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Background: Genetic factors account for approximately 35% of colorectal cancer risk. The specificity 
and sensitivity of previous diagnostic biomarkers for colorectal cancer could not meet the need of clinical 
application. The expanding scale and inherent complexity of biological data have encouraged a growing use 
of machine learning to build informative and predictive models of the underlying biological processes. The 
aim of this study is to identify diagnostic genes of colorectal cancer by using machine learning methods. 
Methods: The GSE41328 and GSE106582 data sets were downloaded from the Gene Expression Omnibus 
(GEO) database. The gene expression differences between colon cancer and normal tissues were analyzed. 
The key colorectal cancer genes were screened and validated by Least Absolute Shrinkage and Selection 
Operator (LASSO) and Support Vector Machine (SVM) regression. Immune cell infiltration and the 
correlation with the key genes in patients with colon cancer were further analyzed by CIBERSORT. 
Results: Eleven key genes were identified as biomarkers for colon cancer, namely ASCL2, BEST4, CFD, 
DPEPCFD, FOXQ1, TRIB3, KLF4, MMP7, MMP11, PYY, and PDK4. The mean area under the receiver 
operating characteristic (ROC) curve (AUC) of all 11 genes for colon cancer diagnosis were 0.94 with 
a range of 0.91–0.97. In the validation set, the expression of the 11 key genes was significantly different 
between colon cancer and normal subjects (P<0.05) and the mean AUCs were 0.82 with a range of 0.70–0.88. 
Immune cell infiltration analyses demonstrated that the relative quantity of plasma cells, T cells, B cells, NK 
cells, MO, M1, Dendritic cells resting, Mast cells resting, Mast cells activated, and Neutrophils in the tumor 
group were significantly different to the normal group.
Conclusions: ASCL2, BEST4, CFD, DPEPCFD, FOXQ1, TRIB3, KLF4, MMP7, MMP11, PYY, and 
PDK4 were identified as the key genes for colon cancer diagnosis. These genes are expected to become novel 
diagnostic markers and targets of new pharmacotherapies for colorectal cancer.

Keywords: Diagnostic genes; immune infiltration; colorectal neoplasms; machine learning

Submitted Apr 24, 2022. Accepted for publication Jun 16, 2022.

doi: 10.21037/jgo-22-536

View this article at: https://dx.doi.org/10.21037/jgo-22-536

1203

https://crossmark.crossref.org/dialog/?doi=10.21037/jgo-22-536


Journal of Gastrointestinal Oncology, Vol 13, No 3 June 2022 1189

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(3):1188-1203 | https://dx.doi.org/10.21037/jgo-22-536

Introduction

Colorectal cancer has a relatively high incidence and 
mortality, with a gradually increasing incidence in recent 
years. According to statistics, it is the third most common 
cancer in the United States after breast cancer (prostate 
cancer for men) and lung cancer (1). Although advances in 
colonoscopy can provide early detection of colorectal cancer, 
and radiotherapy, chemotherapy, immunotherapy, and other 
treatment methods have improved the five-year survival 
rate to 65% (2), the annual number of deaths remains high 
at 52,980, accounting for 8.7% (52,980/608,570) (3) of 
all cancer deaths. Moreover, colorectal cancer in China 
is ranked among the top five diseases (4), and given that 
genetic factors account for approximately 35% of colorectal 
cancer risk (5) it is essential to study its pathogenesis 
further. The quantification of gastrointestinal tumor 
risk should be combined with clinical and molecular 
data to allow an accurate phenotypic assessment and 
genetic diagnosis (6). Several biomarkers have been 
identified recently for the diagnosis of colorectal cancer 
such as secretin receptor (SCTR) gene methylation (7),  
tRNA-derived small RNAs (tDRs) (8), long non-coding 
RNAs (lncRNAs) (9), and TMEM236 gene (10). However, 
the specificity and sensitivity of these diagnostic biomarkers 
for colorectal cancer could not meet the need of clinical 
application (11).

