
© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2022;13(5):2505-2521 | https://dx.doi.org/10.21037/jgo-22-895

Original Article

Identification and validation in a novel quantification system of 
the glutamine metabolism patterns for the prediction of prognosis 
and therapy response in hepatocellular carcinoma

Shengjie Jin1#, Jun Cao2#, Lian-Bao Kong1

1Liver and Cholecyst Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; 2Department of Hepatobiliary Surgery, 

Clinical Medical College, Yangzhou University, Yangzhou, China

Contributions: (I) Conception and design: All authors; (II) Administrative support: S Jin, J Cao; (III) Provision of study materials or patients: J Cao; (IV) 

Collection and assembly of data: S Jin, LB Kong; (V) Data analysis and interpretation: S Jin, LB Kong; (VI) Manuscript writing: All authors; (VII) 

Final approval of manuscript: All authors.
#These authors contributed equally to this work as co-first authors.

Correspondence to: Lian-Bao Kong. The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Email: lbkong@njmu.edu.cn.

Background: Hepatocellular carcinoma (HCC) has one of the highest mortality rates worldwide. 
Abnormal glutamine metabolism (GM) has been reported to be involved in HCC progression. The current 
study sought to examine the predictive value of GM in HCC patient’s prognosis and therapy response.
Methods: The RNA-sequencing data and clinical information of HCC samples were obtained from 
The Cancer Genome Atlas (TCGA) database (N=377) and Gene Expression Omnibus (GEO) database 
(N=242). By analyzing a data set from TCGA, we showed that the GM landscape of HCC patients was 
developed based on the non-negative matrix factorization (NMF) algorithm. Univariate Cox regression and 
least absolute shrinkage and selection operator (LASSO)–penalized Cox regression analyses were used to 
construct a risk model. The accuracy of the model, which was based on the GM-related genes (GMRGs), 
was verified by Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves. We also verified the 
reliability of the model based on GEO data. Finally, the immune infiltration analysis, pathway enrichment 
analysis, and treatment response prediction results were compared to each other in the 2 risk groups.
Results: In our study, the HCC samples were divided into 2 GM-related patterns; that is, C1 and C2. The 
multi-analysis revealed that the GM-related patterns were associated with the pathologic stage, T stages, 
N stages, histologic grade, and the tumor immune microenvironment (TIME). Next, the prognostic model 
containing 5 GMRGs (i.e., aldehyde dehydrogenase 5 family member A1, ASNSD1, carbamoyl-phosphate 
synthetase 1, GMPS, and PPAT) was constructed to calculate the risk score. The high-risk group of HCC 
patients had significantly worse overall survival (OS) than the low-risk group in both datasets (P<0.001). 
Multivariate Cox regression uncover the riskScores may serve as an independent prognostic marker for 
HCC patients [TCGA: hazard ratio (HR) =2.909 (1.940−4.362), P<0.001; GEO: HR =2.911 (1.753−5.848), 
P=0.043]. Finally, we found that the prognostic model was significantly correlated with the pathologic 
stage and TIME of the HCC patients in both databases. Moreover, the prognostic model may guide the 
immunotherapy, chemotherapy, and targeted drugs choice.
Conclusions: In summary, we developed a GM-related 5-gene risk-score model, which may be a useful 
tool for predicting prognosis and guiding the treatment of HCC patients.
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Introduction

Hepatocellular carcinoma (HCC), the most frequent 
primary tumor of the liver, is a leading cause of cancer-
associated mortality worldwide (1). The poor prognosis and 
a low 5-year survival rate of HCC patients are attributed 
to the absence of recognizable physical symptoms and the 
lack of sensitive screening methods. At present, surgical 
resection remains the primary option for HCC patients (2). 
However, as a result of tumor heterogeneity, late diagnosis, 
and high recurrence, the long-term survival rate of HCC 
patients remains low. Thus, we urgently need to develop a 
feasible and reliable predictive model to better evaluate the 
prognosis of HCC patients.

