndrome with 
tonifying methods” in traditional Chinese medicine, “spleen 
deficiency” requires replenishing the spleen (19). Therefore, 
improving the immune function of HCC patients is a key 
part of effectively preventing the malignant growth of liver 
cancer cells. Numerous studies have shown that traditional 
Chinese medicine methods, such as invigorating the spleen, 
supplementing qi, nourishing qi, and solidifying, can 
promote the development of immune cells and immune 
organs and block immune checkpoints, among other 
processes, to improve the body’s ability to respond to tumors 
(20-22). It has been demonstrated that the ACP root, which 
has the effect of strengthening the spleen, plays a critical 
role in regulating the immune system of tumor patients. To 
sum up, in light of the traditional Chinese medicine theory, 
we studied the anti-HCC mechanism of ACP root from the 
perspective of immune regulation, which will open up new 
research ideas and therapeutic approaches for ACP root in 
the prevention and treatment of HCC.

Therefore, in this study, we screened the active 
components of ACP and related targets for the treatment 
of liver cancer by network pharmacology, and clarified 
the relationship between ACP and HCC by constructing 
a network of “active components of drugs-targets-liver 
cancer“. We then used bioinformatics technology to screen 
out genes with significantly different expression in liver 
cancer compared with the normal group, and analyzed 
target enrichment functions and pathways. After that, we 
constructed a prognosis model of immune-related genes, 
obtained the key targets of ACP in the treatment of liver 
cancer by analyzing the prognostic value of liver cancer, 
and molecularly docked them with the corresponding 
components. The goal of this study is to explore the 
effective components and potential targets of ACP in the 

treatment of liver cancer, and to find immune-related 
biomarkers that can be used to predict the prognosis of 
HCC. The clinical significance of this study provides a 
theoretical basis and a new opportunity for the development 
and application of ACP in the treatment of liver cancer, and 
it also lays the foundation for useful indicators to predict 
the prognosis of HCC patients and candidates for HCC 
treatment. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
jgo.amegroups.com/article/view/10.21037/jgo-22-398/rc).

Methods

Data collection

We use the Traditional Chinese Medicine Systems 
Pharmacology database (TCMSP, https://tcmsp-e.com/, 
updated 2022-03-14), SymMAP database (http://www.
symmap.org/), and HERB database (http://herb.ac.cn/) to 
obtain the active components and target genes of Actinidia 
chinensis Planch root. We searched for “Hepatocellular 
carcinoma” in the GeneCards database (https://www.
genecards.org/, updated 2022-03-14), and screened out 
those with a correlation score greater than 5, a total of 1,757 
liver cancer genes were obtained, and then download liver 
cancer-related genes from the TCGA database (https://
portal.gdc.cancer.gov/, updated 2022-03-14) and the ICGC 
database (https://dcc.icgc.org/, updated 2022-03-14), and 
the common liver cancer genes in these three databases 
were obtained. We derived immune-related genes from the 
“Gene Lists” module in the ImmPort database (https://
www.immport.org/home). Based on ACP target genes, 
liver cancer common genes and immune-related genes, 
the network of “ACP-target-HCC” was subsequently 
constructed. At the same time, we also downloaded 
transcriptome expression data and clinical information from 
the latter two databases (TCGA database: 374 HCC cases 
and 50 normal cases, ICGC database: 243 HCC cases and 
202 normal cases), which were used in the construction and 
validation of liver cancer prognosis models. Tumor immune 
cell infiltration data was obtained from the TIMER2.0 
website (http://timer.cistrome.org/), and its data were 
applied to analyze potential links between prognostic 
models and immune cell infiltration. Finally, we obtained 
the protein structures of the core target genes from the 
PDB database (https://www.rcsb.org/) and the SDF format 
files of the small molecule ligands from the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/), which 
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were then utilized for molecular docking. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Determination of the core targets and network construction

We entered “Actinidia chinensis Planch” in the TCMSP 
database to screen the active ingredients of ACP with oral 
bioavailability (OB) ≥30% and drug-likeness (DL) ≥0.18, 
and the corresponding target genes were obtained. We 
still considered active ingredients that did not meet this 
requirement but still had significant biological activity as 
well as those reported in the literature. Molsoft website 
(http://molsoft.com/mprop/) and preADMET website 
(https://preadmet.bmdrc.kr/) were used to evaluate the DL 
value of the active ingredient, and then the target genes 
of the active components of ACP were obtained from the 
PubChem database (https://pubchem.ncbi.nlm.nih.gov/).

