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Introduction

Gastric cancer (GC) is a kind of tumor with high mortality 
and incidence reported across Eastern and Western  
Asia (1) .  The treatment of locally advanced and/
or metastatic GC remains a challenge despite recent 
advancements in therapeutic modalities and chemotherapy 
agents (2).  An increasing amount of evidence has 

demonstrated that radiotherapy (RT) as a local treatment 
modality can exert a good therapeutic effect (3-5). However, 
tumor resistance to irradiation, as well as acute and late 
toxicity resulting from RT, has limited its efficacy in clinical 
cancer treatment (6,7). Therefore, there is an urgent need 
to formulate novel and practical strategies to overcome 
tumor resistance to RT and reduce its toxicity on the 
normal tissues and organs surrounding the tumor.
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It is well known that the effects of RT are affected by 
hypoxia. To enhance tumor radiosensitivity, a variety of 
strategies have been developed to alleviate tumor hypoxia, 
and the most direct and effective way is to improve oxygen 
supply in the hypoxic area. Different methods have been 
developed to transport oxygen to cancer cells, including 
employing liquids with high oxygen solubility, administering 
hemoglobin, and introducing oxygen-generating agents, 
among others (8-10). 

Erythrocytes or red blood cell (RBCs), as natural oxygen 
carriers, have several advantages that make them suitable 
as radiosensitizers. RBCs are abundant, biocompatible, 
affordable, and easy to isolate. In addition, RBCs can 
circulate in humans for about 3 months and in mice for 
about 40 days. The prevailing belief is that internalizing 
arginine-glycine-aspartic acid (iRGD) could work as a 
“deliveryman” for peptide-mediated transport of compounds 
deep into the tissue parenchyma (11). In one study, iRGD-
conjugated compounds were injected intravenously (IV) to 
bind to tumor vessels and infiltrate into extravascular tumor 
parenchyma (12). Some studies reported iRGD to deliver 
drugs deep into tumor tissues in gastric cancer (13,14). 
Recently, iRGD has entered phase one clinical trials and 
has shown good safety (15). The research interests of our 
laboratory is to use the tumor-penetrating peptide iRGD 
to improve the efficacy of anti-tumor therapy. Our previous 
study reported for the first time that the modification 
of iRGD could improve the cancer-specific lymphocyte 
infi ltration in both mouse models and 3D cancer  
spheroids (16). Recently, we demonstrated that iRGD could 
enhance irradiation efficacy via remodeling tumor tissue 
penetration (17). However, the feasibility of employment 
of iRGD for RBC modification has not been reported yet. 
There are several surface attachment techniques that can 
modify membranes of RBCs to improve the active tumor-
targeting ability of RBCs. Fang et al. employed a lipid-
insertion technique to functionalize both folate and the 
nucleoli-targeting aptamer AS1411 to allow RBCs to 
obtain receptor-specific targeting against model cancer cell  
lines (18), which has provided us additional insight 
into RBC modification. We subsequently designed and 
fabricated RBC-iRGD for tumor targeting and therapy 
enhancement, evaluated their safety and efficacy in vivo, and 
investigated the possible mechanisms involved in its effects 
using an in vitro cell system. The results demonstrated 
that RBC-iRGD exert good tumor-targeting efficacy and 
provide favorable effects for RT enhancement in vivo. 
We present the following article in accordance with the 

ARRIVE reporting checklist (available at https://jgo.
amegroups.com/article/view/10.21037/jgo-22-951/rc).

Methods

Reagents

Tumor-penetration peptide iRGD (cyclic CRGDKGPDC), 
C y s - i R G D  ( C y s - C R G D K G P D C ) ,  a n d  F a m -
CCRGDKGPDC-NH2 were custom-synthesized by 
ChinaPeptides Co., Ltd. (Shanghai, China). 

Cell line 

Human GC cell line MKN-45 was obtained from the 
Chinese Academy of Sciences Cells Bank (Shanghai, 
China). Cells were cultured in RPMI 1640 medium (Wisent, 
Nanjing, China). 

Mice

Seven-week-old male BALB/c athymic nude mice were 
provided by Yangzhou University. Experiments were 
performed under a project license (No. 20150902) granted 
by the Animal Care Committee at Nanjing Drum Tower 
Hospital, in compliance with Nanjing Drum Tower 
Hospital guidelines for the care and use of animals. A 
protocol was prepared before the study without registration.

