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Introduction

Hepatocellular carcinoma (HCC) represented the 
third leading cause of cancer worldwide in 2020, with 
approximately 830,000 deaths (1). Curative surgery is 
the most effective treatment for HCC patients who are 
diagnosed at an early stage, while those at the advanced 

stages are not eligible. The most common treatment 
for advanced HCC patients is sorafenib (2-4). However, 
limited effectiveness and drug resistance has restricted the 
clinical use of sorafenib in advanced HCC (5). Overcoming 
sorafenib resistance will bring benefits to advanced HCC 
patients.
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The Wnt/β-catenin signaling pathway plays an 
essential role in cancer progression through initiating cell 
proliferation, migration, invasion, metastasis, stemness, 
and drug resistance (6,7). Activation of the Wnt/β-catenin 
pathway occurs in various tumors, including those of 
liver and intestinal cell origin (8,9). β-catenin is the core 
component of this pathway, and the multiprotein β-catenin 
degradation complex tightly controls its accumulation 
and nuclear translocation. Cytoplasmic β-catenin is 
phosphorylated by 2 Ser/Thr kinases, namely glycogen 
synthase kinase 3 (GSK-3) and casein kinase 1 (CK1), and 
is then recognized by ubiquitin ligase β-transducin repeat-
containing protein (β-TrCP), which mediates β-catenin 
proteasomal degradation (10). Disruption of the degradation 
complex can prevent β-catenin degradation, resulting 
in accumulated β-catenin translocating to the nucleus. 
β-catenin, which is located in the nucleus, interacts with 
transcription factors of the lymphoid enhancer factor/T-cell 
factor (LEF/TCF) family and initiates the transcription of 
several protooncogenes, such as c-Myc and cyclin D1 (8,9,11). 
Accumulating evidence has demonstrated that aberrant 
activation of Wnt/β-catenin contributes to sorafenib 
resistance, and inhibition of Wnt/β-catenin eliminates 
sorafenib resistance and enhances sorafenib sensitivity  
(12-14). For this reason, identification of the regulator 
of Wnt/β-catenin involved in sorafenib resistance and 
targeting this regulator will be useful for improving the 
clinical outcome of sorafenib treatment.

Obg-like ATPase 1 (OLA1), an identified member of the 
Obg family and the YchF subfamily of p-loop GTPases, 
is affiliated with the translation-factor-related (TRAFAC) 
class and is highly conserved from bacteria to humans 
(15,16). P-loop GTPases are involved in monitoring various 
cellular processes, such as intracellular transport, signal 
transduction, protein translation, stress responses, and cell 
proliferation (17-20). OLA1 also works as an intrinsic stress 
response regulator, including oxidative stress (21) and heat 
shock (22,23). OLA1 was shown to be highly expressed in 
most cancers, lowly expressed under DNA damage, and 
reduces doxorubicin sensitivity in colon cancer cells (24). 
More evidence showed that reduction of OLA1 suppressed 
breast cancer cell migration and invasion, and was involved 
in epithelial-mesenchymal transition (EMT) in different 
tumor cells (25,26). OLA1 could be a potential biomarker of 
endometrial cancer (27). A recent study showed that OLA1 
was also overexpressed in HCC and OLA1 promoted HCC 
development (28). However, there is no study showing 

whether OLA1 is related to HCC sorafenib resistance. A 
previous study reported that OLA1 can bind to GSK-3β and 
phosphorylate GSK-3β at Ser9, which is an inactivate form, 
failing to phosphorylate β-catenin and resulting in β-catenin 
accumulation (26). Previous works showed that β-catenin 
activation contributed to chemoresistance and inhibition 
of β-catenin signaling enhanced by sorafenib sensitivity 
(29,30). The phosphorylation of β-catenin at Thr41, Ser37, 
and Ser33 by GSK-3β was reported to promote β-catenin 
degradation, prevent β-catenin nuclear translocation, and 
inhibit β-catenin transactivation (31). OLA1 phosphorylated 
GSK-3β at Ser9 and blocked its activation (26,32). Evidence 
also showed that GSK-3β/β-catenin contributed to 
sorafenib resistance, blocking GSK-3β/β-catenin signaling 
to overcome sorafenib resistance and enhance sorafenib 
sensitivity (10,33). Therefore, we hypothesized that OLA1 
may contribute to sorafenib resistance in HCC by activation 
of GSK-3β/β-catenin signaling.