The common genes of liver cancer were extracted 
from the GeneCards, TCGA, and ICGC databases, 
and the immune-related target genes of ACP root were 
extracted from the common genes. The final screening 
results were illustrated by a Venn diagram drawn by the 
“VennDiagram” R package using R software (version 4.1.3, 
https://cran.r-project.org/src/base/R-4/R-4.1.3.tar.gz). We 
employed Cytoscape 3.9.0 software to construct an “active 
component-target-disease” network for the target genes 
that ACP active components act on in immune-related 
liver cancer. We applied the “limma” R package to perform 
differential analysis on the transcriptome data of the liver 
cancer group and the normal group in the TCGA database, 
in order to obtain differentially expressed genes, where 
P<0.05 and |logFC|>2 were fixed as filter conditions. 
Then, we used the “pheatmap” and “ggplot2” R packages to 
draw a heat map and a grouped boxplot, respectively, for the 
differential genes. We set up a protein-protein interaction 
(PPI) network for obviously different genes via the “multiple 
proteins” module in the STRING database (https://string-
db.org/). The screening conditions were set as human 
species, minimum required interaction score of 0.4, and the 
item “hide disconnected nodes in the network” was selected. 
Finally, we exported the PNG image and saved it as a TVS 
file, and the immune-related core target genes that ACP 
acts on in HCC were obtained.

Functional analysis of core targets

In order to analyze the status of active compounds in ACP 

roots and the function of core immune-related target 
proteins, we performed Gene Ontology (GO) enrichment 
analysis on the intersection genes to gain a preliminary 
understanding of their biological functions, pathways, and 
cellular localization. We utilized the “colorspace”, “stringi”, 
“DOSE”, “clusterProfiler”, and “pathview” R packages to 
draw the top 10 regulations in the 3 biological processes, 
the filter condition was set to P<0.05, and bubble charts and 
bar charts were drawn. In order to understand the pathways 
which are significantly altered during ACP root treatment 
of liver cancer, we performed Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. 
P<0.05 was the screening criterion, and “enrichplot”, 
“ggplot2”, and “pathview” packages were used to draw the 
top 30 KEGG pathways, which were displayed in bubble 
charts and bar charts.

Establishment and validation of predictive risk models

To determine the association between core target genes 
in ACP treatment for HCC and the poor prognosis of 
patients, based on the TCGA and ICGC databases, we 
extracted the overall survival (OS) time, survival status, 
and mRNA expression of target genes from eligible cases 
that had complete basic clinical information and a survival 
time that was not 0 days. The “limma” R package was used 
to merge the gene expression data and the corresponding 
survival data. The “survival” package was adopted for 
univariate Cox regression analysis. Subsequently, we 
selected genes with P<0.05 for LASSO analysis. Finally, the 
λ with the smallest partial likelihood deviation was selected 
as the optimal λ, and the predicted genes were utilized to 
build the prognostic model. The risk score formula was 

n

i 1 i iCoef x
=

×∑ , where Coefi is the risk coefficient and the 

amount of expression of each gene is represented by xi. 
We used the “survival” and “survminer” R packages to 
carry out Kaplan-Meier survival analysis on high- and low-
risk groups, which were divided according to the median 
value of risk, and plotted the corresponding survival curve 
graphs. Meanwhile, to further evaluate the performance of 
the prognostic model, we used the “survivalROC” package 
to perform receiver operating characteristic (ROC) curve 
analysis. Subsequently, we utilized the Liver Cancer-NCC-
JP dataset in the IGCC database to verify the predictive 
capability of the model we constructed. In addition, 
we combined clinically relevant information, including 
age, gender, and pathological stage, among others, to be 
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included in univariate Cox and multivariate Cox analyses 
on the training set (TCGA database) as well as the test 
set (ICGC database) of the prognostic model in progress, 
with the purpose of investigating whether this model can 
determine the independent predictive factors for OS. We 
also drew a clinical correlation heat map to intuitively 
clarify the relationship between the prognostic pattern’s risk 
score and the characteristics of liver cancer patients, such as 
age, gender, and grade.

