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Background: Hepatocellular carcinoma (HCC) is a common malignant tumor with a poor prognosis and 
high mortality rate worldwide. Glucose metabolism disorder is one of the most important characteristics 
of HCC. However, as the primary risk factors for the prognosis of HCC patients are unclear, the survival 
prognosis and therapy response of patients cannot be accurately predicted.
Methods: First, gene sets of 29 cancer hallmarks were collected from public databases. The z-score 
of various cancer hallmarks were quantitively analyzed by a single-sample gene set enrichment analysis 
(ssGSEA) of HCC patients. Next, a glycolysis-related gene signature (GRS) was constructed using a series 
of bioinformatics methods, which were used to predict the survival prognosis of HCC patients and the 
immunotherapy benefits. The prediction accuracy of the GRS was validated in different HCC cohorts and 
clinical subgroups. Additionally, a decision tree and nomogram were also established based on the GRS and 
other clinical variables. Finally, the genomic alterations and tumor immune microenvironment of the HCC 
patients were examined.
Results: Among the 29 cancer hallmarks, glycolysis was the most predominant risk factor for a poor 
prognosis in HCC. We subsequently constructed a novel GRS comprising 12 glycolysis-related genes. 
The high-GRS patients had a poorer survival prognosis than the low-GRS patients. The GRS exhibited 
a powerful ability to predict survival prognosis in different HCC cohorts and clinical feature subgroups. 
Additionally, the decision tree and nomogram aided in the risk stratification and prognosis evaluations of 
HCC patients. Further, we found that a high GRS was characterized by a severe tumor stage, pathological 
grade, and other clinical features. There were significant differences in the genomic alterations, immune 
cells, and immune checkpoints between the low- and high-GRS patients, especially in relation to the tumor 
protein p53 mutation and immunosuppressive cells. Notably, we also found that the GRS could be used to 
identify HCC patients who are more sensitive to chemotherapy and immunotherapy.
Conclusions: In summary, the GRS may be a useful tool for predicting the prognosis and guiding the 
clinical therapy of HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) has high morbidity 
and mortality rates and is the most important subtype of 
primary liver cancer, accounting for about 90% of primary 
liver cancers in the world (1). In 2021, HCC had the 6th 
highest mortality rate among all cancers, and in 2020, there 
were approximately 906,000 new cases of HCC and 830,000 
HCC-related deaths (2). Surgery is the main treatment for 
HCC, but patients’ 5-year survival and overall survival (OS) 
rates after surgery remain low (3). In recent years, targeted 
therapy and immunotherapy have been shown to have 
good therapeutic effect for HCC patients (4,5). Notably, 
immunotherapy represents a new treatment and provides 
hope for advanced HCC patients. However, the treatment 
effect and survival prognosis of patients differ as a result of 
heterogeneity at the gene level (6). Thus, it is important 
to study the risk factors for the survival prognosis in the 
treatment of HCC. A useful biomarker and predictive tool 
that can effectively evaluate the survival prognosis and 
therapeutic response of HCC patients urgently needs to be 
identified, especially for immunotherapy.

Currently, the Barcelona Clinic Liver Cancer (BCLC) 
and tumor-node-metastasis (TNM) staging systems are the 
most common tumor staging systems used in the treatment 
of HCC. As these tumor staging systems mainly depend 
on hepatic function and tumor histopathology, they are not 
suitable for the precise diagnosis and treatment of HCC. 
Besides BCLC and TNM staging systems, numerous 
prognostic gene signatures have been reported in HCC (7-9).  
In addition, some predictive biomarkers for response to 
immunotherapy have been extensively explored, including the 
expression of programmed death-ligand 1 (PD-L1), tumor 
mutational burden (TMB), tumor-infiltrating lymphocytes, 
and immune-related gene signatures (10,11). However, these 
studies are retrospective analyses with small sample sizes, and 
the predictive value of them remains unclear. Metabolism 
reprogramming and the immune microenvironment are 
important cancer hallmarks, which play a central role in 
the drug treatment and survival prognosis of HCC patients 
(12,13). Metabolism reprogramming not only promotes 
cancer cell growth and proliferation by regulating energy 
metabolism, but also affects the immune microenvironment 
by releasing metabolites (14).