With advancing research, the recent focus of interest 
has shifted to the tumor microenvironment (TME) (12). 
The tumor microenvironment (the internal environment 
in which tumor cells produce and live) includes not only 
the tumor cells themselves but also peripheral fibroblasts, 
immune and inflammatory cells, and other various cells. 
Meanwhile, the cellular interstitium, microvessels, and 
biomolecules infiltrated in nearby areas are characterized 
by hypoxia, chronic inflammation, and immunosuppression 
(13,14) .  The involvement of immune cells  in the 
development of cancer has also been reported by many 
studies (15). The expanding scale and inherent complexity 
of biological data have encouraged a growing use of machine 
learning to build informative and predictive models of the 
underlying biological processes (16). In this study, potential 
colorectal cancer diagnostic genes were screened by using 
machine learning methods. To construct a more accurate 
diagnostic signature, we employed two most commonly 
used traditional machine learning methods, Least Absolute 
Shrinkage and Selection Operator (LASSO) and Support 
Vector Machine (SVM) algorithms (16,17). Additionally, 

immune cell infiltration was investigated by CIBERSORT 
analysis (18) to observe the correlation between key genes 
and infiltrating immune cells to identify new biomarkers for 
colorectal cancer diagnosis and subsequent treatment. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-22-536/rc).

Methods

Study design

This is a bioinformatics analysis study and the potential 
colorectal cancer diagnostic genes were screened by using 
machine learning methods. The study was conducted in 
accordance with the Declaration of Helsinki (as revised  
in 2013).

Download, standardization, and integration of data

Two datasets—GSE41328 and GSE106582—were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). GSE41328 
and GSE106582 are gene expression datasets of 20 cases 
of colorectal cancer tissues and 194 cases of normal tissues, 
respectively. The data were normalized and merged with 
the R software packages “limma” and “Sva” as the training 
set. GSE110225 is a gene expression dataset of 60 cases of 
colorectal adenocarcinoma and normal tissues, which was 
used as the validation set for key gene differences.

Differential gene analysis

The gene expression differences between colon cancer and 
normal tissues were analyzed, and the screening threshold 
for differentially expressed genes (DEGs) was |logFC|=2 
adj.P.Val. Filter <0.05. Volcano maps and heat maps 
were drawn with the “ggplot2” and “pheatmap” software 
packages. Ggplot2 (19) and pheatmap are R software 
packages in R language that can visualize gene expression in 
normal and tumor groups (20).

Gene Ontology (GO) annotation, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway clustering, Disease 
Ontology (DO), cluster analysis, and Gene Set Enrichment 
Analysis (GSEA) of differential genes

Gene cluster or enrichment analysis was employed to 

https://jgo.amegroups.com/article/view/10.21037/jgo-22-536/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-22-536/rc
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cluster various functions, pathways, and disease-associated 
genes, using the R software packages “org.Hs.eg.db” and 
“enrichplot”. Each GO annotation consists of a gene and 
the corresponding GO term, which mainly includes three 
aspects: molecular functions (MF), biological process (BP), 
and cellular components (CC) (21). The KEGG database 
is a bioinformatics database established in 1995 by the 
Kanehisa laboratory at the Bioinformatics Center, Kyoto 
University, Japan. It is now an important bioinformatics 
knowledge base for integrating and interpreting large-
scale molecular datasets generated by genome sequencing 
and other high-throughput experimental techniques. 
The most central database is the KEGG PATHWAY 
and KEGG ORTHOLOGY database (22). The KEGG 
clustering pathway of differential genes was applied in this 
study. DO analysis is a simple analysis of genetic disease  
enrichment (23), which was performed by using the “DOSE” 
R software package. The condition for the GO entries 
annotation, KEGG pathway, and disease analysis in this 
study was adj.P.Val. Filter <0.05. GSEA enrichment analysis 
was performed on the results of the KEGG and GO 
analyses by the data sets c2.cp.kegg.v7.4.symbols.gmt and 
c5.go.v7.4.symbols.gmt, respectively.