Correlation analysis of the prediction model with immune 
cells and immune checkpoint genes

We assessed the correlation between our prognostic model’s 
risk grade and the contents of 6 immune-infiltrating cells, 
including B cells, CD4+ T cells, macrophages, CD8+ 
T cells, neutrophils, and myeloid dendritic cells, with 
the aim of understanding the relationship between this 
model and tumor immune cells in HCC patients. The 
final results were displayed in a correlation scatterplot, 
where Pearson correlation coefficient (Cor) >0 indicated 
a positive correlation, otherwise Cor <0 signified a 
negative correlation, and a P<0.05 was considered to be 
significant. We used the “ggplot2” R package to determine 
the reciprocity of the risk score of the prognostic model 
and the expression levels of common immune checkpoint 
genes, including CTLA-4, transforming growth factor 
beta 1 (TGFB1), transforming growth factor beta receptor 
1 (TGFBR1), PD-1, interleukin 10 (IL-10), lymphocyte-
activation gene 3 (LAG3), cluster of differentiation 96 
(CD96), indoleamine 2,3-dioxygenase 1 (IDO1), and PD-L1. 
Finally, we performed gene set enrichment analysis (GSEA) 
to explore latent signaling paths associated with the genes 
in the prognostic model by utilizing GSEA_4.2.3 software 
(http://www.gsea-msigdb.org/gsea/downloads.jsp/GSEA_
Win_4.2.3-installer.exe).

Molecular docking verification

We performed molecular docking in order to further verify 
the close connection between active compounds in ACP 
root and prognostic model genes. We downloaded the SDF 
format files of the 2D structures of small molecule ligands 
from the PubChem database, imported them into the 
ChemBio3D Ultra 14.0 software to convert them into a 3D 
structure, and saved them as a mol2 format file. We then 
used AutoDockTools software to calculate the atom type 
and charge of the small molecule ligand, and saved it as a 

pdbqt format file. We obtained the 3D protein structures of 
the prognostic model genes from the PDB database (https://
www.rcsb.org/), downloaded them in PDB format, imported 
them into PyMOL software to dehydrate the target 
original protein conformation and remove small molecule 
ligands, and saved them as pdb format file. Then, after 
hydrogenation and other processing were carried out with 
AutoDockTools, the files were converted into pdbqt format, 
the center of the receptor structure was selected to draw 
a box, and the docking parameters such as conformation 
search method were set for molecular docking calculation. 
We selected important medicinal components and key 
targets for molecular docking verification. Finally, we 
applied Vina software for molecular docking, and visualized 
the docking outcomes using PyMOL software.

Statistical analysis

In this study, the “limma” R package was applied to 
analyze the gene expression differences between the liver 
cancer group and the normal group. We used the LASSO 
regression algorithm to construct the risk prognostic model, 
and then employed the Kaplan-Meier method to draw 
the survival curve and use the Log-rank test for survival 
analysis. We calculated the area under the curve (AUC) of 
the ROC curve by the “survivalROC” package. Afterwards, 
univariate and multivariate Cox analyses were employed 
to assess the feasibility of risk score as an independent 
predictor of OS. We utilized the Pearson correlation test to 
analyze the correlation between the prognostic model and 
the six types of immune cells, and the Spearman correlation 
test for the relationship between the prognostic model 
and the expression of immune checkpoints. In the above 
analysis, all statistical analyses were performed using R 
software version 4.1.3, and P<0.05 was considered to be 
statistically significant.

Results

Screening results of pharmacodynamic components and 
potential targets of ACP root

We finally screened 16 active chemical components (see 
Table 1), most of which were triterpenoids and flavonoids, 
and predicted 326 potential targets. We collected a total 
of 1,501 HCC genes from 3 databases (Figure 1A) and 
acquired 2,483 immune-related genes, of which 358 genes 
were related to liver cancer and immunity (Figure 1B). The 
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Venn diagram showed a total of 72 immune-related target 
genes that the active components of ACP root act on in 
liver cancer (Figure 1C). We used Cytoscape software to 
form a network diagram of “active ingredients-target-liver 
cancer” composed of 16 active compounds in ACP root and 
72 target genes (Figure 1D). The main effective components 
of ACP in the treatment of HCC include quercetin, 
(+)-catechin, ent-epicatechin, kaempferol, (−)-epicatechin, 
beta-sitosterol, and formononetin, among others. 