In the current work, we showed that OLA1 was 
positively correlated with sorafenib resistance by activating 
the GSK-3β/β-catenin signaling pathway in HCC. Our data 
suggests that targeting OLA1 can improve the sensitivity 
of sorafenib in HCC. We present the following article in 
accordance with the MDAR reporting checklist (available at 
https://jgo.amegroups.com/article/view/10.21037/jgo-22-
458/rc).

Methods

Reagents and antibodies

The chemicals sorafenib, crystal violet, propidium iodide 
(PI), and protease inhibitor cocktail were obtained 
from MedChemExpress (MCE, Shanghai, China). The 
antibodies used in this study are listed as follows: OLA1 
[Abclonal; Wuhan, China; Cat#A11671; 1:1,000 for western 
blot (WB)], phospho-GSK-3β-S9 (Abclonal; Cat#AP1088; 
1:1,000 for WB), GSK-3β (Abclonal; Cat#A6164; 1:1,000 
for WB), Cyclin D1 (Abcam, Waltham, MA, USA; 
Cat#ab134175; 1:1,000 for WB), β-catenin (Cell Signaling 
Technology, Danvers, MA, USA; Cat#8480; 1:1,000 for 
WB), c-Myc (Cell Signaling Technology; Cat#18583; 
1:1,000 for WB), cleaved PARP Cell Signaling Technology; 
Cat#5625; 1:1,000 for WB), cleaved caspase-3 (Cell 
Signaling Technology; Cat#9664; 1:1,000 for WB), and 
β-actin (Cell Signaling Technology; Cat#3700; 1:2,000  
for WB).

https://jgo.amegroups.com/article/view/10.21037/jgo-22-458/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-22-458/rc
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Clinical survival analysis of sorafenib treated patients

The survival rates of HCC patients who received sorafenib 
treatment were analyzed by Kaplan-Meier plotter (https://
kmplot.com/analysis/index.php?p=service&cancer=liver_
rnaseq) (34). OLA1 low or high expression group was 
divided by the best separation of survival.

Cell lines

HCC cells Huh7 and HCCLM3, along with HEK293T 
cells, were obtained from the Cell Bank of Type Culture 
Collection of the Chinese Academy of Sciences (Shanghai, 
China), and maintained in Dulbecco’s Modified Eagle 
Med ium (DMEM) (Hyc lone ,  Ca t#SH30243 .01 ) 
supplemented with 10% fetal bovine serum (Hyclone, 
Cat#SV30087.03) and 1% penicillin-streptomycin (MCE; 
Cat#HY-K1006) at 37 ℃ with 5% CO2.

Establishment of stable OLA1-knockdown cell lines

Tw o  s p e c i f i c  s e q u e n c e s  t a r g e t i n g  O L A 1  w e r e 
inserted into the pLKO.1 vector to generate OLA1 
short hairpin RNA (shRNA) plasmids: shOLA1-1, 
5'-GCCTTGGAACTCAAGTTGCAA-3'; shOLA1-2, 
5'-CCAGATGAAAGGTTTGACTTT-3'. The lentivirus 
constructs and packaged plasmids (pMDL, VSV-G, 
and REV) were transfected into HEK293T cells to 
produce lentivirus using HighGene Transfection reagent 
(Abclonal; Cat#RM09014) according to the manufacturer’s 
instructions. At 48–72 h after transfection, lentiviruses 
were collected and then contaminating cells were removed 
by centrifugation for 30 min at 2,500 rpm. Huh7 and 
HCCLM3 cells were transfected with the virus plus  
10 μg/mL of polybrene (MCE; Cat#HY-112735). Stable 
OLA1-knockdown cell lines were selected by puromycin  
(1 μg/mL). WB was used to confirm the knockdown efficiency.