It is well known that cancer cells use glycolysis to provide 
energy to maintain cell proliferation under normal and 
hypoxic conditions. Notably, the metabolism reprogramming 
of cancer cells affects antigen presentation, the recognition 
of immune cells, and their functions (15,16). Immune system 
dysfunction leads to the failure of immune cells to recognize 
cancer cells, resulting in tumor immune escape and a poor 
prognosis. The composition and mechanism of the tumor 
immune microenvironment are very complex; however, 
immune cells and immune checkpoints are two important 
components. Thus, exploring cancer metabolism and the 
immune microenvironment may have benefits for precision 
medicine in the treatment of HCC patients.

In this study, we first collected the gene sets of 29 cancer 
hallmarks and the transcriptome expression data of 810 
HCC patients from different databases. Among all the 
cancer hallmarks, glycolysis was identified as the principal 
risk factor for the survival prognosis in HCC. We then 
screened robust candidate genes to build a novel glycolysis-
related gene signature (GRS) using various bioinformatic 
methods. The sensitivity and specificity of the GRS was 
also confirmed in two independent HCC cohorts (i.e., the 
GSE14520 and LIRI-JP cohorts) and different clinical 
feature subgroups. Additionally, we constructed a decision 
tree and nomogram to improve the predictive accuracy 
and risk stratification of the HCC patients. Further, we 
determined the association between the GRS, genomic 
alterations, and the tumor immune microenvironment 
to guide the personalized treatment of HCC patients, 
especially for immunotherapy. The immunotherapy cohort 
Imvigor210 was also used to predict patient’s responses to 
anti-PD-L1 therapy. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://jgo.amegroups.com/article/view/10.21037/jgo-
22-503/rc).

Methods

Data download and analysis

The transcriptome expression profiles and corresponding 
clinical survival information of 810 HCC patients were 
collected from different platforms, including The Cancer 
Genome Atlas–Liver Hepatocellular Carcinoma (TCGA-
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LIHC), GSE14520, and Liver Cancer–RIKEN JP (LIRI-
JP). Specifically, the TCGA-LIHC and LIRI-JP cohort 
contained the messenger ribonucleic acid (mRNA) 
sequencing expression data of 346 and 243 HCC patients, 
respectively. The microarray expression profiles of 221 
patients were collected from the GSE14520 cohort. All 
the mRNA sequencing and microarray expression data 
were normalized for the subsequent analysis. To ensure the 
rationality of the survival time, we selected HCC patients 
whose follow-up survival time was >1 month and deleted 
HCC patients with missing data. In the present study, the 
TCGA-LIHC cohort was used to construct a prognostic 
model for HCC patients, and the GSE14520 and LIRI-JP 
cohorts were used as the validation cohorts. Additionally, 
the Imvigor210 cohort (anti-PD-L1 therapy) was used to 
predict HCC patients’ responses to immunotherapy (17). 
All the gene sets of the 29 cancer hallmarks were collected 
from the Molecular Signatures Database (MSigDB) 
(18,19). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Candidate gene selection and GRS establishment

First, using a single-sample gene set enrichment analysis 
(ssGSEA) algorithm, the z-scores of the 29 cancer hallmarks 
were calculated based on the mRNA sequencing expression 
data of the HCC patients. According to the z-scores of the 
cancer hallmarks, we conducted a univariate Cox analysis to 
determine the role of the 29 cancer hallmarks on survival 
prognosis. To construct the GRS, candidate genes with a 
significant survival prognosis were then screened from the 
glycolysis-related gene sets using R package “survival.” 
Next, we constructed the gene signature for the HCC 
patients using a least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis with “glmnet.” 
The formula of the gene signature was the expression level 
of the candidate genes weighted by the LASSO coefficients 
as follows: GRS = ∑i Coefficient (mRNAi) × Expression 
(mRNAi). The risk groups were determined based on the 
appropriate thresholds. Further, the predictive accuracy 
of the gene signature was evaluated and validated using 
Kaplan-Meier (K-M) survival curves, and receiver operating 
characteristic (ROC) analyses were conducted in different 
HCC cohorts and clinical subgroups.