After differential classification with TCGA database, 
we obtained 8 differentially expressed genes. From 
the heat map and grouped boxplot, we observed that 7 
genes were up-regulated in liver cancer tissues, namely 
epidermal growth factor (EGF), matrix metallopeptidase 
9 (MMP9), baculoviral inhibitor of apoptosis repeat-
containing protein 5 (BIRC5), nitric oxide synthase 
(NOS2), plasminogen activator urokinase (PLAU), Tumor 
necrosis factor superfamily member 15 (TNFSF15), and 
secreted phosphoprotein 1 (SPP1), while 1 gene was down-
regulated in HCC tissues, namely the c-fos protein (FOS) 
(Figure 2A,2B). We used the STRING database to build 

a PPI network, which included 8 nodes, 12 interaction 
relationships, and an average node degree of 3 (Figure 2C). 
Finally, 7 genes (EGF, MMP9, BIRC5, NOS2, PLAU, FOS, 
SPP1) were obtained.

 A total of 365 related items were obtained by GO 
enrichment, including 333 biological process (BP) items, 
which were mainly related to female pregnancy, multi-
multicellular organism process, cellular response to 
cadmium ion, positive regulation of ERBB signaling 
pathway, and positive regulation of EGF receptor signaling 
pathway, among others. Only 1 cellular component (CC) 
entry was found, namely tertiary granule. At the same time, 
we obtained 30 molecular function (MF) items, mainly 
including serine-type endopeptidase activity, serine-type 
peptidase activity, serine hydrolase activity, RNA polymerase 
II core promoter sequence-specific DNA binding, protein 
tyrosine kinase activator activity, and FMN binding, among 
others. According to P<0.05, the top 10 items of each of 
the 3 branches were selected to make bubble charts and 
bar graphs, as shown in Figure 3A and Figure 3B. Through 
KEGG pathway enrichment analysis, according to P<0.05, 
we obtained a total of 26 pathways, mainly including 
colorectal cancer, prostate cancer, relaxin signaling pathway, 
hepatitis B, bladder cancer, chemical carcinogenesis-receptor 
activation, pertussis, leishmaniasis, PD-L1 expression, and 
PD-1 checkpoint pathway in cancer, among others. Then, 
we made bubble charts and histograms of the relevant 
signaling pathways, as shown in Figure 3C and 3D.

The results of prognostic analysis

In order to further analyze and screen out the main target 
genes of the root of ACP, we used the liver cancer data 
in TCGA database as the training set, and performed 
univariate Cox regression analysis on the training set to 
find 5 survival-related genes (Figure 4A; P<0.05). After 
LASSO regression analysis, 3 genes were identified to 
construct a prognostic model (Figure 4B,4C), including 
EGF, BIRC5, and SPP1 (P<0.05). These 3 genes were all 
high-risk genes and were significantly up-regulated in liver 
cancer tissues. The risk score was calculated as follows: risk 
score = (0.160956867246387 × gene EGF expression value) 
+ (0.188393314587069 × gene BIRC5 expression value) 
+ (0.0901620889436574 × gene SPP1 expression value). 
In the training set, the Kaplan-Meier survival analysis 
curves revealed that the survival rate of the high-risk group 
was lower than that of the low-risk group (P=1.761e-05;  
Figure 5A), indicating that the model has a certain latent 

Table 1 Predicted results of active components of Actinidia 
chinensis Planch root