Real-time quantitative polymerase chain reaction  
(RT-qPCR)

TRIzol (Invitrogen) was used to isolate total RNA and 
gDNA Erase and PrimeScript RT reagent kits (TAKARA 
Biotechnology, Dalian, China) were used to synthesize 
cDNA with 2 μg of total RNA following the manufacturer’s 
instructions. SYBR Green PCR master mix kit was used 
to quantify mRNA levels. β-actin was used as an internal 
control gene. The specific primer sequences were as follows: 

c-Myc: forward, 5'-GGCTCCTGGCAAAAGGTCA-3', 
reverse, 5'-CTGCGTAGTTGTGCTGATGT-3'; cyclin 
D1: forward, 5'-GCTGCGAAGTGGAAACCATC-3', 
reverse, 5'-CCTCCTTCTGCACACATTTGAA-3'; 
β-actin: forward, 5'-AGCGAGCATCCCCCAAAGTT-3', 
reverse, 5'-GGGCACGAAGGCTCATCATT-3'.

WB

Protein expression was measured by the WB assay. Briefly, 
cells were treated with sorafenib for 24 h, washed with 
cooled phosphate-buffered saline (PBS), and lysed in RIPA 
buffer with protease inhibitor cocktail. The BCA assay was 
used to determine the total protein concentration (Pierce, 
Rockford, IL, USA), and SDS-PAGE gel was used to 
separate each sample (20–50 μg total proteins). Proteins 
were transferred to PVDF membranes (Millipore, Bedford, 
MA, USA), incubated with appropriate primary antibodies 
overnight at 4 ℃, and then incubated with corresponding 
horseradish peroxidase (HRP)-conjugated secondary 
antibodies. The enhanced chemiluminescence (ECL) WB 
kit (Pierce) was used to visualize the primary and second 
antibody complexes.

Cell counting kit-8 (CCK)-8 assay

Cell viability was measured by the CCK-8 assay. Briefly, 
5,000 control and OLA1 knockdown Huh7 and HCCLM3 
cells were seeded into 96-well plates overnight, then the 
medium was changed with or without sorafenib (10 μM). 
After 24 h incubation, CCK-8 (10 μL) solution was added 
into each well and maintained for 1 h. Optical density (OD) 
values were measured at 450 nm wavelength.

Clone formation assay

A total of 500 control and OLA1 knockdown Huh7 and 
HCCLM3 cells were seeded into 6-well plates overnight, 
and the medium was changed with or without sorafenib  
(10 μM) lasting for 2 weeks. The sorafenib incubation 
medium was renewed every other day. At the end of 
treatment, 0.1% crystal violet was used to stain the cells, 
and then the cell numbers were counted.

Cell death count

Control and OLA1 knockdown Huh7 and HCCLM3 cells 

https://kmplot.com/analysis/index.php?p=service&cancer=liver_rnaseq
https://kmplot.com/analysis/index.php?p=service&cancer=liver_rnaseq
https://kmplot.com/analysis/index.php?p=service&cancer=liver_rnaseq
https://www.google.com/search?newwindow=1&sxsrf=ALeKk02MyZY73Q5Gj30vLAEz5CxpaHmIPg:1620910139799&q=Logan,+Utah&stick=H4sIAAAAAAAAAOPgE-LSz9U3sMwtKKo0UuIEsQ0NUtJKtIwyyq30k_NzclKTSzLz8_Tzi9IT8zKrEkGcYquM1MSUwtLEopLUomKFnPxksPAiVm6ffKAqHYXQksSMHayMAKP18KteAAAA&sa=X&ved=2ahUKEwjit-Ho2MbwAhXbMN4KHdG_A3oQmxMoATAbegQIHhAD
https://www.medchemexpress.cn/Hexadimethrine_bromide.html
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were seeded into 6-well plates overnight, and the medium 
was changed with or without sorafenib (10 μM) for 24 h.  
After treatment, cells were harvested, and then PI and 
trypan blue staining were used to determine cell death. For 
PI staining, cells were incubated in PBS with PI at 1 μg/mL,  
and flow cytometry was used to detect dead cells. For trypan 
blue staining, 20 μL of cells were incubated with 20 μL  
of 0.4% trypan blue for 5 min, and then dead cells were 
counted under a microscope.

