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Background: Stomach adenocarcinoma (STAD), is the most common histological type of gastric cancer 
(GC) with high mortality and poor prognosis. We sought to investigate the contribution of Notch receptor 1 
(NOTCH1) to STAD immunity. 
Methods: The profiles of immune cells in STAD cohorts were compared, and a correlation analysis 
between the NOTCH1 gene and tumor immune cell infiltration was then conducted. The immune-related 
genes (IRGs) associated with the NOTCH1 gene were identified. Based on the NOTCH1-associated IRGs, 
multiple-gene risk prediction signatures were established. The relationship between the expression levels 
of the selected IRGs and overall survival (OS) was analyzed by a univariate analysis. The risk score was 
calculated using the formula of β1x1 + β2x2 +... + βixi. A prognostic nomogram was constructed to predict 
individuals’ survival probabilities. 
Results: In STAD, NOTCH1 expression levels were significantly negatively associated with tumor-
infiltrating lymphocyte (TIL) Act dendritic cells (DCs) (r=−0.196, P value =6.24e-05), TIL cluster of 
differentiation (CD) 56 bright cells (r=−0.115, P value =0.0193), TIL immature DCs (r=−0.293, P value 
=1.16e-09), TIL monocyte cells (r=−0.185, P value =0.000149), TIL central memory T CD4 cells (r=−0.126, 
P value =0.0103), and TIL gamma delta T cells (r=−0.149, P value =0.00229). The resulting risk scores of 
the 8-gene risk prediction signature (corticotrophin releasing hormone receptor 2 (CRHR2) (HR =1.858, 
P value =0.048), fms related receptor tyrosine kinase 1 (FLT1) (HR =1.268, P value =0.048), fms related 
receptor tyrosine kinase 4 (FLT4) (HR =1.334, P value =0.031), glial fibrillary acidic protein (GFAP) (HR 
=2.739, P value =0.008), platelet-derived growth factor receptor beta (PDGFRB) (HR =1.192, P value =0.02), 
prostaglandin D2 receptor (PTGDR) (HR =1.564, P value =0.049), semaphorin 5B (SEMA5B) (HR =1.154, 
P value =0.029), and tyrosine kinase 2 (TYK2) (HR =0.734, P value =0.041) were independent prognostic 
predictors for STAD patients. 
Conclusions: NOTCH1 could be a potential target for STAD. The mechanisms underpinning NOTCH1-
medicated prognostic values of immune signatures should be further explored.
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Introduction

Stomach adenocarcinoma (STAD), is the most common 
histological type of gastric cancer (GC), and is the 5th most 
common neoplasm and the 3rd most deadly cancer (1). A 
combination of factors contribute to the high mortality of 
STAD patients, including underlying genetic heterogeneity, 
late clinical presentation, and the ineffective mechanisms 
of antitumor drugs. Additionally, many factors are 
crucial to the development of STAD, including chronic 
atrophic gastritis, smoking, alcohol, obesity, smoked food 
consumption, and Helicobacter pylori infection (2). The 
survival of patients with STAD has greatly improved due 
to surgery, targeted therapy, and chemotherapy; however, 
the prognosis of STAD patients is still unsatisfactory (3). 
Marin et al. found that the poor prognosis of STAD patients 
is associated with high tumor invasion, metastasis, and 
recurrence (1). It is important to explore the pathological 
mechanisms underlying tumor development and progression 
to identify novel potential prognostic biomarkers and 
therapeutic targets for treating STAD.

The tumor microenvironment (TME), which refers 
to the local biological environment of tumor cells, 
mainly consists of cytokines, stromal cells, and the 
extracellular matrix. Tumorigenesis causes a variety of 
immunological disturbances, which ultimately generate an 
immunosuppressive TME. In STAD, immune cells in the 
TME play important roles in tumorigenesis and clinical 
outcomes (1). In view of this, immunotherapy is regarded a 
promising therapy against cancer. Through immunotherapy, 
the TME can be improved. However, due to a lack of 
effective prognostic evaluation measures at an early stage (1),  
immune checkpoint inhibitors only play roles in a very small 
percentage of STAD patients. Thus, novel biomarkers that 
predict the survival of STAD patients urgently need to be 
identified. Previous studies showed that vestigial like family 
member 3 (VGLL3), nuclear receptor subfamily 1 group D 
member 1 (NR1D1), period circadian regulator 1 (PER1), 
Janus kinase 3 (JAK3) and tyrosine kinase 2 (TYK2) are 
considered as novel prognostic biomarkers for STAD (4-6). 
However, the potential mechanisms of NOTCH1 in STAD, 
especially in the immune response, remain mostly unknown. 
In comparison to normal gastric tissues, the expression 
levels of notch receptor 1 (NOTCH1) are higher in both GC 
and STAD tissues (1). Marin et al. found that the abnormal 
richness of NOTCH1 messenger ribonucleic acid (mRNA) 
was associated with unfavorable overall survival (OS) in 
GC patients (1). In this study, we evaluated the status 