Glutamine is the most abundant amino acid in human 
plasma. It provides cells with carbon and nitrogen source 
energy and maintains fatty-acid synthesis (3). Aberrant 
nutrient metabolism is considered a hallmark characteristic 
of cancer (4). Recent studies have investigated metabolic 
reprogramming in cancer, among which glutamine 
metabolism (GM) has been widely investigated because of 
its criticality (5,6). It has been reported that the effective 
inhibition of tumor-specific glutaminase (GLS) reduces 
tumor initiation (7). The term “glutamine addiction” 
has been used to describe the strong dependence of most 
cancer cells on essential nitrogen substrates after metabolic 
reprogramming (8). An increased rate of glutaminolysis and 
glutamine uptake have been shown to be critical metabolic 
features in several human cancers, including HCC (9-11).  
For instance, Glutaminase 2 (GLS2) and carbamoyl 
phosphate synthetase 1 (CPS1), glutamine metabolism-
related genes (GMRGs), are involved in glutamine 
metabolic reprogramming to promote HCC progression. 
Furthermore, GLS2 and CPS1 expression were associated 
with overall  survival  of  HCC and may serve as a 
therapeutic and diagnostic target for HCC. Thus, GM-
related genes (GMRGs) may be an important prognostic 
factor for HCC.

In this study, the expression of 23 GMRGs and their 
relationship with prognosis were analyzed based on gene 
expression and corresponding clinical information data. 
We sought to establish a risk model based on multiple 
GMRGs to predict the prognosis of HCC patients that 
can serve as a new tool for predicting the prognosis and 
guiding the treatment of HCC patients. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-22-895/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The present 
study sought to examine the predictive value of GM in 
HCC patient’s prognosis and therapy response. Our 
findings provide a GMRGs to predict the prognosis of 
HCC patients that can serve as a new tool for predicting the 
prognosis and guiding the treatment of HCC patients. The 
immune infiltration analysis, pathway enrichment analysis 
was also compared to each other in the 2 risk groups.

Data collection

We obtained 377 HCC samples with clinical information 
from The Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov/). We also obtained 242 HCC 
samples (GSE14520) (12) with clinical information and 
ribonucleic acid (RNA)-sequencing data from the Gene 
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/gds) for verification (Table 1). We acquired the GMRGs 
from the gene set “GO_GLUTAMINE_METABOLIC_
PROCESS” of the Molecular Signatures Database v 7.5.1 
for the gene set enrichment analysis (GSEA) (http://www.
broadinstitute.org/gsea/msigdb/index.jsp). The copy 
number variation (CNV) analyses were performed using 
the “Rcircos” package. We used the GSE104580 and 
GSE109211 (13) chip in this study to analyze transcatheter 
arterial chemoembolization (TACE) and sorafenib 
sensitivity.

NMF clustering

To identify the potential features of the gene expression 
profile, the original matrix was subdivided into 2 non-
negative matrices based on the NMF algorithm. A K value 
of 2 was the best cluster value, according to the cophenetic 
coefficient, sample size, and contour. Through the R 
package of “prcomp”, a principal component analysis (PCA) 
scoring system was constructed for all the selected GMRGs.

Evaluation of the immune cells in the TIME

Estimation of Stromal and Immune cells in Malignant 
Tumor tissues using Expression data (ESTIMATE), MCP-
count, quanTIseq, Cell-type identification by estimating 
relative subsets of RNA transcripts (CIBERSORT), 
Tumor IMmune Estimation Resource (TIMER), single-

https://jgo.amegroups.com/article/view/10.21037/jgo-22-895/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-22-895/rc
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
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sample gene set enrichment analysis (ssGSEA), xCell, 
and EPIC were used in R to assess the tumor immune 
microenvironment (TIME) status of each HCC sample (14).

Pathway enrichment analysis

To investigate the potential biological mechanism, we 
performed a Hall marker pathway analyses. The gene 
sets of “h.all.v7.5.1.symbols.gmt” were obtained from the 
MSigDB database for the GSEA. Through the R package of 

“GSVA,” we investigated the by gene set variation analysis 
(GSVA). The top 30 results with adjusted P values <0.05 
were considered significant.

Establishment of a prognostic risk model based on the 
GMRGs

A univariate Cox proportional-hazard regression analysis 
(UCR) was conducted to identify the survival-related 
GMRGs using the survival package in R. Next, least 
absolute shrinkage and selection operator (LASSO)—
penalized Cox regression analyses were conducted to 
further identify the genes screened by the UCR. The best 
prognostic-related genes were identified to establish a 
prognostic risk-score model for predicting prognosis. We 
stratified all the patients into high- and low-risk groups 
according to the median risk score. A Kaplan-Meier (K-M) 
analysis, log-rank test, and Cox regression were used for the 
survival analysis (the survival and survminer packages were 
used). The R package “timeROC” was used to test the time-
dependent receiver operating characteristic (ROC) curve.