Tumor immune microenvironment and genomic analysis

The immune cells, genomic alterations and immune 

checkpoints were examined to analyze the association 
between the GRS and the tumor immune microenvironment 
in the HCC patients. In brief, gene sets of 28 tumor-
infiltrating immune cells were collected from the Tumor 
and Immune System Interaction Database (TISIDB) (20). 
On the basis of these gene sets, the relative content of the 
immune cells was estimated using the ssGSEA algorithm. 
Additionally, another Microenvironment Cell Populations-
counter (MCP-counter) algorithm was used to further 
calculate the content of the immune cells and validate 
the accuracy of the ssGSEA results. The MCP-counter 
algorithm can accurately distinguish among 10 immune 
cell types, including B cells, CD8+ T cells, endothelial cells, 
fibroblasts, macrophages, monocytes, myeloid dendritic 
cells, neutrophils, natural killer (NK) cells, and T cells (21). 
Subsequently, the expression difference of 15 immune 
checkpoints were also analyzed in different GRS groups 
of HCC patients. Further, the Bioconductor package 
“maftools” was used to study and visualize the mutant gene 
profiles and oncogenic signaling pathways (22).

Predicting chemotherapy and immunotherapy responses

Genomics of Drug Sensitivity in Cancer (GDSC) is a 
database related to pharmacogenomics (23). To examine 
the effect of drugs in different GRS groups, a half-maximal 
inhibitory concentration was used to determine the efficacy 
of the drugs. By mining the drug sensitivity data, the efficacy 
of the therapeutic drugs among the HCC patients was 
evaluated using R package “pRRophetic” (24). In this study, 
we selected 5 test drugs, including 4 chemotherapeutic 
drugs ( i .e. ,  cisplatin,  docetaxel,  doxorubicin, and 
gemcitabine) and 1 targeted drug (i.e., sorafenib). 
Additionally, the Imvigor210 cohort treated with anti-
PD-L1 was also used to predict HCC patients’ responses to 
immunotherapy (17).

Construction of the decision tree and nomogram

Univariate and multivariate Cox regression analyses were 
conducted to examine the independence of the clinical 
risk factors using R package “survival.” Based on these 
independent clinical risk factors, a survival decision tree 
and nomogram were constructed for risk prediction by R 
package “rpart” and “rms,” respectively. Additionally, the 
concordance index (C-index), ROC analysis, and calibration 
curve analysis were applied to measure the sensitivity and 
specificity of the nomogram. In general, a model with a 
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larger c-index (>0.70) has a better performance.

Statistical analysis

The statistical analysis was performed using R software 
v4.1.2. Survival curves and differences were examined using 
the K-M method and the log-rank test in the R packages 
“survminer” and “survival.” A Student’s t-test analysis 
of variance was conducted to analyze the differences the 
between groups for the variables with a normal distribution. 

A P value <0.05 was considered statistically significant (two-
sided).

Results

Glycolysis was identified as the primary risk factor for 
survival in HCC

To evaluate the prognostic value of the 29 cancer hallmarks 
on the survival time of the HCC patients, the enrichment 
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Figure 1 Glycolysis was the main risk factor for survival in HCC. (A) The Cox coefficients of the 29 cancer hallmarks in the HCC patients. 
(B,C) The ssGSEA score of glycolysis in the tissues of the HCC and dead patients. (D-E) OS and DFS survival analysis of the glycolysis-
related ssGSEA score. (F-G) OS and RFS survival analysis of the glycolysis-related ssGSEA score in the GSE14520 cohort. (H) OS survival 
analysis of the glycolysis-related ssGSEA score in the LIRI-JP cohort. ***, P<0.001. HCC, hepatocellular carcinoma; OS, overall survival; 
DFS, disease-free survival; RFS, recurrence-free survival; ssGSEA, single-sample gene set enrichment analysis.
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scores and Cox coefficients of the cancer hallmarks were 
calculated using the ssGSEA algorithm and a univariate 
Cox analysis, respectively. As Figure 1A shows, 11 cancer 
hallmarks were significantly correlated with the survival 
prognosis, and among the 29 cancer hallmarks, glycolysis 
had the greatest effect on the survival time of the HCC 
patients (see Table S1). We also found that the glycolysis-
related enrichment scores were significantly more 
increased in the tissues of the HCC and dead patients 
than the adjacent tissues of the normal and living patients, 
respectively (P<0.001; see Figure 1B,1C). In the TCGA-
LIHC cohort, all the HCC patients were divided into low- 
and high-score groups according to the median glycolysis 
score, and the low-score HCC patients had a better OS 
and disease-free survival (DFS) than the high-score HCC 
patients (see Figure 1D,1E). We further validated these 
findings in the GSE14520 and LIRI-JP cohorts, and 
similarly found that a higher glycolysis-related ssGSEA 
score was associated with a worse OS and recurrence free 
survival (RFS) (see Figure 1F-1H). These results suggested 
that glycolysis was the main risk factor for survival in HCC.