Statistical analysis

Mean ± standard deviation (SD) was used to present the 
results of 3 or more independent experiments. Student’s 
t-test, two-way analysis of variance (ANOVA), and Pearson 
r were used to perform statistical analyses with GraphPad 
Prism 8 (GraphPad Software, San Diego, CA, USA), and 
P<0.05 was considered statistically significant.

Results

OLA1 was positively correlated with clinical sorafenib 
resistance in HCC

Owing to the serious side effects, the use of sorafenib to 
treat HCC has been limited. Previous work reported that 
OLA1 was overexpressed and promoted tumorigenesis 
in HCC (28). To clarify whether OLA1 contributes to 
sorafenib resistance in HCC, we analyzed the survival of 

HCC patients treated with sorafenib according to different 
expression profiles of OLA1 in a public database (https://
kmplot.com/analysis/index.php?p=service&cancer=liver_
rnaseq) (35). The survival plot exhibited that patients who 
expressed high levels of OLA1 had a shorter overall survival 
(OS) (Figure 1A), recurrence-free survival (RFS) (Figure 1B), 
and disease-specific survival (DSS) (Figure 1C) than those 
who expressed low levels of OLA1. These results indicated 
that OLA1 may promote sorafenib resistance in HCC.

Knockdown of OLA1 enhanced cell proliferation inhibition 
induced by sorafenib

To evaluate the effects of OLA1 on sorafenib treated HCC 
cells, OLA1 knockdown Huh7 and HCCLM3 HCC cell 
lines were established and then stimulated with sorafenib 
(10 μM) for 24 h. Cell viabilities were detected by the 
CCK-8 assay. As shown in Figure 2A,2B, OLA1 knockdown 
enhanced HCC cancer cell proliferation inhibition induced 
by sorafenib in Huh7 (Figure 2A) and HCCLM3 cells 
(Figure 2B). In addition, the clone formation abilities were 
analyzed by the clone formation assay. The results showed 
that OLA1 knockdown cells formed markedly fewer clones 
compared with control cells both with or without sorafenib 
treatment in Huh7 (Figure 2C) and HCCLM3 cells  
(Figure 2D). These results suggested that reduction of OLA1 
augmented HCC cell proliferation inhibition induced by 
sorafenib.

Figure 1 The association between OLA1 mRNA expression and survival in HCC patients treated with sorafenib. The Kaplan-Meier 
plots were generated as a function of OLA1 mRNA expression and OS (A), RFS (B), and DSS (C) of HCC patients treated with sorafenib. 
OLA1, Obg-like ATPase 1; OS, overall survival; HR, hazard ratio; RFS, recurrence-free survival; DSS, disease-specific survival; HCC, 
hepatocellular carcinoma.
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Knockdown of OLA1 enhanced HCC cell death induced by 
sorafenib

As cell death can also be induced by sorafenib, we 
determined whether OLA1 contributed to HCC cell death 
induced by sorafenib (36,37). OLA1 knockdown and control 
Huh7 and HCCLM3 cells were incubated with sorafenib 
(10 μM) for 24 h. PI and trypan blue staining were used to 
measure cell death. The results of PI staining showed that 
both with or without sorafenib treatment, knockdown of 
OLA1 markedly increased the number of PI positive Huh7 
(Figure 3A) and HCCLM3 cells (Figure 3B). Next, we also 
used trypan blue staining to confirm our PI staining results. 
As expected, the results from trypan blue staining similarly 

demonstrated that OLA1 knockdown significantly enhanced 
HCC cell death induced by sorafenib in Huh7 (Figure 3C) 
and HCCLM3 cells (Figure 3D). These results showed that 
OLA1 knockdown augmented HCC cell death induced by 
sorafenib.