The efficacy evaluation of immunotherapy, chemotherapy, 
and targeted drug therapy

We employed the “oncoPredict” package in R to perform 
the prediction process; the half-maximal inhibitory 
concentrations (IC50s) of the samples were estimated by a 
ridge regression. Next, the IC50 differences between the 2 
risk groups were compared.

To investigate immunotherapy, the sequencing data were 
uploaded to the Tumor Immune Dysfunction and Exclusion 
(TIDE) website (http://tide.dfci.harvard.edu/) (15).

Statistical analysis

We used R software 4.0.4 and the Perl language packages 
to perform all the statistical analysis and plot the results. 
The Wilcoxon rank-sum test was used to compare the 
continuous data between the 2 groups. The frequencies of 
the categorical data were compared using the chi-square 
test. The PCA was conducted using the “prcomp” function 
of the “stats” package. Threshold values for AUC between 
0.5 and 1 are considered as better than random classifiers. In 
all the analyses, a P value <0.05 was considered statistically 
significant.

Table 1 Clinical characteristics of HCC patients in TCGA and 
GEO datasets

Characteristic TCGA database GSE14520

Age (years)

≤53 111 (29.44%) 93 (38.43%)

>53 265 (70.29%) 149 (61.57%)

Unknown 1 (0.265%) 0 (0.00%)

Gender

Male 255 (67.64%) 211 (87.19%)

Female 122 (32.36%) 31 (12.81%)

Grade

G1 55 (14.59%) –

G2 180 (47.75%) –

G3 124 (32.89%) –

G4 13 (3.45%) –

Unknown 5 (1.33%) –

Stage

Stage I 175 (46.42%) 96 (39.67%)

Stage II 87 (23.08%) 78 (32.23%)

Stage III 86 (22.81%) 51 (21.07%)

Stage IV 5 (1.33%) 0 (0.00%)

Unknown 24 (6.37%) 17 (7.02%)

Survival status

Live 243 (64.46%) 136 (56.20%)

Dead 123 (32.63%) 85 (35.12%)

Unknown 11 (2.92%) 21 (35.12%)

HCC, hepatocellular carcinoma; TCGA, The Cancer Genome 
Atlas; GEO, Gene Expression Omnibus.
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Figure 1 The landscape of genetic alterations of GMRGs in TCGA-LIHC cohort. (A) The location of the CNV alterations on 
chromosomes. (B) The CNV frequencies of GMRGs. (C) The different expressions of GMRGs between normal and tumor samples. **, 
P<0.01; ***, P<0.001. GMRG, glutamine metabolism-related gene; TCGA, The Cancer Genome Atlas; CNV, copy number variation.

Results

The landscape of genetic variation of GMRGs in HCC

As Figure 1 shows, a total of 21 CNVs were identified in 
the GMRGs, including 14 CNV gains and 7 CNV losses 
(see Figure 1A,1B). In total, 19 genes differed significantly 
between the HCC and adjacent tissues (of which 9 were 
upregulated, and 10 were downregulated) (see Figure 1C). 
Our results indicated that the expression levels of the 
GMRGs differed significantly, which could potentially 
contribute to tumorigenesis.

NMF clustering of GM-related patterns

According to the 23 GMRGs in the univariate Cox 
regression model, NMF clustering was used in TCGA-
HCC cohort. K =2 was the best clustering result based 
on the cophenetic coefficients (see Figure 2A,2B). Next, 
we conducted a PCA to further examine the difference 
between C1 (N=254) and C2 (N=112) in the levels of 
GMRG transcription (see Figure 2C). Compared to C2, 
the K-M analysis suggested that the overall survival (OS) 
and progression-free survival (PFS) of the C1 patients 
were significantly longer than those of the C2 patients (see 
Figure 2D,2E; P<0.05). Finally, to examine the difference 
between C1 and C2 in terms of the clinicopathological 
characteristics, we used the chi-square test (see Figure 2F). 
As Figure 2F shows, the pathologic stage, T stages, N stages, 
and histologic grade distribution differed significantly 
between C1 and C2. The transcription profile heatmaps of 
the GMRGs in C1 and C2 are shown in Figure 2G.