Development of a GRS for prognosis in HCC

Based on the training data set (of the TCGA-LIHC 
cohort), prognosis-related genes were identified, and 
used to construct the GRS. We found that a total of 106 
promising candidate genes (6 protective and 100 risk genes) 
were significantly related to the OS of the patients (P<0.05; 
see Figure 2A). Next, a Lasso Cox regression analysis was 
conducted to identify the most robust genes for the survival 
prognosis based on the candidate genes. A total of 12 genes 
and their Lasso Cox coefficients were identified, which 
were used to construct the GRS for the HCC patients (see 
Figure 2B). As Figure 2C shows, the 12 genes and their 
Lasso Cox coefficients were 0.093*FK506-binding protein 4 
(FKBP4), 0.084*steroid 5 alpha reductases type 3 (SRD5A3), 
0.073*ATP-binding cassette transporter 6 of subfamily B 
(ABCB6), 0.070*malic enzyme 2 (ME2), 0.067*glypican-1 
(GPC1), 0.058*malic enzyme 1 (ME1), 0.057*heparan 
sulfate 2-O-sulfotransferase (HS2ST1), 0.047*NAD(P)-
dependent steroid dehydrogenase-like protein (NSDHL), 
0.040*GDP-mannose pyrophosphorylase A (GMPPA), 
0.032*aurora kinase A (AURKA), 0.010*hexokinase 2 (HK2), 
and –0.181*glutamate oxaloacetate transaminase 2 (GOT2). 
The HCC patients were divided into 2 groups, and the 
high-GRS patients had higher risk scores and mortality 
than the low-GRS patients (see Figure 2D,2E). Additionally, 

the expression of FKBP4, SRD5A3, ABCB6, ME2, GPC1, 
ME1, HS2ST1, NSDHL, GMPPA, AURKA, and HK2 
tended to be increased in patients in the high-GRS group 
(see Figure 2F). Notably, the results further suggested that 
the high-GRS patients had a significantly poorer prognosis 
than the low-GRS patients (P<0.001; see Figure 2G). The 
ROC analysis showed that the area under the curves of the 
GRS were 0.792, 0.723, and 0.717 for 1-, 3-, and 5- years 
OS, respectively (see Figure 2H).

Validation and evaluation of the GRS in different cohorts 
and clinical subgroups

We further validated the prognostic significance of the GRS 
in different HCC cohorts (i.e., the GSE14520 and LIRI-
JP cohorts) and clinical subgroups. Similar results were 
also found in the GSE14520 and LIRI-JP cohorts, and our 
findings demonstrated that the high-GRS HCC patients 
had a poorer survival prognosis than the low-GRS HCC 
patients (all P<0.001; see Figure 3A,3B). Additionally, the 
results also revealed that the low-GRS HCC patients had 
better RFS and DFS than the high-GRS patients (P<0.05; 
see Figure 3C,3D). Additionally, a clinical subgroup analysis 
was conducted to explore the prognostic significance of the 
GRS in HCC patients with different clinical characteristics, 
which included the TNM stage, histological grade, gender, 
and age, and similar results were found (see Figure 3E-3L). 
Specifically, we found that the low-GRS HCC patients had 
a longer survival prognosis than the high-GRS patients 
(all P<0.001). Our findings also showed the prognostic 
significance of the GRS in different HCC cohorts and 
clinical subgroups.