Synthesis of 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-poly ethylene glycol-iRGD (DSPE-
PEG-iRGD) 

DSPE-PEG-MAL was mixed with C-iRGD at a 1:1 molar 
ratio in HEPES buffer (pH =6.5). The reaction mixture was 
incubated for 48 h at room temperature (RT) in a shaker, 
and the resulting reaction mixture was placed in a dialysis 
bag (molecular weight cutoff =3,500 Da) and dialyzed in 
double-distilled water for 48 h to remove small molecules. 
The final solution in the dialysis bag was lyophilized and 
stored at −20 ℃ until used.

Modification of RBCs with DSPE-PEG-iRGD

Whole blood was collected from the anaesthetized mice 
into heparin sodium salt tubes via cardiac puncture. RBCs 
were extracted from blood by centrifugation at 1,200 ×g 
for 5 min at 4 ℃ and washed 3 times in phosphate-buffered 

https://jgo.amegroups.com/article/view/10.21037/jgo-22-951/rc
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saline (PBS). The washed RBCs were resuspended in 
PBS to a final RBC concentration of 5×108/mL, and then 
incubated with various amounts of DSPE-PEG-iRGD at 
RT for 30 min to form iRGD-inserted RBCs (RBC-iRGD), 
following the methodology reported by Shi et al. (19). The 
inserted RBCs were then washed 3 times with PBS before 
further use.

Characterization of RBC-iRGD

RBC-iRGD were examined with confocal microscopy 
for the emission of the yellow color, and the conjugation 
efficacy of iRGD and RBCs was calculated by a linear 
regression equation using the parameters of fluorescence 
intensity and iRGD concentration.

In vitro stability evaluation of RBC-iRGD

RBCs alone, RBC + iRGD, or RBC-iRGD were incubated 
in RPMI 1640 medium containing 10% fetal bovine 
serum (FBS) for 48 h. Fluorescence decay was evaluated 
by confocal microscopy examination. Moreover, hemolytic 
RBCs prepared by 0.5-time PBS incubation for 5 min were 
used as control for hemolytic effects evaluation.

In vivo near-infrared fluorescence imaging and in vivo 
immunofluorescence

A subcutaneous xenograft model was established by injecting 
106 MKN-45 cells in 100 μL of PBS subcutaneously in 
male Balb/c nude mice. The PBS-washed RBC suspension 
with or without iRGD modification (5×108/mL in PBS,  
500 μL) was incubated with the same volume of DiR solution  
(10 μM in DBPS diluted from 2 mM DiR in ethanol) for  
30 min at room temperature under 100 rpm. The DiR-
stained RBCs were used for monitoring the in vivo 
biodistribution of the RBCs.

Once the tumor volume in the xenografts reached  
~300 mm3, 200 μL of DiR-prestained RBCs, DiR-
prestained RBCs coadministrated with free iRGD or DiR-
prestained RBC-iRGD was IV administrated via the tail 
vein of the tumor-bearing nude mice. Each mouse was 
treated with 108 RBCs. Anesthesia was maintained with 
inhaled isoflurane [1.0–2.5% (vol/vol)] for the duration 
of the experiment. Animal temperature was maintained 
at 37 ℃ using a heating plate and scanned using a Maestr 
Automated In Vivo Imaging System (Cambridge Research 
& Instrumentation Inc., Woburn, MA, USA).

In vivo irradiation enhancement efficacy and safety assay

For IR treatment, Balb/c nude mice bearing MKN-
45 tumors were prepared. The mice were randomized 
and assigned into 6 groups (n=5/group): 1, control (PBS 
injection); 2, RBC + iRGD; 3, RBC-iRGD; 4, irradiation 
(IR); 5, IR + RBC + iRGD; and 6, IR + RBC-iRGD. Mice 
in group 4, 5, and 6 received an irradiation with 3 fractions 
of 5 Gy a day. Irradiations were performed 10 days after the 
tumor was inoculated using linear generator. Administration 
of RBCs at 108 cells per mouse,  RBC (exact quantities as 
above) + iRGD (1 mg per mouse), or RBC-iRGD (same 
quantities as above) commenced at the time of 6 hours 
before fractionated IR via IV injection. 