Knockdown of OLA1 augmented the reduction of 
proliferation-related protein expression and increased 
apoptosis-associated protein expression induced by sorafenib

To evaluate the mechanism of OLA1 knockdown in 
enhancing HCC cell proliferation inhibition and cell death 
induced by sorafenib, we determined the expression of 

Figure 2 Knockdown of OLA1 enhanced cell proliferation inhibition induced by sorafenib. (A,B) Knockdown of OLA1 reduced cell 
viabilities both with or without sorafenib treatment in Huh7 (A) and HCCLM3 (B) cells (n=4). (C,D) Knockdown of OLA1 suppressed 
clone formation both with or without sorafenib treatment in Huh7 (C) and HCCLM3 (D) cells (n=3). Data are shown as mean ± SD. 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs. shCtrl group, based on two-sided Student’s t-test and two-way ANOVA. OD, optical 
density; DMSO, dimethyl sulfoxide; sh, short hairpin; OLA1, Obg-like ATPase 1; SD, standard deviation; ANOVA, analysis of variance.
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proliferation- and apoptosis-associated proteins by WB. 
OLA1 knockdown and control Huh7 and HCCLM3 
cells were incubated with sorafenib (10 μM) for 24 h. 
First, the expression of proliferation-associated proteins, 
such as c-Myc and cyclin D1, was measured. Consistent 
with the previous results, OLA1 knockdown enhanced 
cell proliferation inhibition, while knockdown of OLA1 
significantly decreased c-Myc and cyclin D1 expression 
in Huh7 (Figure 4A) and HCCLM3 cells (Figure 4B). 
Furthermore, apoptosis-associated proteins were also 
analyzed. As shown in Figure 4C,4D, both with or without 

sorafenib treatment, OLA1 knockdown enhanced the 
expression of cleaved PARP and cleaved caspase-3 in 
Huh7 (Figure 4C) and HCCLM3 cells (Figure 4D). These 
data demonstrated that OLA1 knockdown augmented 
the sorafenib-induced reduction of proliferation-related 
proteins and increase of apoptosis-associated proteins.

Knockdown of OLA1 enhanced the inhibition of GSK-3β/
β-catenin induced by sorafenib

Evidences have demonstrated that GSK-3β/β-catenin 

Figure 3 Knockdown of OLA1 enhanced cell death induced by sorafenib. (A,B) Knockdown of OLA1 increased the PI positive cell ratio 
both with or without sorafenib treatment in Huh7 (A) and HCCLM3 (B) cells (n=4). (C,D) Knockdown of OLA1 increased the trypan 
blue positive cell ratio both with or without sorafenib treatment in Huh7 (C) and HCCLM3 (D) cells (n=3). Data are shown as mean ± 
SD. **P<0.01, ***P<0.001, ****P<0.0001 vs. shCtrl group, based on two-sided Student’s t-test and two-way ANOVA. PI, propidium iodide; 
DMSO, dimethyl sulfoxide; sh, short hairpin; OLA1, Obg-like ATPase 1; SD, standard deviation; ANOVA, analysis of variance.
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signaling contributes to sorafenib resistance. First, we 
detected the function of OLA1 in GSK-3β/β-catenin 
signaling. Lithium chloride (LiCl), a GSK3β inhibitor, 
was used to induce GSK3β/β-catenin activation. As 
expected, GSK3β/β-catenin signaling was reduced in 
OLA1 downregulated Huh7 (Figure S1A) and HCCLM3  
(Figure S1B) cells. Then, we tested whether knockdown of 
OLA1 enhanced sorafenib sensitivity through suppressing 
GSK-3β/β-catenin s ignal ing.  Control  and OLA1 
knockdown Huh7 and HCCLM3 cells were treated with 
sorafenib for 24 h, and then GSK-3β/β-catenin signaling 
was analyzed. The results showed that knockdown of OLA1 
significantly reduced the phosphorylation of GSK-3β at 
Ser9 and the expression of β-catenin both with or without 
sorafenib treatment compared with controls in Huh7 
(Figure 5A) and HCCLM3 (Figure 5B) cells. In addition, 
the mRNA levels of β-catenin downstream genes, such as 
c-Myc and cyclin D1, were also detected. As expected, OLA1 
knockdown reduced the mRNA levels of c-Myc and cyclin D1 
in Huh7 (Figure 5C) and HCCLM3 (Figure 5D) cells. Taken 
together, these results indicated that knockdown of OLA1 
suppressed GSK-3β/β-catenin signaling upon sorafenib 
treatment.