Screening and validation of the key colon cancer genes by 
LASSO and SVM regression

LASSO and SVM regression are two machine learning 
methods commonly used to screen variables (24,25); 
two regressions of the selected differential genes were 
intersected as key diagnostic colorectal cancer genes in this 
study. The diagnostic ability of the key colorectal cancer 
genes was examined using the area under the receiver 
operating characteristic (ROC) curve (AUC). Using gene 
set GSE110225 as the training set, the differences in the 
expression of the key tumor genes and their diagnostic 
ability for colon cancer were observed. A value of 0.75 was 
deemed as useful discrimination performance of AUC (26). 

Analysis of immune cell infiltration in patients with colon 
cancer

CIBERSORT is a tool for deconvolving the expression 
matrix of immune cell subtypes based on the principle of 
linear support vector regression of genes. Immune cell 
infiltration was estimated by RNA-Seq data first published 
in Nature Methods in 2015 (27), which is currently the most 
commonly used analytical tool for immune cell infiltration 

estimation (18). The relative quantity of infiltrating immune 
cells in patients with colon cancer and the correlation 
between immune cells and the key diagnostic colorectal 
cancer genes were analyzed by CIBERSORT in this study. 
The correlation between the 11 key genes and immune cells 
was represented by a lollipop chart.

Statistical analysis

The gene expression differences between colon cancer 
and normal tissues were screened by LASSO and SVM 
regression based on machine learning method. The 
diagnostic performance of the genes was assessed using 
AUC. The distribution of the differentially expressed 
genes was shown by heatmaps. A two-tailed P value <0.05 
was considered as statistical significance. All the statistical 
analyses were performed by using R software (Version 4.1.1).

Results

Analysis results of expressed genes in colon cancer tissues 
and normal tissues

The datasets were downloaded, merged, and normalized, 
followed by gene difference analysis, as shown in Figure 1.  
Filtered with the condition of |logFC|>2, the DEG 
analysis revealed 60 differentially expressed genes between 
colon cancer tissues and normal tissues, including 43 
downregulated and 17 upregulated genes (Figure 2A). In 
colorectal cancer patients, the upregulated genes included 
CLDN1, FOXQ1, and TRIB3, and the downregulated genes 
included CA1, CLCA4, and AQP8. The specific results are 
shown in Figure 2B.

GO annotation, clustering KEGG pathway, and GSEA 
analysis of the differential genes

GO annotation and KEGG pathway clustering analyses 
were performed on the differential genes (Figure 3A,3B). 
The GO annotation demonstrated that the BPs of the key 
genes were clustered in ‘extracellular matrix organization’, 
‘extracellular encapsulating structure organization’, and 
‘collagen metabolic process’; the cellular components 
clustered in the ‘apical part of cell’, ‘cell membrane 
projection’, and ‘cluster of actin-based cell projections’; 
the molecular functions clustered in ‘metallopeptidase 
activity’, ‘oxidoreductase activity’, and ‘cyclase regulator 
activity’; KEGG showed that the key genes clustered in ‘bile 
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GEO databases GSE41328 and GSE106582 were downloaded

Standardize and merged with R 
package “limma” and “Sva”

Expression difference analysis

LASSO and SVM regression

Seven diagnostic genes

Difference of diagnostic genes between tumor 
group and normal group was observed, and 

the diagnostic ability of each gene was 
observed by ROC curve and validation in 

GSE110225.