Mol ID Molecule name OB (%) DL

MOL000073 Ent-epicatechin 48.96 0.24

MOL000098 Quercetin 46.43 0.28

MOL000105 Protocatechuic acid 25.37 0.04

MOL000263 Oleanolic acid 29.02 0.76

MOL000357 Sitogluside 20.63 0.62

MOL000358 Beta-sitosterol 36.91 0.75

MOL000359 Sitosterol 36.91 0.75

MOL000392 Formononetin 69.67 0.21

MOL000422 Kaempferol 41.88 0.24

MOL000471 Aloe-emodin 83.38 0.24

MOL000492 (+)-catechin 54.83 0.24

MOL000511 Ursolic acid 16.77 0.75

MOL000842 Sucrose 7.17 0.23

MOL001691 Ascorbic acid 13.34 0.04

MOL002268 Rhein 47.07 0.28

MOL006820 (−)-epicatechin 28.93 0.24

OB, oral bioavailability; DL, drug-likeness.
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Figure 1 Identification of the main target genes related to the immune-related effects of Actinidia chinensis Planch root acting on liver 
cancer. (A) Venn diagram for screening common genes of liver cancer from the 3 databases TCGA, ICGC, and GeneCards. (B) The 
shared genes of liver cancer and immune-related genes. (C) The common genes of ACP root active component target and liver cancer 
immune-related intersection genes. (D) Network map of “ACP root-active ingredients-HCC”. TCGA, The Cancer Genome Atlas; ICGC, 
International Cancer Genome Consortium; ACP, Actinidia chinensis Planch; HCC, hepatocellular carcinoma.
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capacity in forecasting the prognosis of HCC sufferers. 
Besides, the area under the curve (AUC) values for OS at 
1 year, 2 years, and 3 years were, respectively, 0.749, 0.710, 
and 0.653 in the training set (Figure 5B). Simultaneously, 
the corresponding risk score distribution curve and survival 
status diagram also displayed differences (Figure 5C,5D). 
The model was also validated to have certain predictive 
value in the training set (P=8.716e-04; Figure 5E), where 
the AUC values for OS at 1, 2, and 3 years were 0.698, 
0.736, and 0.753 in the test set (Figure 5F). Each AUC 
value was larger than 0.6, clearly indicating that this model 
has good potential in calculating the prognosis of HCC 
patients. And the risk score distribution curve and survival 
status diagram of the test set, as shown in Figure 5G and 
Figure 5H. In addition, we also plotted a heat map of the 
clinical correlations of the training and test sets, as shown 

in Figure 5I and Figure 5J. We further utilized univariate 
and multivariate Cox regression analysis to estimate 
the independent predictive capacity of the prognosis of 
immune-related genes of ACP targets. The final results 
revealed that stage and risk grades were evidently correlated 
with the OS of patients in both the training and test sets 
(both P<0.001). In addition, gender showed a prominent 
association with patient OS in both the univariate and 
multivariate analyses in the test set (P<0.05; Figure 6A-6D). 
At the same time, through the clinical correlation heat map, 
we visually observed that the prognostic model’s risk score, 
to some extent, had a correlation with the age, gender, 
pathological grade, tumor TMN stage, clinical stage, and 
other characteristics of liver cancer patients (Figure 6E). 
Therefore, we believe that this prognostic model can serve 
as an independent predictive marker.
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Figure 2 Identification of immune-related genes and the core targets of ACP active ingredients. (A) Heat map and (B) grouped boxplot 
of differential expression analysis of ACP target genes in the HCC set and normal group. (C) The protein interrelationship network of 
the core target genes of ACP acting on liver cancer. FOS, the c-fos protein; NOS2, nitric oxide synthase; EGF, epidermal growth factor; 
SPP1, secreted phosphoprotein 1; BIRC5, baculoviral inhibitor of apoptosis repeat-containing protein 5; TNFSF15, tumor necrosis factor 
superfamily member 15; MMP9, matrix metallopeptidase 9; PLAU, plasminogen activator urokinase; ACP, Actinidia chinensis Planch; HCC, 
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The results of immunomodulatory analysis

We further explored the potential association between 
the immune-related prognostic model of ACP targets and 
immune cell infiltration, as shown in Figure 7A-7F. The 
results were as follows: B cells (Cor =0.244, P=2.477e-06), 
macrophages (Cor =0.404, P=9.827e-16), myeloid dendritic 
cells (Cor =0.393, P=6.796e-15), neutrophils (Cor =0.419, 
P=5.849e-17), CD4+ T cells (Cor =0.207, P=7.019e-05), 
CD8+ T cells (Cor =0.126, P=0.016). These 6 immune 
cells all possessed a notable positive correlation with the 

risk score of the ACP target immune-related prognostic 
model, and with higher risk scores, the levels of these 
infiltrating immune cells also increased. In addition, we 
analyzed the potential relationship between the risk scores 
of models representing prognosis and the expression 
levels of familiar immune-checkpoint genes, as shown 
in Figure 8A-8I. The results were as follows: CTLA-
4 (R =0.41, P<2.2e-16 ), TGFB1 (R =0.34, P=2.1e-11), 
TGFBR1 (R =0.3, P=3.3e-09), PD-1 (R =0.3, P=3.3e-09), 
IL-10 (R =0.27, P=1.7e-07), LAG3 (R =0.15, P=0.0036), 
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Figure 3 GO and KEGG enrichment analysis results. Bubble chart (A) and histogram (B) of GO enrichment analysis. Bubble chart (C) and 
histogram (D) of KEGG pathway enrichment analysis. Among them, Count represents the number of genes. BP, biological process; CC, 
cellular component; MF, molecular function; PD-L1, programmed cell death ligand 1; PD-1, programmed cell death 1; IL-17, interleukin 
17; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 4 Construction of an immune-related prognostic model of ACP target genes. (A) Forest plot for the preliminary screening of ACP 
target prognosis-related immune genes by univariate Cox regression analysis. (B) Profile of the distribution of the LASSO algorithm.  
(C) Ten-fold cross-validation was used to select the optimal λ value. And each curve in Figure 4C represents the change trajectory of each 
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and the red curve represents MMP9. Among them, the upper X-axis in Figure 4B and Figure 4C both represent the number of non-zero 
coefficients. EGF, epidermal growth factor; MMP9, matrix metallopeptidase 9; BIRC5, baculoviral inhibitor of apoptosis repeat-containing 
protein 5; PLAU, plasminogen activator urokinase; SPP1, secreted phosphoprotein 1; ACP, Actinidia chinensis Planch; LASSO, least 
absolute shrinkage and selection operator.