The TIME of the GM-related patterns

We conducted a GSVA to examine the hallmark pathways, 
and confirmed that immune, metabolic, and carcinogenic-
related pathways were associated with GM-related patterns 
(see Figure 3A). We found that the carcinogenic metabolic-
related pathways, including in the regulation of fatty-
acid metabolism and Kirsten rat sarcoma viral oncogene 
(KRAS) signaling, were more highly expressed in the C1 
patients. Conversely, the immune and carcinogenic-related 
pathways, including the unfolded protein response, PI3K/
AKT/mTOR signaling, and Wnt/beta-catenin signaling, 
were significantly more highly enriched in the C2 patients 
(see Figure 3A). Additionally, the expression of multiple 
HLA class II molecules, such as Major Histocompatibility 
Complex, Class II, DM Alpha (HLA-DMA), Major 
Histocompatibility Complex, Class II, DM Beta (HLA-
DMB), and Major Histocompatibility Complex, Class II, 
DO Alpha (HLA-DOA), was higher in the C2 than the C1 
patients (see Figure 3B). We also found that many of the 
immune checkpoint–related genes were overexpressed in 
the C2 group, such as Programmed Cell Death 1 (PDCD1), 
Lymphocyte Activating 3 (LAG3), and Cytotoxic T-Lymphocyte 
Associated Protein 4 (CTLA4) (see Figure 3C). 

To  determine the immune-related characteristics 
between C1 and C2, we quantified the TIME composition. 
Most of the immune cells, especially the tumor-killing cells, 
including cluster of differentiation CD8+ T cells, CD4+ T 
cells, M1 macrophages, and natural killer T (NKT) cells, 
were present in the C2 group. Conversely, the regulatory T 
cells (Tregs) and M2 macrophages were present in the C1 
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Figure 2 NMF cluster results of GM-related patterns in TCGA cohort. (A) Cophenetic coefficients. (B) Consensus matrix heatmap when 
k =2. (C) PCA analysis of the OS (D), and PFS (E) of the GM-related patterns. (F) Clinical relevance of the GM-related patterns. (G) 
Differences in the clinicopathologic features and expression levels of the GMRGs. *, P<0.05; ***, P<0.001. NMF, non-negative matrix 
factorization; GM, glutamine metabolism; TCGA, The Cancer Genome Atlas; PCA, principal component analysis; OS, overall survival; 
PFS, progression-free survival; GMRG, glutamine metabolism-related gene.
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group (see Figure 3D). The above-mentioned results suggest 

that GM might affect the prognosis of the HCC patients 

through the potential regulation of these tumor-infiltrating 

immune cells (TIICs).

Identification of the prognosis-related GMRGs

First, based on the UCR model (P<0.05), a total of 9 
GMRGs were found to be significantly related to OS (see 
Figure 4). Second, 5 genes [i.e., aldehyde dehydrogenase 
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Figure 3 Correlation between GM-related patterns and the TIME. (A) Heatmap of the GSVA analysis results. (B) Differential analysis of 
the expression of HLA related to antigen presentation. (C) Differential analysis of the expression of immune checkpoints. (D) Infiltration 
of tumor immune cells in GM-related patterns. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significance. GM, glutamine metabolism; TIME, 
tumor immune microenvironment; GSVA, gene set variation analysis; HLA, Major Histocompatibility Complex.
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5 family member A1 (ALDH5A1), ASNSD1, carbamoyl-
phosphate synthetase 1 (CPS1), GMPS, and PPAT] were 
included in the LASSO-penalized Cox regression analyses. 
Based on the 5 identified prognostic GMRGs and their 
regression coefficients, a prognostic prediction system 
was established. The risk score was calculated using the 
following formula: risk score = (–0.0096 * ALDH5A1) + 
(0.0085 * ASNSD1) + (–0.0010 * CPS1) + (0.0619 * GMPS) 
+ (0.3035 * PPAT).

We next divided the HCC cases into high- and low-risk 
groups according to the median cut-off value of the scores. 
The K-M survival curves showed that the patients in the 
low-risk group generally had a better OS than those in the 
high-risk group (P<0.001; see Figure 5A). The areas under 
the curve (AUCs) were 0.753, 0.687, and 0.661 at 1, 3, 
and 5 years, respectively, in TCGA cohort (see Figure 5B).  
The scatter plot indicated that the mortality rate of HCC 
increases with the increase of risk score (see Figure 5C,5D).  
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We further investigated the expression levels of the 5 genes 
and found that the risk scores were positively correlated 
with the expression levels of ALDH5A1, ASNSD1, and 
GMPS (see Figure 5E). The efficacy of the prognostic 
model was validated by GEO cohort. The results are 
consistent with the results from the TCGA datasets (see 
Figure 6A-6E).

