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Background: Colorectal cancer (CRC) is a common global malignancy associated with high invasiveness, 
high metastasis, and poor prognosis. CRC commonly metastasizes to the liver, where the treatment of 
metastasis is both difficult and an important topic in current CRC management. 
Methods: Microarrays data of human CRC with liver metastasis (CRCLM) were downloaded from the 
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database to 
identify potential key genes. Differentially expressed (DE) genes (DEGs) and DEmiRNAs of primary CRC 
tumor tissues and metastatic liver tissues were identified. Microenvironment Cell Populations (MCP)-counter 
was used to estimate the abundance of immune cells in the tumor micro-environment (TME), and weighted 
gene correlation network analysis (WGCNA) was used to construct the co-expression network analysis. 
Gene Ontology and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway enrichment analyses 
were conducted, and the protein-protein interaction (PPI) network for the DEGs were constructed and gene 
modules were screened.
Results: Thirty-five pairs of matched colorectal primary cancer and liver metastatic gene expression 
profiles were screened, and 610 DEGs (265 up-regulated and 345 down-regulated) and 284 DEmiRNAs 
were identified. The DEGs were mainly enriched in the complement and coagulation cascade pathways and 
renin secretion. Immune infiltrating cells including neutrophils, monocytic lineage, and cancer-associated 
fibroblasts (CAFs) differed significantly between primary tumor tissues and metastatic liver tissues. WGCN 
analysis obtained 12 modules and identified 62 genes with significant interactions which were mainly related 
to complement and coagulation cascade and the focal adhesion pathway. The best subset regression analysis 
and backward stepwise regression analysis were performed, and eight genes were determined, including F10, 
FGG, KNG1, MBL2, PROC, SERPINA1, CAV1, and SPP1. Further analysis showed four genes, including 
FGG, KNG1, CAV1, and SPP1 were significantly associated with CRCLM.
Conclusions: Our study implies complement and coagulation cascade and the focal adhesion pathway play 
a significant role in the development and progression of CRCLM, and FGG, KNG1, CAV1, and SPP1 may 
be metastatic markers for its early diagnosis.
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Introduction

Colorectal cancer (CRC) is one of the most common 
digestive tract malignancies worldwide, with the third 
highest incidence and second highest mortality (1). 
More than 2.2 million new cases of CRC are expected to 
occur globally by 2030, including more than 1.1 million 
deaths. Despite the continuous improvement of screening 
strategies and treatment methods, approximately 25% of 
CRC patients have already developed metastases at initial 
diagnosis and half of patients will develop metastatic disease 
(2,3). The 5-year survival rate of such advanced CRC 
patients is low, which seriously threatens human health (4). 
According to medical data, the liver is the most common 
target organ of metastasis from CRC (5,6). 

Between 16% and 26% of patients have liver metastases 
at the time of diagnosis, and 18–25% will have liver 
metastases after primary radical resection (7). There has 
been a significant improvement in the survival of CRC 
including CRC with liver metastasis (CRCLM) in recent 
decades. Patients without any metastasis had a 5-year OS of 
75.1% compared to 25.2%, 45.7%, and 12.7% respectively 
for patients with liver-only metastases, lung only metastases, 
and liver and lung metastases combined. 

The key problems of liver metastasis in CRC currently are 
the lack of serum markers such as carcinoembryonic antigen 
(CEA), carbohydrate antigen (CA)199 which have high 
sensitivity and specificity in the diagnosis of CRCLM (8,9). 
Now the diagnosis of CRCLM still depends on imaging 
examination and focus biopsy, and the mechanism of 
CRCLM has not been fully elucidated (10). The treatment 
of liver metastasis is both difficult and an important topic in 
current CRC management. Several treatment options are 
available for patients with CRCLM, of which the surgical 
resection is the first choice. Other treatments include the 
chemotherapy, interventional therapy, chemoradiotherapy, 
targeted therapy and multidisciplinary comprehensive 
treatment (11-13).