CD96 (R =0.19, P=0.00035), IDO1 (R =0.12, P=0.018), 
and PD-L1 (R =0.11, P=0.033). The results showed that 
the expression levels of these immunosuppressive genes 
gradually increased as the risk score increased, and the 2 
were positively correlated (P<0.05). At the same time, the 
outcomes of GSEA indicated that the prognostic model 
ranked the top 5 pathways in the high-risk group, including 
Fc gamma R-mediated phagocytosis, oocyte meiosis, 
endocytosis, regulation of actin cytoskeleton, and VEGF 
signaling pathway, while in the low-risk group, the top 5 
pathways included drug metabolism cytochrome P450, 
retinol metabolism, fatty acid metabolism, metabolism of 
xenobiotics by cytochrome P450, and glycine, serine, and 
threonine metabolism (Figure 9).

Molecular docking verification

We applied AutoDockTools software to conduct molecular 
docking of the 3 target genes EGF, BIRC5, and SPP1 with 
the active components of ACP roots that act on them 
(Table 2). It is generally recognized that the lowest binding 
energy is less than or equal to −5.0 kcal/mol, indicating that 
the pharmacodynamic molecule has a better capability to 
combine with the protein, and the lower the binding energy, 
the better the binding ability between the molecule and 
the protein. In our study, the results of molecular docking 

exhibited that their binding energies were all ≤−5.0 kcal/mol,  
which illustrated that they all had an excellent binding 
ability. The detailed results are as follows: quercetin-SPP1 
−8.2 kcal/mol, quercetin-BIRC5 −8.1 kcal/mol, quercetin-
EGF −7.9 kcal/mol, ursolic acid (UA)-BIRC5 −6.9 kcal/mol, 
and quercetin-SPP1 had the smallest binding energy. We 
used PyMOL software to visualize the molecular docking 
results of quercetin-SPP1, quercetin-BIRC5, quercetin-
EGF, and UA-BIRC5 (Figure 10A-10D).

Discussion

It is well known that the immune system of the human 
body can monitor, identify, and eliminate the vast 
majority of early cancer cells. Therefore, enhancing the 
immune function of the body can hinder the occurrence, 
development, metastasis, and recurrence of cancer (23).  
HCC is often described as “liver accumulation” or 
“accumulation” in ancient Chinese medical books. In 
traditional Chinese medicine theory, liver cancer is 
mainly caused by deficiency of righteous qi, especially 
“spleen deficiency”, which is described in the book Jingyue 
Quanshu: “People who are deficient in the spleen and 
kidney, and those who are weak and disordered, tend 
to have accumulated diseases” (24). “Spleen deficiency” 
in traditional Chinese medicine is closely related to 
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Figure 5 Validation of the immune-related prognostic model of ACP target genes. Kaplan-Meier curves, time-dependent ROC analysis, 
risk score distribution, survival status scatter plots, and heat maps of the prognostic model in the training set of the TCGA cohort (A-D,I) 
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abnormal immune function in the internal environment 
of liver cancer. ACP root, as a representative traditional 
Chinese herbal medicine for invigorating spleen and qi, 

has many years of history in the treatment of liver cancer. 
However, the underlying mechanism between ACP root 
and HCC is still not completely elucidated. In our study, we 
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Figure 6 Independent prognostic value of the prognostic models. Forest plot of univariate Cox regression analysis (A) and multivariate Cox 
regression analysis (B) in the training set. Forest plot of univariate Cox regression analysis (C) and multivariate Cox regression analysis (D) 
in the test set, (E) Heat map of clinical correlations of risk genes. EGF, epidermal growth factor; BIRC5, baculoviral inhibitor of apoptosis 
repeat-containing protein 5; SPP1, secreted phosphoprotein 1.
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speculated that the root of ACP affects liver cancer through 
immunomodulatory effects. 