Discussion

In the current work, we proved that OLA1 was a positive 
regulator of sorafenib resistance (Figure 6). OLA1 

knockdown increased cell proliferation inhibition and cell 
death induced by sorafenib (Figures 2,3). Moreover, we 
indicated that knockdown of OLA1 suppressed GSK-3β/
β-catenin signaling activation (Figure 5).

Accumulating reports have shown that OLA1 is highly 
expressed in most cancers, such as HCC and breast cancer 
(28,38,39). Given the essential functions of OLA1 in stress 
responses, it is reasonable to suggest that OLA1 may be a 
potential therapeutic target for cancer. A key hallmark of 
cancer cells is the de novo or acquired resistance to diverse 
stresses such as drug treatment, heat shock, and hypoxia 
(21,22,38). HIF1α activation-induced by hypoxic conditions 
contributed sorafenib resistance in HCC, inhibition of 
HIF1α attenuated sorafenib resistance (40,41). Liu et al. (42) 
reported that OLA1 induced HIF1α activation in colorectal 
cancer. So HIF1α activation may also involve in OLA1-
induced sorafenib resistance. To evaluate the functional role 
of OLA1 in sorafenib resistance, we determined the impact 
of loss-of-function of OLA1 on sorafenib-induced cell 
proliferation inhibition and cell death. Our data indicated 
that knockdown of OLA1 enhanced sorafenib sensitivity in 
HCC, with increased cell proliferation inhibition and cell 
death. Previous studies have shown that OLA1 mediates the 
phosphorylation of GSK-3β at Ser9 (26,32,43). β-catenin is 
phosphorylated by GSK-3β at Ser33, Ser37, and Thr41 (31),  
and then the phosphorylated β-catenin is specifically 
recognized by E3 ubiquitin ligase β-TrCP and broken down 
by the proteasome system (44,45). In the present work, we 

Figure 4 Knockdown of OLA1 reduced cell proliferation-associated proteins and increased apoptosis-associated proteins. (A,B) Knockdown 
of OLA1 decreased c-Myc and cyclin D1 expression in Huh7 (A) and HCCLM3 (B) cells. (C,D) Knockdown of OLA1 increased cleaved 
PARP and cleaved caspase-3 expression in Huh7 (C) and HCCLM3 (D) cells. sh, short hairpin; OLA1, Obg-like ATPase 1.