The combination of systemic chemotherapy with 
resection has been shown to provide a 5-year survival 
of 50%, while only about 5% for patients treated with 
palliative intent (14,15). Therefore, there have been many 
attempts to explore the underlying mechanism of liver 
metastasis, and gene expression profiling has become 

a popular strategy to identify genes involved in the 
progression and the prognosis of different cancers including 
CRC (16-19). 

Weighted gene co-expression network analysis 
(WGCNA) is a systematic biology method that describes 
the correlation patterns between genes in sequencing 
samples (20) by constructing weighted gene co-expression 
networks based on gene expression and dividing these 
into co-expression modules. Gene expression in the same 
co-expression module is similar and implies the similar 
functions. WGCNA has been widely used to identify key 
genes or therapeutic targets in many diseases, including 
various cancers (21-23). 

In this study we used gene expression analysis in the 
diagnosis of liver metastasis from the aspects of gene 
molecules and signalling pathways to analyze the interaction 
between gene proteins for the diagnosis of CRCLM. Our 
results can be used to help the classification, screening, 
diagnosis, treatment, and prognosis of CRC. Further the 
results of potential biomarkers detection can be used to 
predict or diagnose whether CRC patients may suffer from 
liver metastasis, providing certain treatment options for 
subsequent targeted therapy. We present the following 
article in accordance with the STREGA reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-22-965/rc).

Methods

Data extraction and integration

Microarray data of human CRC were downloaded from the 
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/geo/query) containing 1,374 datasets. We screened 
the data of CRCLM, and finally filtered two databases, 
including GSE81558 (Affymetrix Human Gene Expression 
Array & Affymetrix Multispecies miRNA-3 Array, containing 
19 primary CRC and paired liver metastases) and GSE35834 
(Affymetrix Human Exon 1.0 ST Array & Affymetrix 
Multispecies miRNA-1 Array, containing 16 primary CRC 
and paired liver metastases). Among these 35 pairs of patients, 
10 pairs were synchronous liver metastases, and 25 pairs  
were metachronous liver metastases. The study was 
conducted in accordance with the Declaration of Helsinki (as 
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revised in 2013). 
R package in SilicoMerging (24) was used to merge 

the two datasets and further removed batch effects (25) to 
obtain the final dataset, and a total of 35 cases of primary 
CRC and 35 paired liver metastases were included in the 
integrated analysis.

Identification of differentially expressed genes (DEGs)

To identify the features of CRCLM, the DEGs between 
primary CRC tissues and liver metastases tissues were 
analyzed. In addition, the DEGs between synchronous 
liver metastases and metachronous liver metastases were 
identified. Probes were converted into gene symbols, and the 
average expression value was used as the only value of the 
gene with multiple corresponding probes. Data were then 
transformed using a log2 transformation, and the DEGs were 
identified using limma package at a cut-off value |log2[fold 
change (FC)]| >1.2 and an adjusted P<0.05 (26). Kyoto 
Encyclopaedia of Gene and Genome (KEGG) pathway 
enrichment analysis of candidate DEGs was performed with 
the R-package clusterProfiler version 3.14.3. An adjusted P 
value <0.05 was considered statistically significant.

Construction of the competing endogenous RNA (ceRNA) 
network

The expression difference between the CRC and CRCLM 
was utilized to determine the DEmiRNAs and DEGs. The 
adjusted P value and the absolute log value of fold-change 
(log2|FC|) were calculated using R software with limma 
package. The criteria of P value <0.05 and log2|FC| >1.2 
were adopted to select the DEmiRNAs. Targeted mRNAs 
of the collected DEmiRNAs were predicted using miRDB 
(http://www.mirdb.org/). The selected targeted mRNAs 
were merged with DEGs. The overlapped gene sets were 
analyzed with Venn Plot, and the pairs of miRNAs and 
mRNAs were subsequently constructed.

Estimation of the tumor microenvironment (TME)

The Microenvironment Cell Populations (MCP)-counter (27)  
was used to estimate the abundance of T cells, CD8+ 
T cells, cytotoxic lymphocytes, B lymphocytes, natural 
killer (NK) cells, monocytic lineage, myeloid dendritic 
cells, neutrophils, endothelial cells (ECs), and fibroblasts 
in the TME for each sample. MCP-counter scores were 
defined as the log2 average expression of the TME for each 

population. The difference of the MCP-counter scores of 
the two groups was compared by Student’s t-test. A P value 
<0.05 was considered statistically significant. A higher score 
means the more significant ratio of the corresponding parts 
in the TME. In the subsequent WGCNA, these scores 
of immune infiltrating cells were further combined into 
module correlation analysis for mining immune-related 
modules and genes. 