Independent prediction of HCC prognosis by the risk score

We then sought to further analyze the relevance of the 
risk score and clinicopathological characteristics of HCC. 
In TCGA cohort, the distribution of histologic grade, 
pathologic stage, and T stages differed significantly between 
the low- and high-risk groups (see Figure 7A). In the GEO 
cohort, the distribution of pathologic stage and tumor size 
differed significantly between the low- and high-risk groups 
(see Figure 7B). In summary, patients in the high-risk group 
had a tendency for poor prognosis results and advanced 
pathological characteristics. We the performed a UCR and 
MCR to further explore the prognostic value of the GM 
signature and various clinicopathological parameters. The 
results of the UCR showed that the GM signature (P<0.001) 
and stage (P<0.001) were significantly correlated with OS 
in both data sets (see Figure 7C,7D). The subsequent MCR 
analysis indicated that the GM signature and stage could 

be used as a robust independent prognostic indicator for 
the HCC patients in both the data sets (see Figure 7E,7F). 
Thus, the GM signature was an independent prognostic 
factor for HCC.

Correlation between the GM signature and the TIME

The above results revealed the role of GM-related 
patterns in the inflammatory response and the distinction 
in immunophenotypes, and the correlation between the 
GM signature and TIME were further analyzed. Our 
results indicated that the expression of HLA-DOA in 
the high-risk group was significantly higher than that 
in the low-risk group (see Figure 8A,8B). We also found 
that the levels of 38 immune checkpoint–related genes, 
such as YTH N6-Methyladenosine RNA Binding Protein 1 
(YTHDF1), TNF Superfamily Member 4 (TNFSF4), and 
CD40 Molecule (CD40), were overexpressed in the high-
risk group (see Figure 8C,8D). There was a tendency for 
the high-risk patients to have higher immune infiltration in 
levels, including CD8+ T cells, CD4+ T cells, macrophage, 
neutrophils, B memory cells, and NKT cells (see Figure 8E).  
The above results suggested that the GM signature 
promotes HCC progress through the potential regulation 
of these TIICs.

Correlation between the GM signature and drug sensitivity

Compared to the low-risk group, the IC50 values of 
axitinib (P=4*10-9; see Figure 9A), sunitinib (P=0.0018; see 
Figure 9B), sorafenib (P=6.2×10-6; see Figure 9C), AKT.
inhibitor.VIII (P=2×10-7; see Figure 9D), and gefitinib 
(P=9.1×10-15; see Figure 9E) were significantly higher in 
the high-risk group than the low-risk group; thus, patients 
with lower GM scores were more sensitive to these drugs. 
However, the IC50 value of gemcitabine (P<0.0001; see 
Figure 9F) was significantly higher in the low-risk group 
than the high-risk group. The results showed that the high-
risk group was more sensitive to gemcitabine. To further 
verify the above results, 2 GEO data sets (i.e., GSE109211 
and GSE104580) were used as the test set. We then used 
this same risk-score formula to analyze the patients in 
the verification cohorts. The results indicated that the 
sorafenib-response group had lower risk scores than the 
sorafenib-non-response group (P=0.0016; see Figure 9G).  
Further, the low-risk group had higher response rates 
than the high-risk group (85% vs. 53%) (see Figure 9G). 
Similarly, the TACE-response group had lower risk 

Figure 4 Forest plot of the GMRGs generated by the univariate 
Cox regression analysis. GMRG, glutamine metabolism-related 
gene.
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Figure 5 Establishment of the GM signature based on TCGA set. (A) K-M analysis between the GM score defined groups. (B) Time-
dependent ROC curve of GM score. (C) GM score distribution. (D) Survival status heatmap. (E) GM expression profile heatmap. GM, 
glutamine metabolism; TCGA, The Cancer Genome Atlas; K-M, Kaplan-Meier; ROC, receiver operating characteristic.
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scores than the TACE-non-response group (P=0.013; see  
Figure 9H). The low-risk group patients had higher 
response rates than the high-risk group patients (64% vs. 
46%) (see Figure 9H). Finally, the TIDE algorithm was 
applied to predict the immunotherapy responses of the 
HCC patients. The low-risk group had a significantly 
higher TIDE score and dysfunction score (P<0 .05; 
see Figure 9I,9J). Further, the high-risk group had a 
significantly higher Microsatellite Instability (MSI) score 
and exclusion score, which suggests that the high-risk 
group was potentially more sensitive to immunotherapy 
than the low-risk group (P<0.05; see Figure 9K,9L).