OLA1 

c-Myc 

Cyclin D1

β-actin

Cleaved PARP

Cleaved caspase-3

β-actin

Cleaved PARP

Cleaved caspase-3

β-actin

OLA1 

c-Myc 

Cyclin D1

β-actin

shOLA1
Sorafenib (10 μM)

shOLA1
Sorafenib (10 μM)

shOLA1
Sorafenib (10 μM)

shOLA1
Sorafenib (10 μM)

− 1 2 − 1 2
− − − + + +

− 1 2 − 1 2
− − − + + +

− 1 2 − 1 2
− − − + + +

− 1 2 − 1 2
− − − + + +

Huh7

Huh7

HCCLM3

HCCLM3

A

C

B

D

https://cdn.amegroups.cn/static/public/JGO-22-458-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-22-458-Supplementary.pdf


Bian et al. OLA1 augments sorafenib resistance1262

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(3):1255-1265 | https://dx.doi.org/10.21037/jgo-22-458

p-GSK-3β S9

GSK-3β

β-catenin 

β-actin

p-GSK-3β S9

GSK-3β

β-catenin 

β-actin

shOLA1
Sorafenib (10 μM)

shOLA1
Sorafenib (10 μM)

− 1 2 − 1 2
− − − + + +

− 1 2 − 1 2
− − − + + +

Huh7 HCCLM3

sh
OLA

1-
2

sh
OLA

1-
2

sh
OLA

1-
2

sh
OLA

1-
2

sh
OLA

1-
2

sh
OLA

1-
2

sh
OLA

1-
2

sh
OLA

1-
2

**
***

** *****
***

** **

*** ***
****

**

* *** **** *

DMSO
Sorafenib

DMSO
Sorafenib

DMSO
Sorafenib

DMSO
Sorafenib

R
el

at
iv

e 
c-

M
yc

 m
R

N
A

 le
ve

ls

R
el

at
iv

e 
cy

cl
in

 D
1 

m
R

N
A

 le
ve

ls

R
el

at
iv

e 
c-

M
yc

 m
R

N
A

 le
ve

ls

R
el

at
iv

e 
cy

cl
in

 D
1 

m
R

N
A

 le
ve

ls

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

HCCLM3Huh7

*** *** ****
**

sh
OLA

1-
1

sh
OLA

1-
1

sh
OLA

1-
1

sh
OLA

1-
1

sh
OLA

1-
1

sh
OLA

1-
1

sh
OLA

1-
1

sh
OLA

1-
1

sh
Ctrl

sh
Ctrl

sh
Ctrl

sh
Ctrl

sh
Ctrl

sh
Ctrl

sh
Ctrl

sh
Ctrl

C D

A B
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Figure 6 Working model: OLA1 enhanced sorafenib resistance through activating GSK-3β/β-catenin signaling. OLA1, Obg-like ATPase 1; 
GSK-3β, glycogen synthase kinase 3β; TCF, T-cell factor.
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discovered that sorafenib reduced the phosphorylation of 
GSK-3β at Ser9 in both Huh7 and HCCLM3 HCC cells. 
Concurrently, we also observed a decrease of β-catenin, 
thus preventing β-catenin nuclear translocation, where it is 
involved in LEF/TCF mediated transcription (8). c-Myc and 
Cyclin D1, which are the major targets of β-catenin, were 
also reduced in OLA1 knockdown cells. OLA1 knockdown 
could enhance the changes induced by sorafenib, indicating 
that OLA1 is involved in sorafenib resistance through GSK-
3β/β-catenin signaling.

In summary, we proved that OLA1 contributed to 
sorafenib resistance by reducing cell proliferation inhibition 
and cell death induced by sorafenib. Furthermore, GSK-3β/
β-catenin signaling, which augmented sorafenib resistance, 
was suppressed in OLA1 knockdown HCC cells. Overall, 
OLA1 enhanced sorafenib resistance, and targeting OLA1 
may overcome sorafenib resistance in HCC.
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Supplementary

Figure S1 Knockdown of OLA1 suppressed LiCl induced GSK-3β/β-catenin signaling. (A,B) Knockdown of OLA1 decreased the 
phosphorylation of GSK-3β at Ser9 and β-catenin expression in Huh7 (A) and HCCLM3 (B) cells. sh, short hairpin; OLA1, Obg-like 
ATPase 1; LiCl, Lithium chloride; GSK-3β, glycogen synthase kinase 3β.