Immune cell infiltration analysis with 
CIBERSORT 

Correlation between immune cells and 
differential genes

GO, KEGG, DO, GSEA 
enrichment analysis

Figure 1 The study flowchart. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DO, disease ontology; GSEA, 
Gene Set Enrichment Analysis; LASSO, Least Absolute Shrinkage and Selection Operator; SVM, Support Vector Machine; ROC, receiver 
operating characteristic.

secretion’, ‘nitrogen metabolism’, and ‘retinol metabolism’ 
on the pathway. The GO annotation and KEGG results 
were further analyzed by GSEA, and in colorectal cancer 
patients the pathway clustered in KEGG-CELL-CYCLE, 
KEGG-DNA-REPLICATION, and KEGGPROTEEASOME. 
GO entries were clustered in GOBP_CHROMOSOME_
SEGREGATION ,  GOBP_DNA_CONFORMATION_
CHANGE, and GOBP_DNA_REPAIR. The specific results 
are shown in Figure S1.

Screening and validation of the key colon cancer genes by 
LASSO and SVM regression

LASSO and SVM regression identified 14 and 19 genes 
associated with a diagnosis of colorectal cancer, respectively, 
for which the intersection was taken (see Table 1). 
Eventually, 11 genes were screened as the key diagnostic 
genes for colorectal cancer (Figure 4A-4C), including 
ASCL2, BEST4, CFD, DPEPCFD, FOXQ1, KLF4, MMP7, 
MMP11, PYY, PDK4, and TRIB3. The AUCs of the 11 key 
genes associated with colon cancer were 91.4%, 96.0%, 
93.2%, 91.6%, 97.3%, 96.6%, 97.2%, 95.5%, 93.6%, 

95.3%, and 97.4%, respectively (Figure 4D). The 11 key 
genes were significantly different in expression in colorectal 
cancer and normal tissues in the validation set GSE110225 
(P<0.05), with ASCL2, DPEPCFD, FOXQ1, MMP7, 
MMP11, and TRIB3 being highly expressed in colon cancer 
patients (Figure 5). The AUCs of the 11 key diagnostic 
genes for colorectal cancer in the validation set were 70.6%, 
86.2%, 84.1%, 82.0%, 85.5%, 86.2%, 88.6%, 77.9%, 
84.1%, 81.3%, and 83.0%, respectively (Figure 6).

Analysis of immune-infiltrating cells 

The relative quantity of immune cells in colon cancer tissues 
and normal tissues (Figure 7A), the correlation between 
infiltrating immune cells (Figure 7B), and the difference in 
the quantity of infiltrating immune cells between the two 
groups (Figure 7C) were analyzed by CIBERSORT. For the 
infiltrating immune cells, macrophages MO were negatively 
correlated with plasma cells, T cells CD4 memory were 
negatively correlated with Mast cells resting, which were 
positively correlated with Mast cells activation, with 
correlation coefficients of −0.62, −0.59, −0.58, and 0.50, 

https://cdn.amegroups.cn/static/public/JGO-22-536-supplementary.pdf
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Figure 2 Differential gene expression between colon cancer tissues and normal tissues. (A) Heat map of differential gene expression. (B) 
Volcano map of the upregulation and downregulation of the top 50 differential genes in colon cancer.
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respectively; Mast cells resting were negatively correlated 
with Mast cells activated, with a correlation coefficient 
of −0.55; The cells with different quantity of infiltrating 
immune cells between the two groups were plasma cells, 

T cells, B cells naive, NK cells resting, macrophages 
MO, M1, Dendritic cells resting, Mast cells resting, Mast 
cells activation, and Neutrophils. Genes upregulated in 
colorectal cancer tissues ASCL2, DPEPCFD, FOXQ1, 
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MMP7, MMP11, and TRIB3 were associated with B cell 
naive, natural killer (NK) cells resting, macrophages MO, 
and M1 immune cells (Figure 8).