The GSEA revealed that the activated pathways in the 
high-risk group were mainly associated with the cancer and 
immune response, including the unfolded protein response, 
mTOR signaling, and PI3K/AKT/mTOR signaling. 
The pathways activated in the low-risk group were more 

involved in metabolic correlation functions, including fatty-
acid metabolism, and KRAS signaling (see Figure 10).

Discussion

Despite advances in diagnostic methods and treatment, 
the prognosis of HCC patients remains poor (2). The 
causes of HCC are heterogeneous, and metabolic, genetic 
and epigenetic alterations are associated with tumor 
progression. However, gene mutations and changes in the 
signaling pathways, which support the energy requirements 
of tumor cells, have been shown to promote the progression 
and metastasis of tumors (16). Metabolism reprogramming 
in tumors has recently been shown to be another common 
feature of cancer (8,17). Thus, research on the abnormal 
metabolism of HCC has attracted more attention.

As a non-essential amino acid, glutamine can be used 
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Figure 6 Validation of the GM signature based on the GEO set. (A) K-M analysis between the GM score defined groups. (B) Time-
dependent ROC curve of the GM score. (C) GM score distribution. (D) Survival status heatmap. (E) GM expression profile heatmap. GM, 
glutamine metabolism; GEO, Gene Expression Omnibus; K-M, Kaplan-Meier; ROC, receiver operating characteristic.
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as a nitrogen source to provide energy and antagonize 
reactive oxygen species, which can facilitate tumor 
progression (8). In the GM pathway, 2 types of GLS (i.e., 
GLS1 and GLS2) are critical enzymes (18). The expression 
of GLS1 has been reported to be elevated in HCC tissues, 
and the overexpression of GLS1 is associated with the 
poor prognosis of HCC patients; thus, GLS1 might be 
a potential target in HCC therapy (19). The evidence 
has suggested that GM plays an important role in anti-
cancer immunity. A glutamine blockade has been shown 
to suppress cancer cells and to be a highly activated 
phenotype for effector T cells (20). Targeting GM renders 
immune-checkpoint inhibitor (ICI)–resistant tumors 
susceptible to immunotherapy in a breast cancer.

In this study, we identified 2 GM-related patterns based 
on the expression of the GMRGs through NMF clustering. 

The C2 group had a poor OS probability and significantly 
elevated advanced clinicopathological stages. Further, 
the GM-related patterns not only showed significant 
differences in biological pathway enrichment, but also 
displayed significant TIME cell infiltration. Additionally, 
we found that several immune checkpoints were highly 
expressed in the C2 group. These results indicate that GM 
is significantly related to the immune landscape of HCC.

We then united the gene set of GMRGs with HCC and 
investigated the underlying prognostic value of the GMRGs 
in HCC. A risk model based on 5 prognostic GMRGs 
(i.e., ALDH5A1, ASNSD1, CPS1, GMPS, and PPAT) 
was constructed. Using this model, every HCC patient 
was assigned a risk score. In TCGA dataset, the survival 
difference between the low- and high-score HCC patients 
was significant. The ROC curves and AUCs indicated that 
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Figure 7 Identification of the independent prognostic factors. Clinical relevance of the GM score in TCGA cohort (A) and the GEO cohort 
(B). Univariate (C) and multivariate (E) Cox regression analysis of the GM score and clinicopathological parameters in TCGA cohort. 
Univariate (D) and multivariate (F) Cox regression analysis of GM score and clinicopathological parameters in the GEO cohort. *, P<0.05; 
**, P<0.01; ***, P<0.001. AFP, Alpha fetoprotein; GM, glutamine metabolism; TCGA, The Cancer Genome Atlas; GEO, Gene Expression 
Omnibus.
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Figure 8 Correlation between the GM signature and TIME. Differential analysis of the expression of HLA related to antigen presentation 
in TCGA cohort (A) and GEO cohort (B). Differential analysis of the expression of immune checkpoints in TCGA cohort (C) and the 
GEO cohort (D). (E) Infiltration of TIICs in the GM signature. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significance. GM, glutamine 
metabolism; TIME, tumor immune microenvironment; HLA, Major Histocompatibility Complex; TCGA, The Cancer Genome Atlas; 
GEO, Gene Expression Omnibus; TIIC, tumor-infiltrating immune cell.
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the models performed well. Further, the risk score could be 
used as an independent prognostic marker. The conclusion 
was verified with the GEO data. This prognostic system 
might help HCC patients to evaluate their prognosis 
by enabling the realization of individualized survival 
predictions, which reveal better treatment options.