We used network pharmacology to establish a network of 
“drug active ingredients-target genes-HCC”, then obtained 
the transcriptome data and clinical information from TCGA 
and ICGC databases, and finally derived the 3 genes EGF, 
BIRC5, and SPP1. They are not only the hub genes of ACP 
root against HCC, but are also associated with the prognosis 
of liver cancer. Relevant research has discovered that EGF is 
a cancer-promoting factor in a variety of malignant tumors. 
It is highly expressed in liver cancer and can take part in 
the occurrence and development of liver cancer through a 
variety of pathways, such as EGF/EGFR, MAPK, and PI3K 
bypass signal transduction, as well as through participation 
in drug resistance, promotion of angiogenesis, and other 
mechanisms to promote the metastasis and malignant 
proliferation of liver cancer (25-29). In our study, it was 
found that quercetin, which is one of the active ingredients 
in the root of ACP, can act on EGF targets. Quercetin 
is a polyphenolic flavonoid, also known as 3,30,40,5, 
7-pentahydroxyflavone. Research on this compound in the 
field of HCC is relatively mature, with studies showing that 
it can play a role by blocking the JAK2/STAT3 signaling 

pathway, inhibiting the Akt-mTOR pathway, hindering the 
activation of NF-κB, and impeding PI3K/p53/COX-2 (30,31). 
In addition, quercetin down-regulates the expression of 
EGF to restrain the proliferation of cancer cells, which 
has also been demonstrated in previous literature (32,33). 
Nevertheless, this mechanism has not been reported in liver 
cancer, and further experiments are needed for verification.

BIRC5, also known as survivin, is one of the key genes in 
the inhibitor of apoptosis protein (IAP) family (34). A great 
deal of studies have shown that BIRC5, which is widely and 
highly expressed in various malignant tumor cells, is an 
accomplice to help tumor cells escape apoptosis (35,36). In 
liver cancer, it was found that BIRC5 is closely related to the 
functions of promoting cancer cell proliferation, metastasis, 
inhibiting apoptosis, and participating in angiogenesis  
(37-39). In our study, 2 active ingredients, namely UA and 
quercetin, were found to act on BIRC5 protein targets. 
Ursolic acid (UA), also known as 3beta-hydroxyurs-12-en-
28-oic acid, is a natural pentacyclic terpenoid with broad 
anti-cancer activity (40,41). Previous studies have discovered 
that UA can promote the apoptosis of liver cancer cells by 
activating caspase-3 and blocking the PI3K/Akt/survivin 
signaling pathway (42-44). At the same time, much 
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Figure 8 Associations between risk score in the prognostic model and major immunosuppressive genes. The outcomes of the correlation 
analysis between the prognostic model risk score and the expression of CTLA-4, TGFB1, TGFBR1, PD-1, IL-10, LAG3, CD96, IDO1, and 
PD-L1 (A-I). CTLA-4, cytotoxic T-lymphocyte antigen-4; TGFB1, transforming growth factor beta 1; TGFBR1, transforming growth factor 
beta receptor 1; PD-1, programmed cell death 1; IL-10, interleukin 10; LAG3, lymphocyte-activation gene 3; CD96, cluster of differentiation 
96; IDO1, indoleamine 2,3-dioxygenase 1; PD-L1, programmed cell death ligand 1.

literature has shown that quercetin can also down-regulate 
the protein expression of survivin and Bcl-2 in HepG2 cells 
and induce apoptosis of liver cancer cells (45-46). It can be 
seen that our research results (43-46) are consistent with 
previous reports in that UA and quercetin can act on BIRC5 

to inhibit the malignant proliferation of HCC.
SPP1, also termed osteopontin (OPN), is an important 

extracellular glycoprotein in the small integrin-binding 
ligand N-linked glycoprotein (SIBLING) family (47). 
Much research has shown that SPP1 is closely linked with 
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processes such as growth, adhesion, invasion, angiogenesis, 
and metastasis in many malignant tumors (48-50). In liver 
cancer cells, SPP1 can not only bind to CD44 and activate 
the PI3K/Akt signaling pathway, but it can also activate 
integrins and induce the expression of NF-κB to inhibit 
apoptosis. In addition, SPP1 can also improve the anti-
apoptotic ability of HCC by regulating MAPK signaling 
and binding to EGFR, as well as other related mechanisms  
(51-54). In our study, it was found that quercetin in the 
root of ACP can mainly act on the SPP1 target, but the 
mechanism of action in liver cancer has not been covered 
so far, and this still needs to be investigated by further 
experiments. In addition, our study also discovered that the 
prognostic model established by the 3 genes EGF, BIRC5, 
and SPP1 was closely associated with the poor prognosis of 

liver cancer patients, indicating that these 3 genes may be 
used as early warning markers for liver cancer to a certain 
extent. Since the 3 target genes EGF, BIRC5, and SPP1 
and the corresponding active components of ACP root 
(quercetin and UA) have critical roles in liver cancer, it 
is necessary to study the interaction between these target 
genes and active drug ingredients, as well as their potential 
link with liver cancer. 