of immune cells and examined the association between 
NOTCH1 and STAD immunity and the related signaling 
pathways. We also generated prognostic immune signatures 
using NOTCH1-associated IRGs, and then constructed a 
nomogram. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
jgo.amegroups.com/article/view/10.21037/jgo-22-685/rc).

Methods

Data set selection and data preprocessing

We obtained the gene expression data and complete clinical 
annotations for STAD from the University of California, 
Santa Cruz, Xena data set (https://gdc.xenahubs.net). 
Fragments per kilobase of exon per million mapped reads 
were converted into transcripts of per kilo base million. 
Patients with no survival information were removed. The 
STAD data set comprised 350 cancerous and 32 normal 
tissues. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Determination of tumor-infiltrating immune cells

We conducted a single-sample gene-set enrichment analysis 
(SSGSEA) to quantify the relative abundance of cellular 
infiltration in the tumor immune microenvironment 
(TIME) in each tissue sample of STAD. The gene-set 
labeled for each TIME-infiltrating immune cell type was 
obtained. Enrichment scores (calculated by the SSGSEA 
analysis) were used to represent the relative abundance of 
the TIME-infiltrated cells in each tissue sample. A violin 
diagram was used to compare the infiltration differences of 
the immune cells in different tissues.

Correlation between the NOTCH1 gene and immune cell 
infiltration

The site provides several modules, including genes, survival, 
mutation, differential expression, and correlation. Using 
the TIMER tool, we evaluated the effect of NOTCH1 
gene copy number alterations on immune infiltration. The 
immune score, Stromal score, and ESTIMATE score of 
each STAD patient were calculated using the ESTIMATE 
algorithm. The STAD patients were divided into high 
NOTCH1 expression group and low NOTCH1 expression 
group. Box plots were used to compare differences in terms 
of the immune scores, stromal scores, and ESTIMATE 

https://jgo.amegroups.com/article/view/10.21037/jgo-22-685/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-22-685/rc
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scores of the two groups.

RNA sequencing

The human STAD cell line was obtained from the National 
Cell Center. We knocked down the NOTCH1 gene. RNA 
samples were extracted and subjected to RNA-sequencing.

GSVA

To examine the association between NOTCH1 gene 
silencing and the phenotypic differences, we performed 
a gene set variation analysis (GSVA). The “limma” in R 
package was used to identify the pathways significantly 
associated with NOTCH1 expression levels. A P value <0.05 
and a |log2 fold change| >0.3 were considered statistically 
significant.

Identification of IRGs associated with the NOTCH1 gene

The immune-related genes (IRGs) were retrieved. The 
overlapping IRGs, which were selected from The Cancer 
Genome Atlas (TCGA)-STAD data set and the ImmPort 
database, were used for the further analysis. The IRGs 
significantly associated with the NOTCH1 gene were 
screened using the co-expression strategy. Correlations 
with a |correlation| value >0.5 and P value <0.01 were 
considered significant. The David 6.8 database was used 
for the functional enrichment analysis of the significantly 
correlated IRGs.

Identification of a risk signature related to immunization

We tried to develop a prognostic multiple immune signature 
from the NOTCH1-related IRGs. We analyzed the 
relationship between the expression levels of the selected 
IRGs and OS by a univariate analysis. A P value <0.05 was 
considered statistically significant. A least absolute shrinkage 
and selection operator (LASSO) Cox regression analysis 
was then used to determine the prognostic model. The risk 
score for each sample was calculated using the following 
formula: risk score = β1x1 + β2x2 +... + βixi (7). The STAD 
patients were divided into high- and low-risk groups. A 
survival analysis was performed. Univariate and multivariate 
Cox regression analyses were performed to determine 
whether the risk score could be used as a prognostic factor 
independent of other clinical variables (including sex, 
histological grade, and tumor stage).