On day 21 after IV injection, 1 mouse from each group 
was randomly selected and killed. The main organs (heart, 
liver, spleen, lungs, and kidneys) were dissected; fixed in 
10% neutral-buffered formalin, embedded in paraffin, 
sliced into 10-μm-thick sections; sectioned and stained with 
hematoxylin and eosin, and then examined under optical 
microscopy.

Statistical analysis

All statistical analyses and experimental charts were 
performed using GraphPad Prism 6 (GraphPad Inc., San 
Diego, CA, USA). All values provided represent mean 
± standard deviation unless otherwise noted. Normally 
distributed data were evaluated with analysis of variance 
(ANOVA). Statistical significance was set as follows: P<0.05.

Results

Fabrication of iRGD modified RBCs

RBC-iRGD were designed according to the procedure 
outlined in Figure 1. We successfully synthesized DSPE-
PEG-iRGD and analyzed it by matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS) (16). In our experiments, RBC-iRGD 
were generated by modification of DiI-stained (DiI is a 
cell membrane fluorescently labeled dye that emits red 
fluorescence) RBCs with FAM (green)-labeled iRGD-PEG 
(Figure 2A). Further confocal microscopy examination 
confirmed the effective conjugation of FAM (green)-
labeled iRGD-PEG and DiI (red)-stained RBCs by yellow 
fluorescence observation (Figure 2B,2C). In addition, we 
performed an fluorescence intensity evaluation to determine 
the ligation efficacy of the iRGD to RBCs. According to 



Zhou et al. iRGD modified RBCs boost radiosensitivity in gastric cancer2252

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(5):2249-2258 | https://dx.doi.org/10.21037/jgo-22-951

the intensity and linear regression equation (Figure 2D-2E),  
an approximate 108 iRGD molecules were labeled on a 
single RBC.

Stability evaluation of the RBC-iRGD

After constructing the RBC-iRGD, we further examined 
their stability by comparing RBCs and RBC + iRGD. As 
shown in Figure 3A, the gross examination showed a similar 
appearance among RBC-iRGD, RBCs, and RBC + iRGD. 
We also incubated the RBC-iRGD, RBCs, and RBC + 
iRGD with RPMI 1640 medium containing 10% FBS for 
48 h, and similar cell precipitates could be observed among 
RBC-iRGD, RBCs, and RBC + iRGD without hemolytic 
effects (Figure 3B). Further fluorescence decay evaluation 
showed a more than 80% fluorescence intensity after 48-h 
incubation, which was comparable to that of DiI stained 
RBCs (Figure 3C-3F).

Target efficacy of RBC-iRGD in subcutaneous gastric 
tumor mice

After completing the stability evaluation, a subcutaneous 

gastric tumor mouse model was established by injection of 
MKN-45 cells and subsequent target efficacy evaluation 
with RBC-iRGD. More effective tumor tracking illustrated 
by higher fluorescence intensity could be observed in RBC-
iRGD compared to RBCs alone or RBC + iRGD in a 60-h 
period, which was evidenced by in vivo (Figure 4A) and 
ex vitro image (Figure 4B) and quantification (Figure 4C) 
data. Moreover, decreased liver and spleen accumulation 
could be found in RBC-iRGD-injected mice compared to 
RBC + iRGD-injected mice, whereas higher fluorescence 
accumulation could be observed in RBC-injected mice. In 
addition, the tumor section further confirmed the excellent 
target efficacy of RBC-iRGD (Figure 4D-4F).

RBC-iRGD exerted enhanced RT sensitivity effects in 
subcutaneous gastric tumor mice

After confirmation of the target efficacy of the RBC-iRGD, 
further evaluation on enhanced RT sensitivity effects 
with RBC-iRGD was performed. The procedure design 
is outlined in Figure 5A. Significantly decreased tumor 
volume could be observed in mice treated with RBC + 
iRGD plus RT compared to those treated with RBC alone 
and control mice. Moreover, the highest tumor volume 
decrease was observed in mice treated with RBC-iRGD and 
RT compared to those treated with RT only mice and RBC 
+ iRGD and RT (Figure 5B). Moreover, RT or different 
modification on the RBCs did not affect the bodyweight of 
mice (Figure 5C). In addition, RT or additional modification 
of the RBCs did not affect the major organs (Figure 5D).