Decision tree and nomogram improved prognostic 
assessment

To improve the risk stratification of HCC, we established 
a decision tree based on the clinical characteristics of HCC 
patients, including age (≥60 or <60 years), gender (male 
or female), TNM stage (I, II, III, or IV), and GRS (low 
or high). As Figure 4A shows, only TNM stage and GRS 
remained in the decision tree. The HCC patients were then 
classified into 3 different subgroups (low-, intermediate-, 
and high-risk). The survival analysis showed that there was 
significant survival differences among the 3 different risk 
groups (P<0.001; see Figure 4B). Further, the results of the 
univariate and multivariate Cox analyses suggested that the 
TNM stage and GRS were the independent clinical factors 

https://cdn.amegroups.cn/static/public/JGO-22-503-Supplementary.pdf
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Figure 2 Development of a GRS for prognosis in HCC. (A) Univariate Cox survival analysis of the glycolysis-related genes. (B) Lasso 
Cox regression analysis. (C) LASSO Cox coefficients of the GRS. (D) Risk scores for the GRS. (E) Survival time distribution of the 
HCC patients. (F) The mRNA expression heatmap of the GRS. (G) Survival analysis of the GRS. (H) ROC analysis of the GRS. HCC, 
hepatocellular carcinoma; GRS, glycolysis-related gene; ROC, receiver operating characteristic; AUC, area under curve. 
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in the TCGA-LIHC and GSE14520 cohorts (see Table 1). 
Based on these results, we built a prognostic nomogram 
that integrated the GRS and traditional TNM stage (see 
Figure 4C). The calibration and ROC analyses showed that 
the nomogram was highly accurate at predicting the survival 
prognosis of HCC patients (see Figure 4D,4E). Additionally, 
the C-index of the nomogram was 0.74. In summary, these 
results suggested that our decision tree and nomogram 
based on the GRS improved the accuracy of prognosis 
prediction for HCC patients.

Correlations between the GRS and clinical characteristics

We first analyzed the expression of the GRS in HCC 
tissues, and found that the mRNA expression of ABCB6, 

AURKA, FKBP4, GMPPA, HK2, HS2ST1, ME1, ME2, 
NSDHL, and SRD5A3 were significantly increased in the 
HCC tissues compared to normal tissues (see Figure 5A).  
Further, we explored the relationship between the GRS 
and the clinicopathological features in the TCGA-LIHC 
and GSE14520 cohorts. As Figure 5B,5C show, we found 
that the HCC patients with stages III–IV had higher 
GRS risk scores than the HCC patients with stages I–
II. Additionally, the GRS risk score was closely associated 
with the histological grade and BCLC stage (P<0.01; see 
Figure 5D,5E). Similarly, the GRS risk score also revealed 
significant differences between the 2 groups of HCC 
patients in terms of tumor size, tumor multi-nodularity, and 
AFP (P<0.05; see Figures 5F-5H). However, no significant 
relationship was found between liver cirrhosis and the GRS 
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risk score in the GSE14520 cohort (see Figure 5I).

Correlation between the GRS and the tumor immune 
microenvironment

Immune cells and immune checkpoints were studied to 
characterize the tumor immune microenvironment of 
the HCC patients. The relative abundance of 28 immune 
cells and clinical features in the HCC patients were 

analyzed using the ssGSEA algorithm. As Figure 6A and 
Figure 6B show, a significant difference in the immunity 
signature was observed between the low- and high-GRS 
groups. Specifically, we found that the HCC patients 
with high-GRS had a higher abundance of 15 immune 
cell populations (i.e., Act CD4, Act DC, eosinophil, iDC, 
Imm B, macrophages, mast, MDSCs, NKT, pDC, Tcm 
CD4, Tem CD4, Tfh, Th2, and Tregs) than the HCC 
patients with low-GRS. Additionally, we used the MCP-
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counter algorithm to calculate the absolute content of the 
immune cell subsets to confirm the results of the ssGSEA, 
and similar results were found. Specially, the contents of 
the CD8+ T cells, fibroblasts, macrophages, monocytes, 
myeloid dendritic cells, and T cells were more increased 
in the HCC patients with high-GRS, while the content of 
the neutrophils was significantly decreased (see Figure 6C).  
Further, we also examined the association between the 
GRS and immune checkpoints, and found that the high-
GRS patients exhibited higher expression levels for immune 
checkpoints than the low-GRS patients, especially in the 
expression of CD86, CXCR4, TGFB1, PDCD1, and CTLA4 
(see Figure 6D).