Discussion

DEG screening and GO, KEGG, and GSEA enrichment 
analyses  were  performed in  th is  s tudy.  In  tota l ,  
60 DEGs were selected, including 17 upregulated and 
43 downregulated genes. The results of the GO analysis 
showed that DEGs were involved in ‘extracellular matrix 
organization’, ‘extracellular encapsulation structural 
organization’, ‘collagen metabolic process’, ‘cell apex’, 
‘cell projection membrane population’, ‘actin-based cell 
projection’, ‘metallopeptidase activity’, ‘oxidoreductase 
activity’ and ‘cell cycle regulator’. The KEGG pathway 
enrichment analysis showed correlations in bile secretion, 

nitrogen metabolism, retinol metabolism, and extracellular 
matrix (ECM)-receptor interaction pathways. These 
pathways may play an important role in tumor immune 
escape, adhesion, degradation, motility, and proliferation 
processes (28), and their role in other cancers has been 
demonstrated: ECM has been shown to be upregulated 
in prostate cancer tissues (29), and the ECM-receptor 
interaction pathway was involved in the invasion and 
metastasis of gastric cancer (30). Additionally, a recent study 
on glioblastoma, the most lethal adult brain tumor, showed 
that the pathological features of abnormal neovascular 
development, diffuse tumor cell infiltration, and interactions 
between ECM and the glioblastoma microenvironment 
were important factors in disease progression (31). It was 
notable that the immune-related functions were found in 
the KEGG pathway. These results suggested that DEGs 
are highly relevant to the immune system, confirming our 
hypothesis. They may prevent immune cells from attacking 
cancer cells and promote immune escape to induce tumor 
progression and metastasis. Our GSEA enrichment analysis 
showed the involvement of cell cycle and DNA replication 
processes, suggesting that cell cycle checkpoint inhibitors or 
cycle arrest may be effective in treating colorectal cancer.

This is the first study to combine LASSO and Support 
Vector Machine-Recursive Feature Elimination (SVM-
RFE) algorithms to identify and validate key biomarkers 
of colorectal cancer in a test set. Finally, 11 key genes were 
identified, including ASCL2, BEST4, CFD, DPEPCFD1, 
FOXQ1 ,  KLF4 ,  MMP7 ,  MMP11 ,  PYY ,  PDK4 ,  and 
TRIB3. The AUC value was >0.91 for all 11 key genes in 
the training set. However, the AUC only reached about 
0.7 in the validation set, which indicates that while the 
constructed model has a robust validation performance, its 
test performance needs further improvement. 

Achaete scute-like-2 (ASCL2) is a key downstream 
molecule of the Wnt/β-catenin signaling pathway; it is 
a basic helix-loop helical transcription factor homolog 
found in enterocytes that may play an indispensable role 
in the maintenance of intestinal stem cell effects (32). It 
has been shown that ASCL2 expression leads to tumor 
growth arrest through miRNA-302b-mediated conditional 
reprogramming cells (CRC) progenitor cells and induces 
miR-200 expression, which further promotes the plasticity 
of epithelial-mesenchymal transition-mesenchymal-
epithelial transition (EMT-MET) through transcriptional 
mechanisms (33). Downregulating ASCL2 can also promote 
apoptosis by enhancing autophagy in colorectal cancer cells (34). 

The Bestrophin (BEST) family are newly discovered 

Table 1 The 11 intersection genes of LASSO and SVM regression

Different genes of 
LASSO regression

Different genes of SVM 
regression

Intersection 
genes

FOXQ1 CLDN1 FOXQ1

TRIB3 TRIB3 TRIB3

KLF4 FOXQ1 KLF4

BEST4 SCARA5 BEST4

MMP7 MAMDC2 MMP7

MMP11 ASCL2 MMP11

ASCL2 BEST4 ASCL2

PYY CST1 PYY

CFD GUCA2B CFD

MT1M KLF4 PDK4

PDK4 MMP7 DPEP1

LGALS2 MMP11

SPP1 GUCA2A

ADH1C DPEP1

DPEP1 CFD

IGJ CTHRC1

PYY

PDK4

CA2

LASSO, Least Absolute Shrinkage and Selection Operator; 
SVM, Support Vector Machine.
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Figure 5 Bar plots showing the expression differences of the 11 key genes in colorectal cancer and normal tissues from the validation set 
(GSE110255).