More interestingly, related studies (55,56) also found 
that these ACP root target genes were involved in 
some immune pathways, which confirmed the potential 
association between ACP root and the immune system. 
ACP root has the effect of strengthening the spleen and 
tonifying qi. It can improve the immune level of the body, 
strengthen immune surveillance, reverse immune escape, 
and control tumor growth by regulating spleen deficiency 
and strengthening the spleen. Therefore, we infer that 
the root of ACP may achieve anti-HCC efficacy by 
regulating immune-related factors. As expected, we found 
that the risk scores of the prognostic models constructed 
by EGF, BIRC5, and SPP1 were actively correlated with 
expression levels of different immune cells and common 
immunosuppression-related genes. Relevant studies at 
home and abroad have found that EGF, BIRC5, and SPP1 
are closely related to the immune escape process in cancer 
cells. Some scholars have observed that both EGF and SPP1 
can up-regulate the expression of PD-L1 in cancer cells and 
participate in the immunosuppressive process in the cancer 
cell microenvironment to assist the malignant proliferation 
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Figure 9 GSEA pathway analysis results of the prognostic model. KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set 
enrichment analysis.

Table 2 Molecular docking results of the core target genes of ACP 
root and the corresponding active ingredients

Molecular docking mode Binding energy (kcal/mol)

Quercetin-SPP1 −8.2

Quercetin-BIRC5 −8.1

Quercetin-EGF −7.9

Ursolic acid-BIRC5 −6.9

The darker the color in Table 2, the stronger the binding ability 
of this docking model. ACP, Actinidia chinensis Planch; SPP1, 
secreted phosphoprotein 1; BIRC5, baculoviral inhibitor of 
apoptosis repeat-containing protein 5; EGF, epidermal growth 
factor.
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A B

C D

Figure 10 Molecular docking diagram of active components of ACP root and target genes. (A-D) Molecular docking diagrams of quercetin-
SPP1, quercetin-BIRC5, quercetin-EGF, and ursolic acid-BIRC5. ACP, Actinidia chinensis Planch; SPP1, secreted phosphoprotein 1; BIRC5, 
baculoviral inhibitor of apoptosis repeat-containing protein 5; EGF, epidermal growth factor.

of cancer cells (57-60). In addition, related studies have also 
found that down-regulation of the expression of BIRC5/
survivin as a means of immune evasion mediates tumor 
destruction, thereby affecting the viability of tumor cells 
(61,62). It can be seen that EGF, BIRC5, and SPP1 play 
significant roles in mediating the immune escape of tumor 
cells. 

In our research results, it was found that the active 
components in the root of ACP can regulate the immune 
escape process of tumor cells and activate the immune 
system by acting through EGF, BIRC5, and SPP1, which 
may be potential molecular pathways for the root of ACP in 
the treatment of liver cancer. The network pharmacology 
and bioinformatics methods applied in this study mainly 
rely on a variety of databases, mathematical models and 
statistical algorithms. Due to the incompleteness of the 
database, the diversity and complexity of statistical methods 
and other reasons, our research has limitations to a certain 
extent. Therefore, we should conduct further research and 
improvement through a large number of experiments in 
the future, but this research can provide a certain reference 
value for basic experiments.

Conclusions

Taken together, our study is the first to identify the 
potential associations between ACP root, prognostic target 
genes (EGF, BIRC5, and SPP1), immune regulation, and 
liver cancer. We speculate that ACP root may inhibit 
the expression of EGF, BIRC5, and SPP1 target genes, 
regulate the activity of immune-related factors in the tumor 
microenvironment, reverse immune escape, stimulate the 
activity and function of immune cells, enhance immune 
responses, and exert anti-tumor activity. Our study helps 
to elucidate the complex mechanism of ACP root against 
liver cancer and lays a theoretical foundation for further 
experimental verification.
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