Correlations between the GRS and genomic alterations in 
HCC

We further examined the association between the genomic 
alterations and the GRS in the TCGA-LIHC cohort. 
As Figure 7A,7B show, the top 15 genes with the highest 
mutation frequencies were analyzed in both the low- and 
high-GRS cohorts. The top 3 genes with the highest 
mutation frequencies were CTNNB1 (29%), TTN (23%), 
and tumor protein p53 (TP53) (16%) in the low-GRS 
patients, and TP53 (45%), TTN (23%), and CTNNB1 
(20%) in the high-GRS patients. Notably, we found that 
TP53 was the most differentially mutated gene, which 
suggests that it is significantly correlated to the GRS in 
HCC patients (P<0.001; see Figure 7C). Additionally, the 10 
oncogene-related signaling pathways were also analyzed (see  
Figure 7D,7E). We found that the WNT- and TP53-related 

signaling pathways had the highest fraction of samples 
affected in the low- and high-GRS cohorts, respectively.

The GRS could guide chemotherapy and immunotherapy 
in HCC patients

It is widely known that systematic drug therapies (e.g., 
chemotherapy, targeted therapy, and immunotherapy) 
improve the prognosis of advanced HCC patients. In this 
study, we predicted the sensitivity of 4 chemotherapy drugs 
(i.e., cisplatin, docetaxel, doxorubicin, and gemcitabine) 
and a targeted drug (i.e., sorafenib) using R package 
“pRRophetic.” The results showed that the predicted 
sensitivity of these drugs had significant differences in HCC 
patients from different GRS groups. Compared to the low-
GRS HCC patients, the predicted half maximal inhibitory 
concentration (IC50) values of cisplatin and docetaxel were 
significantly decreased in the high-GRS patients, which 
indicated that the high-GRS patients received a greater 
clinical benefit (P<0.001; see Figure 8A,8B). However, 
the low-GRS patients were significantly associated with 
increased sensitivity to doxorubicin, gemcitabine, and 
sorafenib relative to the high-GRS HCC patients (P<0.001; 
see Figure 8C-8E). Further, the IMvigor210 anti-PD-L1 
immunotherapy cohort was used to evaluate the value of 
the GRS in terms of the immunotherapy benefit for HCC 
patients. For the immunotherapy response, we found that 
the GRS score in the response patients was significantly 
more increased than that in the non-response patients 
(P<0.05; see Figure 8F). In the IMvigor210 cohort, the 
results also revealed that the high-GRS patients had a 

Table 1 Univariate and multivariate Cox regression analyses of HCC

Dataset Variables
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

TCGA Age (≥60/<60 years) 1.119 (0.783–1.599) 0.537 1.127 (0.769–1.653) 0.539

Gender (Male/Female) 0.786 (0.547–1.129) 0.192 0.917 (0.619–1.359) 0.668

TNM Stage (III+IV/I+II) 2.781 (1.904–4.062) <0.001 2.506 (1.712–3.669) <0.001

GRS score (High/Low) 2.729 (1.867–3.989) <0.001 2.540 (1.683–3.834) <0.001

GSE14520 Age (≥60/<60 years) 0.805 (0.453–1.429) 0.459 1.231 (0.670–2.262) 0.503

Gender (Male/Female) 1.656 (0.799–3.432) 0.174 1.276 (0.609–2.674) 0.518

TNM stage (III+IV/I+II) 3.415 (2.178–5.356) <0.001 2.999 (1.888–4.764) <0.001

GRS score (High/Low) 2.338 (1.489–3.669) <0.001 2.081 (1.288–3.360) 0.002

HCC, hepatocellular carcinoma; HR, hazard ratio; CI, confidence interval. TNM, tumor-node-metastasis.
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Figure 5 Correlations between the GRS and clinical characteristics in HCC. (A) The mRNA expression of 12 genes in HCC. (B–I) GRS 
score distribution according to TNM stage, histological grade, BCLC stage, tumor size, tumor multinodular, AFP, and liver cirrhosis.  
*, P<0.05; **, P<0.01; ***, P<0.001. HCC, hepatocellular carcinoma; GRS, glycolysis-related gene signature; TNM, tumor-node-metastasis; 
BCLC, Barcelona Clinic Liver Cancer; AFP, alpha-fetoprotein. 

poorer prognosis than the low-GRS HCC patients (P=0.003; 
see Figure 8G). Additionally, our results indicated the rate 
of objective response to anti-PD-L1 therapy was higher 
in the high-GRS patients than the low-GRS patients (see  
Figure 8H). Collectively, these results suggested that the 
GRS could be used to guide systematic drug therapy for 
HCC patients.