genes encoding ion channels that can function as Cl 
channels, HCO3 channels, or voltage-gated Ca2+ channels. 
BEST4 is mainly expressed within the human colon (35). 
BEST4 expression has been shown to be upregulated 
in clinical colorectal cancer samples, and its high 
expression level has been associated with advanced TNM 
stage, lymph node metastasis, and poor survival, with a 
potential oncogenic role in colorectal carcinogenesis and 
metastasis through modulation of BEST4/PI3K/Akt signal 
transduction (36). 

Currently, there are few reports about CFD (Complement 
Factor D). Lipoprotein (Complement Factor D) is an 
adiponectin, which is mainly secreted by adipocytes. 
This effect is mediated by C3a, a downstream product of 
adiponectin, which is produced in the replacement pathway 
of the Complement system (37). In the literature, CFD acts 
as an enhancing dose for tumor proliferation and cancer 
stem cell (CSC) properties in breast cancer. The role of CFD 
in colorectal cancer remains to be further explored (38). 

Dipeptidase (DPEPCFD)  1 is  a zinc-dependent 
metalloprotease underlying glutathione and leukotriene 
metabolism. In colorectal cancer samples, DPEPCFD 
1 expression was significantly increased in tumor tissue 
samples, and an elevated DPEPCFD1 mRNA expression 
was associated with positive lymph node metastasis (39). 
Additionally, DPEPCFD1 was demonstrated to promote 
the proliferation of colon cancer cells in vitro and in vivo 
through a DPEPCFD1/MYC positive feedback loop (40). 
The enrichment in the ECM-receptor interaction pathway 
found by GSEA in this study was similar to that reported in 
the literature. DPEPCFD1 has also been shown to play a role 
in rectal cancer metastasis by inhibiting the leukotriene D4 
signaling pathway and increasing E-cadherin expression (41). 

FOXQ1 belongs to the FOX transcription factor 
superfamily, characterized by a conserved binding of 110 
amino acids responsible for DNA binding involved in 
tumor proliferation, apoptosis, migration, and invasion (42).  
Knockdown of  FOXQ induces  inhibi t ion of  ce l l 
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Figure 6 ROC curve of 11 key genes in the validation set (GSE110255) for colorectal cancer diagnosis. ROC, receiver operating 
characteristic.

proliferation, as well as migration, and invasion of colorectal 
cancer cells (43).

KLF4 family members are expressed in many cell lineages 
and play crucial roles in development, metabolism, and 
multipotency. Their dysregulation is highly involved in 
the development of human diseases, including cancer, 
and they play an important role in regulating intestinal 
epithelial homeostasis  (44) .  KLF4  promotes tumor 
development by epigenetic modification, and the increased 
expression of miR-29a has been shown to promote 
colorectal cancer metastasis by directly targeting KLF4 to 
regulate MMP2/E-cad (45). Furthermore, KLF4 protein 
expression has been shown to correlate significantly with 
colorectal cancer differentiation in clinical specimens by 

immunohistochemistry, and downregulation of KLF4 
expression may contribute to poor tumor differentiation (46). 

Matrix metalloproteinase (MMP) is  an enzyme 
component that degrades extracellular matrix proteins 
and promotes cancer invasion and metastasis. MMPs 
have been studied in serum and tissues, and an increased 
expression of specific MMPs has been associated with poor 
prognostic parameters (47). Wu et al. found that MMP7 
expression was associated with colorectal cancer metastasis 
and poor prognosis (48). In addition, it was found that 
MPC1 mediated MMP7 activation of the Wnt/β-catenin 
pathway by promoting β-catenin nuclear translocation after  
silencing (49). MMP11 has also been shown to be associated 
with poor prognosis in gastric cancer (50).
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Figure 7 Results of immune cell infiltration analysis. (A) Relative quantity of 22 immune cells in normal tissues and colon cancer tissues; (B) 
correlation heat map of infiltrating immune cells in colon cancer tissues; (C) differential analysis of the relative quantity of 22 immune cells 
in normal and colon cancer tissues.