Construction of nomogram

A nomogram scores each parameter, such as age, sex, 
tumor-node-metastasis (TNM) stage, and risk score, by 
points. These points are added for each patient to calculate 
a total score. The higher the score, the more likely it is that 
an event will happen. This approach allows a personalized 
assessment of the probability of recurrence (1). We used 
the nomogram for cancer prognosis. The calibration curve 
was used to visualize the deviation between the predicted 
probabilities and actual outcomes.

Statistical analysis

We conducted all the statistical analysis with R. A Wilcox 
test was used to screen the statistically significant infiltrating 
immune cells. Univariate and multivariate Cox regression 
analyses were performed on the factors affecting the 
prognosis. The results of the multivariate Cox regression 
analysis are shown in forest maps. The C-index, time-
dependent ROC, and calibration curve were also important 
criteria for evaluating the histogram. A P value <0.05 was 
considered statistically significant.

Results

The landscape of infiltrating immune cells in STAD

A SSGSEA analysis was then used to characterize 
the immune cell pattern in STAD (see Figure 1). The 
proportions of activated B cells, eosinophils, mast cells, and 
neutrophil cells were significantly decreased in the tissues 
of STAD patients. However, the proportions of activated 
cluster of differentiation (CD)4 T cells, activated dendritic 
cells (DCs), CD56 disorganized muscle protein (Dim) 
natural killer (NK) cells, gamma delta T cells, NK T cells, 
and type 17 T helper cells were significantly increased in 
the tissues of STAD patients (see Figure 1A). Patterns of 
infiltrating immune cells are shown in Figure 1B. Further, 
correlation patterns between immune cells were identified 
in STAD (see Figure 1C). The above results showed that the 
occurrence and development of STAD were closely related 
to immune cells.

Association between NOTCH1 and immune cells

We studied the effect of NOTCH1 on the immune system. 
Arm-level deletion and an increase in the NOTCH1 gene 
significantly affected the infiltration levels of immune 
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cells (see Figure 2). The expression level of NOTCH1 was 
positively or negatively correlated with various immune 
cell subpopulations. For example, the expression level 
of NOTCH1 was significantly positively correlated with 
memory B cells, tumor-infiltrating lymphocyte (TIL) NK 
cells, and TIL T helper 2 cells, while the expression level of 
NOTCH1 was significantly negatively associated with TIL 
Act DCs, TIL CD56 bright cells, TIL iDCs, TIL monocyte 
cells, TIL central memory T (Tcm) CD4 cells, and TIL 
gamma delta T cells (Tgd) cells (see Figure 3). The results 
of the ESTIMATE analysis showed that the immune score, 
stromal score, and ESTIMATE score of the high NOTCH1 
expression group were significantly lower than those of the 
low NOTCH1 expression group (see Figure 4). These results 
indicated that the NOTCH1 gene appears to play key role in 
regulating the infiltration of immune cells. In addition, the 
RNA sequencing results showed that the silencing of the 
NOTCH1 gene activated several immune-related signaling 
pathways (see Figure 5). 

NOTCH1-related IRGs

We found that 292 IRGs were significantly associated 
with NOTCH1 (see Figure 6A). Gene Ontology (GO) was 
used to annotate these IRGs (see Figure 6B). The Janus 
kinase (Jak)-signal transducer and activator of transcription 
(STAT), phosphatidylinositol 3-kinase (PI3K)-AKT serine/
threonine kinase (Akt), Toll-like receptor, Ras-like protein 
(Ras) and erb-b2 receptor tyrosine kinase (ErbB) ignaling 
pathways were associated with NOTCH1-mediated immune 
events (see Figure 6C).

The prognostic value of NOTCH1-associated IRGs in 
STAD

To study the prognostic values of NOTCH1-associated 

IRGs in STAD, a univariate Cox regression analysis was 
performed on the 292 identified NOTCH1-associated IRGs, 
which led to an optimal 11-gene prognostic signature (see 
Figure 7A). The LASSO Cox regression analysis of the 
11 genes ultimately identified 8 characteristic genes [i.e., 
corticotrophin releasing hormone receptor 2 (CRHR2), 
fms related receptor tyrosine kinase 1 (FLT1), fms related 
receptor tyrosine kinase 4 (FLT4), glial fibrillary acidic 
protein (GFAP), platelet-derived growth factor receptor 
beta (PDGFRB), prostaglandin D2 receptor (PTGDR), 
semaphorin 5B (SEMA5B), and tyrosine kinase 2 (TYK2)]. A 
risk model composed of these 8 genes was also constructed. 
The risk scores were calculated. Patients with a low-risk 
score had significantly longer survival (see Figure 7B). To 
assess the accuracy of a prognostic model consisting of the 
8 NOTCH1-associated IRGs in predicting the prognosis of 
STAD, we performed the ROC analyses at 1, 3, and 5 years 
to compare the area under the curve (AUC) values. The 
results showed that the AUC at 1, 3, and 5 years were 0.65, 
0.72 and 0.75, respectively (see Figure 7C). The prognostic 
model composed of 8 NOTCH1-associatedIRGs performed 
well in determining the prognosis of STAD patients.