Discussion

This study sought to examine the most important risk 
factor for the survival prognosis in HCC patients. Using 
a series of bioinformatics analysis methods, we found that 
glycolysis was the most important prognostic risk factor 
for HCC patients. HCC patients with low-glycolysis had a 
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Figure 7 Correlation between the GRS and genomic alterations in HCC. (A) Oncoplot of 15 mutated genes in the low-GRS cohort. (B) 
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better prognosis and longer survival time than those with 
high-glycolysis. Glycolysis, which is the most important 
metabolic feature of solid tumors, refers to a series of 
reactions that degrade glucose and glycogen into pyruvate 
accompanied via the production of ATP (25). Compared to 
normal cells, tumor cells use glycolysis to provide energy 
to promote their growth and proliferation (26). This may 
account for the high expression and activity of glycolysis-
related enzymes in tumor cells. Several studies have shown 
that blocking the tumor glycolysis pathway effectively 
suppresses tumor cell growth and even kills tumors (27-29).  
Thus, it is of great significance to study the effects of 
glycolysis on the survival prognosis and treatment responses 
of HCC patients.

We also examined how to predict the survival prognosis 
of HCC patients. Currently, the TNM and BCLC 
staging systems are mainly used in the clinical therapy 
and prognostic assessments of HCC patients. As HCC is 
a highly heterogeneous tumor, predictive models based 
on clinical features cannot accurately predict the survival 
prognosis of HCC patients. Biomarkers have been shown 
to improve the accuracy of survival prognosis prediction at 

the gene level. In this study, the GRS was first constructed 
to predict the prognosis of HCC patients based on 12 
genes (i.e., FKBP4, SRD5A3, ABCB6, ME2, GPC1, ME1, 
HS2ST1, NSDHL, GMPPA, AURKA, HK2, and GOT2), 
and further validated in independent cohorts (i.e., the 
GSE14520 and LIRI-JP cohorts), and different clinical 
subgroups, including TNM stage, histological grade, 
gender, and age subgroups. Our data also suggested that 
high-GRS serves as a risk factor for HCC. Further, all the 
HCC patients were divided into 3 different risk subgroups 
by a decision tree based on TNM staging and the GRS. 
There were significant survival differences among the 3 
risk subgroups. Finally, a nomogram with quantification 
was built based on the GRS to more accurately predict the 
survival prognosis of patients. These results demonstrated 
that the GRS improved the risk stratification and prognostic 
assessment of HCC patients.

We also examined the relationship between glycolysis-
related genes and the progression of HCC. We found that 
the GRS scores were significantly correlated with both the 
TNM and BCLC stages, and advanced-stage HCC patients 
had higher GRS scores than early-stage HCC patients. 
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These findings indicated that glycolysis-related genes may 
contribute to the progression of HCC.ABCB6 is a subtype 
of the ABC transport family, and the high expression of 
ABCB6 has been shown to be associated with a worse 
prognosis (30,31). The biological function of FKBP4 has 
been reported in many cancers through its interactions with 
different cellular receptors (32,33). However, to date, the 
biological role of FKBP4 in HCC has not been examined. 
Further, ME1 and ME2 are oncogenic genes that have 
been shown to promote tumor growth and migration in 
the progression of HCC (34-36). Additionally, AURKA is a 
serine/threonine kinase that has been shown to be associated 
with epithelial-mesenchymal transition and cancer stem 

cells, and plays a critical role in the development of  
HCC (37,38).

This study also examined how the GRS affects the tumor 
immune microenvironment. In this study, ssGSEA and 
MCP-counter algorithms were used to examine the relative 
content of the immune cells. According to our results, high-
GRS HCC patients had a higher percentage of MDSCs, 
CD4+ T cells, dendritic cells, and macrophages than low-
GRS patients. MDSCs are a type of immune cell with high 
heterogeneity. MDSCs are derived from immature myeloid 
cells and have immunosuppressive properties. In addition 
to secreting immunosuppressive cytokines, MDSCs also 
induce the development of regulatory T cells (39). In this 
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study, the high-GRS HCC patients had higher proportions 
of MDSC cells, which play a crucial role in the suppression 
of anti-tumor immunity, than the low-GRS HCC patients. 
Further, CD4+ T cells have been shown to contribute to the 
activation of antigen-presenting cells, such as macrophages, 
dendritic cells, and B cells (40). Regulatory T cells inhibit 
the activities of CD4+ and CD8+ effector T cells, and NK 
cells through multiple mechanisms, including the secretion 
of immunosuppressive cytokines and the production of 
cytolytic factors (41). These results suggested that high-
GRS patients have more immunosuppressive cells, which 
inhibit anti-tumor immune responses, resulting in a poor 
prognosis.