Peptide YY, originally isolated from the pig intestine, is 
restricted to endocrine cells in the colon. A comprehensive 
bioinformatics analysis exploring the clinical value of primary 
CRC biomarkers found that PYY was a core gene (51).  
However, it has been concluded that PYY is unlikely to be 
involved in the development and growth of colorectal cancer. 
Whether this conclusion remains valid should be confirmed 
by subsequent experimental validation (52). 

Pyruvate Dehydrogenase Kinase (PDK) generates four 
kinase families in humans. PDK4 is mainly expressed in muscle 
and affects glucose consumption during metabolism (53).  
It has been reported in the literature that when PDK4 
was stably inhibited, colorectal cancer cell migration and 
invasion were reduced, and apoptosis was increased. PDK4 
also reduced the expression of vimentin, hypoxia-inducible 
factor-1 (HIF-1), and vascular endothelial growth factor A 
(VEGFA) (54). 

Tribbles pseudokinase 3 (TRIB3) contains a substrate-
binding domain. However, it lacks the conserved catalytic 
amino acid motif required for kinase activity (55). Recent 
studies have shown that TRIB3 is a crucial oncoprotein 
associated with many different types of cancer, including 
hepatocellular carcinoma, colorectal cancer, and gastric 
cancer (56-58).

To quantify the relative proportion of infiltrating immune 
cells in colorectal cancer gene expression profiles, immune 

cell infiltration can be calculated using the bioinformatics 
algorithm CIBERSORT, which is increasingly used to 
estimate immune cell infiltration because of its good 
performance (27). In this study, CIBERSORT was used to 
investigate the role of immune cell infiltration in colorectal 
cancer. Our analysis found differences in immune cells 
between the colorectal cancer and control groups. The 
differences were found among plasma cells, T cells CD8, 
T cells CD4 memory, T cells CD4 memory resting, T cells 
CD4 memory activated, T cells follicular helper, NK cells 
resting, Macrophages M0, Macrophages M1, Dendritic cells 
resting, Dendritic cells activated, Mast cells resting, Mast 
cells activated, and Neutrophils. Additionally, the expression 
of T cells CD4 activated, T cells follicular helper, NK cells 
resting, Macrophages M0, Macrophages M1, Mast cells 
activated, and Neutrophils were higher in the colorectal 
cancer group. We also studied the relationship between the 
expression of key genes in colorectal cancer and immune 
cells to provide new clinical guidance for cancer diagnosis.

Using comprehensive bioinformatics and machine 
learning algorithms, the genomic landscape of colorectal 
cancer and its correlation with immune cell infiltration was 
elucidated in this study. A total of 11 prognosis-associated 
key genes were found to play pleiotropic roles in the TME 
of colorectal cancer. These central genes are involved in 
the formation of the immune microenvironment and could 
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Figure 8 Lollipop chart of the correlation between 11 key genes and immune cells. The left ordinate of the figure indicates immune cells, 
and the right ordinate indicates the P value of the correlation analysis, where P<0.05 is represented by red, the head size and length of 
the lollipop indicates the size of the correlation coefficient. The direction of the head on the left side of 0 indicates a positive correlation, 
whereas the right side of 0 indicates a negative correlation.
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represent potential therapeutic targets. Further experiments 
on the current findings based on retrospective datasets and 
clinical specimens should be performed to validate our 
results.
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Figure S1 The results of the GSEA analysis for the GO annotation and KEGG pathway analysis. GSEA, Gene Set Enrichment Analysis; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.