Discussion

The development of tumor-specific RT sensitizers is essential 
for radiation therapy. iRGD was initially used for tumor-
specific delivery of small-molecule compounds (11). Previously, 
we found in vivo and in vitro experiments that free iRGD 
can increase the radiosensitivity of breast cancer cells 4T1 
via remodeling tumor tissue penetration (17). However, free 
iRGD is quickly metabolized by the body’s liver and spleen. 
RBCs are autologous and have good biocompatibility  
(20-22). Based on this, we speculated whether the 
combination of the iRGD and RBCs could offer both 
tumor targeting and biocompatibility and whether iRGD 
could be inserted into the surface of RBCs to improve its 
tumor targetability and further increase radiosensitivity. We 
were encouraged by our previous success in constructing 
iRGD-modified T cells and the proof that iRGD could also 

RBC

RBC-iRGD

DSPE-PEG-iRGD

RBC collection

Heart

Figure 1 Schematic illustration to show the fabrication of RBC-
iRGD and the therapeutic application in mice. RBC, red blood 
cell; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[succinyl(polyethylene glycol)-3400]; PEG, polyethylene glycol; 
iRGD, internalizing arginine-glycine-aspartic acid RGD. 



Journal of Gastrointestinal Oncology, Vol 13, No 5 October 2022 2253

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(5):2249-2258 | https://dx.doi.org/10.21037/jgo-22-951

Figure 2 Fabrication of iRGD modified RBCs. (A) Upper layer, schematic illustration to show the fabrication of RBC-iRGD by 
modification of DiI (red)-stained RBCs with FAM (green)-labeled iRGD-PEG. Under layer, confocal microscopy images of single-
channel red staining and green staining, and merged images of a single iRGD-modified RBC. Scale bar =1 µm. (B) Confocal microscopy 
images of single-channel red staining and green staining, and merged images of a iRGD-modified RBC population. Scale bar =50 μm. 
(C) Fluorescence-intensity evaluation of the RBC-iRGD. The figure on the left is the gate of control RBC. Flow cytometry histograms 
of RBCs alone (middle) and RBCs incubated with DSPE-PEG-iRGD-FAM (right). (D) Correlation analysis between the MFI and 
iRGD concentration (μg). Flow cytometry histograms of RBC incubated with different amounts of DSPE-PEG-iRGD-FAM. (E) 
Correlation analysis between the MFI and iRGD concentration (μg). Data are expressed with mean ± SD; n=3. RBC, Red blood cell; DiI, 
1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; PEG, 
polyethylene glycol; iRGD, arginylglycylaspartic acid; FAM, carboxyfluorescein; SSC-A, side scatter area; FSC-A, forward scatter area; 
FITC-A, fluorescein isothiocyanate; MFI, mean fluorescence intensity.

facilitate the infiltration of lymphocytes (16). In this study, 
we used the same liposome insertion technique to construct 
RBC-iRGD. Our study found first that connecting iRGD 
to the surface of RBC is not only more efficient, but also 
has high stability. Second, RBC-iRGD exerted good tumor-
targeting efficacy. Third, RBC-iRGD could increase the 
sensitivity of radiation therapy for GC without causing 
severe side effects.

We used the lipid insertion to modify murine red 
blood cells with tumor-penetrating peptide iRGD. This 
method allows iRGD efficiently modify large numbers of 

RBCs without the need for complex procedures (19,22). 
We observed the morphology of RBC-iRGD by confocal 
microscopy and found no significant differences in the 
size and morphology between iRGD-mounted RBCs and 
ordinary RBCs.