This study had several limitations that need to be 
considered. First, while the prognostic model was validated 
in 2 independent cohorts, larger sample sizes and more 
cohorts are needed to increase the reliability of the results. 
Second, as a retrospective study, the results of this study 
may be biased; thus, prospective trials need to be designed 
and conducted in the future. Third, the prognostic model 
was established by a series of bioinformatics methods, and 
its biological role and underlying mechanisms need to be 
further explored in functional experiments. Thus, future 
research needs to be conducted to address these issues.

Conclusions

This study developed and validated a glycolysis-related 
prognostic model to aid in the prediction of the survival and 
immunotherapeutic response of HCC patients, which may 
help to guide treatment decisions.
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Supplementary

Table S1 Univariate Cox regression analyses of cancer hallmarks in the TCGA-LIHC cohort

ID coef HR HR.95L HR.95H P value

Glycolysis 14.56311042 2111925.019 6510.251723 685108268.6 0.000000795

Myc__signaling 13.06964869 474325.3171 3031.616857 74212711.24 0.000000398

PI3K_AKT_mTOR_signaling 10.47043447 35257.53232 20.40122263 60932308.21 0.005908818

DNA_repair 9.800495899 18042.69006 36.89897845 8822430.273 0.001922109

Mitotic_spindle 6.574431528 716.5381765 25.78253335 19913.75135 0.000106322

G2M_checkpoint 4.774652312 118.4691172 17.34419773 809.2003994 0.00000111

Hypoxia 3.381513216 29.41524909 0.600401121 1441.131352 0.088561855

p53_pathway 2.687530496 14.69534087 0.033845274 6380.59673 0.385784131

Notch_signaling 1.609832216 5.001971906 0.198927501 125.7730723 0.327843032

Angiogenesis 0.961798802 2.616398627 0.521088381 13.13700713 0.242715282

Epithelial_mesenchymal_transition 0.895779112 2.44924328 0.459775835 13.0472117 0.293921632

TGF_beta_signaling 0.848399916 2.335906215 0.128288362 42.53275783 0.566630901

TNFa_signaling_via_NFkb 0.479159269 1.614716289 0.188610787 13.8237517 0.661842575

Wnt_beta_catenin_signaling 0.400327847 1.492313868 0.096264006 23.13430295 0.774681017

Complement 0.330638108 1.391856 0.027457493 70.55498852 0.868885973

Inflammatory_response 0.05932626 1.061121386 0.099132334 11.35833845 0.960880077

IL6_JAK_STAT3_signaling −0.144176523 0.865734912 0.075937576 9.869908653 0.907562855

Hedgehog_signaling −0.305136069 0.737023081 0.031339685 17.33275303 0.849784069

Cholesterol_homeostasis −0.856924369 0.424465576 0.011337978 15.89093075 0.642920561

Apoptosis −0.960779035 0.382594715 0.005485307 26.68560181 0.657322735

Interferon_alpha_response −1.194367922 0.302895347 0.031824191 2.882888403 0.298828636

Interferon_gamma_response −1.628933764 0.196138593 0.015976638 2.407912527 0.202967516

Xenobiotic_metabolism −2.784858238 0.06173784 0.008651285 0.440577431 0.005478665

Bile_acid_metabolism −2.853179424 0.057660701 0.011981762 0.27748478 0.000372032

Kras_signaling −3.862520463 0.021014965 0.0000812 5.437462992 0.17300731

Fatty_acid_metabolism −4.293997249 0.013650253 0.000713899 0.261002529 0.004342296

Heme_metabolism −5.668688687 0.003452389 0.00000288 4.140724984 0.117078897

Adipogenesis −6.82557265 0.001085654 0.000005 0.235693253 0.012903084

Oxidative_phosphorylation −8.98689547 0.000125038 0.000000168 0.093199724 0.007740512

HR, hazard ratio.