Among the 5 model genes included in the prognostic 
signature, ALDH5A1 is essential for the synthesis of 
various molecules (21). In several tumors, such as ovarian 
cancer, the expression of ALDH5A1 is downregulated. 
ALDH5A1  could reprogram gamma-aminobutyric 
acid metabolism and acquire tumor stem cell- l ike  
properties (21). CPS1 plays crucial functions in the 
progression of cancer (22). Previous studies have shown that 
CPS1 is downregulated in HCC and is associated with a 
poor prognosis (22). GMPS is involved in cell proliferation 
and deoxyribonucleic acid replication (23). GMPS is a 
potential target for ICI therapy (24). A high expression of 
GMPS accompanied by high levels of TIICs was associated 
with a poor prognosis in esophageal squamous cell 
carcinoma (25). PPAT catalysis is the first committed step of 

de novo purine nucleotide biosynthesis (26); thus, targeting 
PPAT might be a promising cancer strategy (27). PPAT 
could serve as a prognostic biomarker in HCC (28).

Immunotherapy is an active and promising area 
of clinical oncology that has transformed the care of 
diagnosed patients at unresectable stages. However, for 
most patients, ICI treatments are not effective enough (29).  
In our study, patients in the high-risk group had higher 
levels of immune-checkpoint molecules ,  a greater 
infiltration of anti-tumor cells (e.g., CD8+ T cells and 
B cells), and lower TIDE scores. TACE and molecular-
targeted drugs are other effective strategies for treating 
advanced HCC. Drug sensitivity is influenced by numerous 
genes (30). Based on the IC50, the comparison results 
revealed that the high-risk patients were more resistant 
to axitinib, sunitinib, sorafenib, AKT.inhibitor.VIII, 
TACE, and gefitinib. The mechanism might result from 
the activation of the unfolded protein response, mTOR, 
and PI3K/AKT/mTOR signaling pathways. For example, 
sorafenib induced an unfolded protein response, and 
sorafenib resistance could be promoted by protein kinase 
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Figure 9 Drug sensitivity predictions. (A-F) Correlation between the GM signature and IC50 values of chemotherapy and targeted drugs, 
including (A) axitinib, (B) sunitinib, (C) sorafenib, (D) AKT.inhibitor.VIII, (E) gefitinib, and (F) gemcitabine. (G) Correlation between the 
GM signature and sorafenib response in the GEO dataset. (H) Correlation between the GM signature and TACE response in the GEO 
dataset. The relative distributions of (I) TIDE, (J) dysfunction, (K) MSI, and (L) exclusion score were compared between the high- and low-
GM score groups in TCGA-LICH. **, P<0.01; ***, P<0.001. TACE, transcatheter arterial chemoembolization; GM, glutamine metabolism; 
GEO, Gene Expression Omnibus; TIDE, Tumor Immune Dysfunction and Exclusion; MSI, microsatellite instability. 
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Figure 10 Heatmap showing the GSVA score of the representative hallmark pathways. GSVA, gene set variation analysis. TCGA, The 
Cancer Genome Atlas.
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RNA-like ER kinase (PERK)/activating transcription factor 
4 (ATF4) activation in HCC (31). Mutations of the PI3K-
AKT-mTOR pathway could be predictors of immune 
cell infiltration and immunotherapy efficacy in gastric 
adenocarcinoma (32). Thus, the GM-related signature may 
optimize the treatment of patients.

Conclusions

To sum up, the GM score can individualize and quantify 
the GM phenotype of patients and indicate the clinical 
characteristics, prognosis, and TIME in HCC. The GM 
score is an independent prognostic marker for HCC 
patients and can be used as a guiding indicator in the 
formulation of immunotherapy, TACE, and targeted 
drugs. However, this study had a number of limitations. 
For example, as a retrospective study, this research may 
be associated with some biases, and large, multicenter, 
prospective studies need to be conducted to further confirm 
our results.
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