In recent years, a considerable amount of research on the 
resistance and sensitization of tumor RT, chemotherapy, 
immunotherapy, and targeted therapy has emerged, 
especially in the field of nanomaterials and small biological 
molecules (23-26). In our team’s previous work, we 
successfully constructed the recombinant protein iRGD-
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Figure 3 Stability evaluation of the RBC-iRGD. (A) Images of RBCs with different modifications: (a) RBC; (b) RBC + iRGD; (c) RBC-
iRGD. (B) Images of RBCs with different modifications after storage in RPMI 1640 medium containing 10% fetal bovine serum for 48 h: (a) 
RBC; (b) RBC + iRGD; (c) RBC-iRGD; (d) hemolytic RBCs. (C) FAM fluorescence evaluation of the RBC-iRGD at different time points. (D) 
Analysis of the percentage of FAM-iRGD using flow cytometry. (E) DiI fluorescence evaluation of the DiI stained RBCs at different time 
points. (F) Analysis of the percentage of DiI stained RBCs using flow cytometry. DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; 
PEG, polyethylene glycol; iRGD, internalizing arginine-glycine-aspartic acid RGD; FAM, carboxyfluorescein; DiI,1,1'-dioctadecyl-
3,3,3',3'-tetramethylindocarbocyanine perchlorate; RBC, red blood cell.
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Figure 4 Tumor targeting ability of iRGD modified RBCs in a systematic administration route. (A) A tumor-bearing nude mice was 
established by subcutaneous injection of MKN-45 cells, followed by DiR stained RBCs, RBC + iRGD, and RBC-iRGD injection for tumor 
tracking. Effective tumor tracking could be observed in mice treated with RBC-iRGD compared to those treated with RBCs alone or RBC + 
iRGD in a 60-h period. Red dashed lines, subcutaneous tumors. (B) Fluorescence intensity evaluation on incised tumors from mice injected 
with RBCs, RBC + iRGD, and RBC-iRGD. Apparent fluorescence accumulation could be observed tumors treated with RBC-iRGD 
compared to those treated with RBCs alone or RBC + iRGD. (C) A significantly decreased fluorescence signal could be observed in tumor 
tissues from mice injected with RBCs alone or RBC + iRGD compared to those injected with RBC-iRGD. (D) Organ fluorescence intensity 
evaluation for the safety purpose. Less accumulated fluorescence intensity could be observed in the liver and spleen from RBC-iRGD 
injected mice compared to those with RBC + iRGD. (E) Organ fluorescence intensity evaluation of safety. Less accumulation of fluorescence 
intensity could be observed in the liver and spleen from RBC-iRGD–injected mice compared to those treated with RBC + iRGD. (F) 
Fluorescence signaling distribution analysis of the tumor sections from mice injected with RBCs, RBC + iRGD and RBC-iRGD. *, P<0.05; 
**, P<0.01; NS, not significant. RBC, red blood cell; iRGD, internalizing arginine-glycine-aspartic acid RGD; DAPI, 4',6-diamidino-2-
phenylindole.
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Figure 5 Efficacy of RBC-iRGD in enhancement of radiotherapy in subcutaneous gastric tumor mice. (A) Schematic illustration shows the 
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and RBC-iRGD injection to monitor the tumor growth. (B) Tumor volume monitoring. A significantly decreased tumor volume could be 
observed in mice treated with RBC + iRGD plus radiotherapy compared to those treated with RBCs alone and control mice. Moreover, 
the highest tumor volume decrease was observed in mice treated with RBC-iRGD plus radiotherapy compared to those treated with 
radiotherapy alone and RBC + iRGD plus radiotherapy. **, P<0.01; *, P<0.05. (C) Radiotherapy or different modification on the RBCs had 
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antiCD3 and demonstrated its antitumor efficacy by 
promoting T cell activation and infiltration. We also found 
that combining iRGD-antiCD3 with PD-1 blocking can 
further improve the anti-tumor efficacy of T cells (27).

There are some limitations in this study that could be 
addressed in future research. The molecular mechanisms 
of enhancement the sensitivity of radiation therapy have 
not been explored in depth. Whether the RBC-iRGD with 
loading drugs can further improve the efficacy. In our future 
work, we will combine iRGD with drug-carrying or tumor-
specific-antigens-carrying erythrocytes to try to further 
improve the effect of immunotherapy of tumors.

In summary, we designed and fabricated RBC-iRGD for 
tumor targeting and therapy enhancement. We subsequently 
followed this with an evaluation of its safety and efficacy  
in vivo and explored the possible mechanisms involved in its 
effects using in vitro cell system. The results demonstrated 
that RBC-iRGD exerted good tumor targeting efficacy and 
favorable effects for RT enhancement in vivo.
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