The distribution of the risk score, survival status, and 
expression profiles for STAD are shown in Figure 8A. 
The heat map results showed that the high-risk genes 
(i.e., CRHR2, FLT1, FLT4, GFAP, PDGFRB, PTGDR, and 
SEMA5B) were highly expressed in the high-risk group, 
while the protective gene TYK2 was lowly expressed in the 
high-risk group. The risk score was significantly related to 
the survival of STAD patients (see Figure 8B). Further, the 
risk score was an independent predictor of the prognosis of 
STAD patients (see Figure 8C).

Construction of the nomogram

In the end, we constructed the prognostic nomogram 
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for STAD to predict an individual’s survival probability by 
weighing the risk score, TNM stage, age, and gender. The 
the nomogram’s predicted probability (solid line) was well 
matched to the ideal reference line (dashed line) (see Figure 9). 
We also examined the nomogram’s predictive discrimination. 
Our prognostic nomogram had a C-index of 0.69.

Discussion

We found that the immune subsets in the TME were 
significantly changed in STAD. For example, the 
proportion of activated B cells, eosinophils, mast cells, 
and neutrophil cells was significantly decreased in the 

tissues of STAD patients. However, the proportions of 
activated CD4 T cells, activated DCs, CD56 Dim NK cells, 
gamma delta T cells, NK T cells, and type 17 T helper 
cells were significantly increased in the tissues of STAD 
patients. These findings suggest that the occurrence and 
development of STAD are closely associated with immune 
cells.

Notably, the immune cell infiltration levels were related 
to the NOTCH1 gene copy numbers in STAD. Additionally, 
the expression level of NOTCH1 was significantly negatively 
associated with TIL Act DCs, TIL CD56bright cells, TIL 
immature DCs (iDCs), TIL monocyte cells, TIL Tcm CD4 
cells, and TIL Tgd cells. TIL CD56 bright cells mediate 
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antibody-dependent cellular cytotoxicity and exhibit high 
levels of perforin and enhanced killing. TIL CD56 bright 
cells specialize in secreting cytokines and chemokines 
in response to inflammatory factors and in regulating 
adaptive immunity. It has been reported that TIL CD56 
bright cells are associated with non-small cell lung cancer 
and clear cell renal cell carcinoma (1). The relationship 
between TIL iDCs and GC has been demonstrated (1). 
TIL monocyte cells promote tumorigenesis and inhibit 
the antitumor immune response (1). A high absolute count 
of TIL monocyte cells is related to the poor prognosis of 
GC patients (8). TIL Tcm CD4 cells, which are a type 
of lymphocyte, have been identified in the TME of head 
and neck squamous cancer patients (9). TIL Tgd cells 
are associated with the prognosis of STAD patients (10). 
These results suggest that the NOTCH1 gene could play an 
important role in regulating the infiltration of immune cells 
in STAD.

The association of NOTCH1 and immunity was also 
verified using the RNA sequencing data. Notably, the 
silencing of the NOTCH1 gene activated several immune 

pathways in STAD cells, including the cytokine-cytokine 
receptor interaction, T cell receptor signaling pathway, 
chemokine signaling pathway, and apoptosis. Cytokines 
could stimulate host immune responses against pathogens 
and tumors (1). Cytokines play important roles in cancer 
progression and immunotherapy. Research has shown that 
GC cells express cytokine receptor systems that impart a 
therapeutically-resistant phenotype to gastric tumors (11).  
It has been noted that the cytokine-cytokine receptor 
interaction is a significantly enriched signaling pathway 
in STAD (12). In cancer, some prognostic immune genes 
are associated with the T cell receptor (1). T cell receptor 
editing has been clinically tested in cancer therapy (13). 
Chemokines are the main component of cancer-related 
inflammation, and play a crucial role in tumor growth (1). 
Chemokines also control the positioning and the migratory 
patterns of immune cells, which are critical for immune cell 
homeostasis (1). It is supposed that targeting chemokine 
receptors may be an attractive approach for eliciting 
beneficial anti-tumor immune responses in cancer patients. 
Cell apoptosis can hinder tumor growth (1). Thus, the 
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induction of tumor apoptosis is a good anti-cancer therapy. 
It is confirmed that NOTCH1 could be involved in the 
immune reaction of STAD.