WGCNA for the determination of key genes

The WGCNA was used for constructing co-expression 
network analysis and mining modules related to clinical 
information (28). We screened genes with the top 25% 
by analysis of variance (ANOVA) and formed 12 effective 
modules by hierarchical clustering of the topological 
overlap matrix. Metastasis related genes were selected from 
the significant modules associated with metastasis and high 
level of immune infiltrations by correlation analysis and 
KEGG pathway enrichment analysis. 

Regression models for predicting liver metastases

We used the STRING database to construct the protein-
protein interaction (PPI) network of the above-mentioned 
genes and screened out hub genes with the most extensive 
associations with others. Cytoscape (Version 3.9.1) was 
used to map the network relationships of the above genes. 
The optimal subset regression (leaps, R) and the backward 
stepwise regression (MASS, R) were further used to select 
the core role genes in the process of CRCLM. Finally, the 
obtained Akaike Information Criterion (AIC) value reached 
the minimum value and a regression model for predicting 
liver metastasis in CRC was constructed.

Statistical analysis

To calculate the mean and standard deviation, the numerical 
data were analyzed by one-way ANOVA. A two-tailed 
Student’s t-test was used to verify the significance of 
the differences between the groups. P value <0.05 was 
considered as statistical significance.

Results

Data pre-processing

To identify novel gene signatures in CRCLM patients, we 
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analyzed gene expression profiles by microarray (available 
at https://cdn.amegroups.cn/static/public/10.21037 
jgo-22-965-1.xlsx), and after the batch effects across 
platforms were removed and adjusted (Figure S1), a total of 
17,541 probes were selected for further analysis.

Through the following analysis (Figure 1), we constructed 
the co-expression network and best-fitting logistic regression 
models, and screened the potential biomarkers associated 
with CRCLM.

Identification of DEGs between the primary tumor and 
liver metastases, and establishment of the  
DEGs-DEmiRNAs regulatory network 

To identify the DEGs associated with CRCLM, we 
performed differential expression analysis on the primary 

tumor tissues and metastatic liver tissues of the above 
35 CRC patients. As shown in Figure 2A and vailable 
at https://cdn.amegroups.cn/static/public/10.21037 
jgo-22-965-2.xlsx, a total of 610 DEGs were identified, 
of which 265 were up-regulated and 345 were down-
regulated. After KEGG functional enrichment analysis, 
the down-regulated DEGs showed significant enrichment 
in renin secretion, the cyclic adenosine monophosphate 
(cAMP) signalling pathway, and pathways in cancer 
(Figure 2B), while up-regulated DEGs were enriched 
in complement and coagulation cascades, chemical 
carcinogenesis, and retinol metabolism (Figure 2C). 

We further analyzed the mRNA-miRNA interaction 
to determine whether some DEGs regulated the liver 
metastasis by miRNA, and based on the aforementioned 
cu t -o f f  c r i t e r i a ,  a  s e t  o f  284  DEmiRNAs  were 

35 colorectal cancer patients

Merge datasets

35 colon samples
35 liver samples 

Difference analysis

MiRDB, TargetScan DEGs

KEGG analysis

GSEA analysis

Correlation analysis

Co-expression network

Hub genes

Regression model

miRNAs-mRNAs

miRNA Array

35 colon samples
35 liver samples 

WGCNA Difference analysis

DEGs

Difference analysis MCP-counter

STRING-PPI analysis

Expression analysis

Gene Expression Array

20 metachronous samples
50 synchronous samples 

Figure 1 Flowchart of construction and analysis of co-expression networks. WGCNA, weighted gene correlation network analysis; MCP, 
Microenvironment Cell Populations; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopaedia of Gene and Genome; PPI, 
protein‑protein interaction; GSEA, gene set enrichment analysis.