Based on the KEGG pathway analysis of the NOTCH1-
associated IRGs, we found that the Jak-STAT, PI3K-
Akt, Toll-like receptor, Ras, and ErbB signaling pathways 
might be associated with the NOTCH1-mediated immune 
response. The Jak-STAT proteins are expressed by immune 
cells, making them key transducers of immune signals in 
cells. Previous research has shown that GC prognosis-
related genes are involved in the Jak-STAT signaling 
pathway (14). It is worth mentioning that the Jak-STAT 
signaling pathway is associated with STAD (1). PI3K-Akt 
activation increases the migration potential of GC cells in 
macrophage-derived exosomes (15). Toll-like receptors can 
detect pathogens and promote pro-inflammatory changes 
at the site of infection. Genetic polymorphisms in the 
Toll-like receptor signaling pathway are associated with 
gastric precancerous lesions (16). In STAD, some survival-
related genes were shown to be enriched in the Ras and 

ErbB signaling pathways (1). We assumed that NOTCH1 
inhibitors would be helpful in the antitumor efficacy of 
immune checkpoint blockers in STAD.

Using the NOTCH1-associated IRGs, we established 
the immune gene signature for STAD. The risk score was 
significantly related to survival in STAD. Notably, the 
immune gene signatures for STAD were CRHR2, FLT1, 
FLT4, GFAP, PDGFRB, PTGDR, SEMA5B, and TYK2. 
Moreover, high-risk genes (i.e., CRHR2, FLT1, FLT4, 
GFAP, PDGFRB, PTGDR, and SEMA5B) were highly 
expressed in the high-risk patients, while the protective gene 
TYK2 was lowly expressed in the high-risk patients. CRHR2 
immunoreactivity has been found in some malignancies, 
including adrenocortical carcinoma (1), ovarian carcinoma (1),  
endometrial carcinoma (17), and breast carcinoma (1). The 
FLT1 gene encodes vascular endothelial growth factor 
receptor 1 (VEGFR-1). The vascular endothelial growth 
factor system is important to angiogenesis, which is 
regarded as key to the occurrence of malignant tumors (1). 
The over expression of FLT1 is associated with malignant 
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melanoma and renal cell carcinoma (1). FLT1 has been 
considered an IRG in cervical cancer (18). It has been noted 
that FLT1 is a GC-related target (19).

In the TME of GC, the vascular endothelial growth 
factor C (VEGF-C)- vascular endothelial growth factor 
receptor 3 (VEGFR)-3/fms related receptor tyrosine kinase 
4 (FLT4) axis could promote cell proliferation and migration 
by upregulating both VEGFC in an autocrine manner, 
which in turn could contribute to cancer progression (20). 
FLT4 is an OS-related differentially expressed IRG in lung 
squamous cell carcinoma patients (21). GFAP, which is a 
stem cell–related gene, is upregulated in the glioblastoma 
cells (22). The high expression of GFAP is related to 
poor OS in endometrial cancer patients (23). The high 
expression of PDGFRB is significantly related to the 
poor OS of oral squamous cell carcinoma patients (24). 
Additionally, PDGFRB serves as a prognostic biomarker of 
GC (1). PTGDR was found to be an IRG that predicted the 
recurrence of colorectal adenocarcinoma (1). The expression 
of SEMA5B is increased in clear cell renal cell carcinoma (1). 
SEMA5B is an IRG in hepatocellular, breast, and head and 
neck squamous cell carcinomas (1). TYK2 plays important 
roles in immune responses and inflammation (25). TYK2 
serves as a prognostic biomarker and is related to immune 
infiltration in STAD (6). It is demonstrated that the risk 
score derived from above NOTCH1-associated IRGs can 
discriminate among risk patients. 

In summary, NOTCH1 could play a crucial role in 
controlling the TIME. The prognostic signature derived 
from 8 NOTCH1-associated IRGs were independently 
predictive of OS in STAD. However, our study had some 
limitations. First, all these findings need to be validated 
in the large number of patients. Second, the mechanisms 
underpinning NOTCH1-medicated prognostic values of 
immune signatures should be further explored.
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