https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-1.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-1.xlsx
https://cdn.amegroups.cn/static/public/JGO-22-965-Supplementary.pdf
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-2.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-2.xlsx
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Figure 2 Analysis of differential expression genes in CRCLM. (A) The volcano plot shows identification of the DEmRNAs in the primary 
tumor tissues and metastatic liver tissues. The red colour represents up-regulated genes, while the green colour indicates down-regulated 
genes. KEGG functional enrichment circle map of down-regulated (B) and up-regulated (C) genes. (D) Construction of the miRNA-mRNA 
regulatory network. CRCLM, colorectal cancer with liver metastasis; DE, differentially expressed; KEGG, Kyoto Encyclopaedia of Gene 
and Genome. 
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identified (available at https://cdn.amegroups.cn/static/
public/10.21037jgo-22-965-3.xlsx), among which only 
11 DEmiRNAs have been reported in the miRDB 
database (available at https://cdn.amegroups.cn/static/
public/10.21037jgo-22-965-4.xlsx). The DEmiRNAs-
mRNA regulatory network comprised of eight DEmiRNAs, 
17 down-regulated DEGs, and six up-regulated DEGs 
(Figure 2D). 

As the DEGs were enriched in the complement and 
coagulation cascade pathways and renin secretion, it was 
necessary to further explore the relationship between the 
immune infiltration environment and CRC metastasis. 
However, no DEGs related to these two pathways were 
identified in the DEmiRNAs-DEGs regulatory network, 

suggesting genes associated with these two pathways 
regulate CRCLM but not through miRNAs.

Differential expression analysis of CRC with synchronous 
and metachronous liver metastases

As synchronous metastases of CRC are considered to hold 
worse prognostic value compared with metachronous 
metastases (29,30), we further explored the potential 
factors responsible for the differences in tumor behaviour. 
We identified 186 DEGs in the colorectal tissues of 
synchronous liver metastases versus metachronous liver 
metastases from CRC, among which 99 DEGs were 
up-regulated and 87 were down-regulated (Figure 3A 

https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-3.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-3.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-4.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-4.xlsx
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Figure 3 Differential expression analysis of different liver metastasis types in CRC patients. Heat map of DEGs between synchronous 
and metachronous liver metastases in primary colorectal tissues (A) and metastatic liver tissues (B) (the top 60 DEGs are shown). (C) Venn 
diagram shows the up-regulated DEGs and down-regulated DEGs in colorectal tissues and metastatic liver tissues of CRCLM. CRC, 
colorectal cancer; DEGs, differentially expressed genes; CRCLM, colorectal cancer with liver metastasis.
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and table available at https://cdn.amegroups.cn/static/
public/10.21037jgo-22-965-5.xlsx). Moreover, 58 up-
regulated DEGs and 44 down-regulated DEGs were 
identified in liver tissues between synchronous liver 
metastases and metachronous liver metastases of CRC 
(Figure 3B and Table S1).

A Venn diagram was then used to display the number of 
DEGs between the two tissues, and the overlapping DEGs 
were further analyzed (Figure 3C). Notably, RPL22L1, 
SNCAIP, SYNPR, and KRT40 were highly expressed in 
metachronous liver metastases, and CRISP1, PIWIL4, 
TRIM36, ATP12A, and ZDHHC11B were highly expressed 
in synchronous liver metastases.

Immune infiltrating cells may be associated with CRCLM

Immune cell infiltrations were then characterized in 
colorectal tissues and liver tissues. We first calculated 
the abundance of immune cells using the MCP-counter 
algorithm, and the results showed cancer-associated 
fibroblasts (CAFs) were more abundant than any other cell 
types in the TME (Figure 4) (Table S2). Moreover, there 
was a significant difference in the level of CAFs between 
primary tumor tissues and metastatic liver tissues (P=0.04).

While neutrophils showed the most significant 
difference in MCP-counter score (P=0.0003) between 
the two tissues, other immune cells including monocytic 
lineage (P=0.02), ECs (P=0.05), and B lymphocytes 
(P=0.04) also differed significantly. This indicates there are 

significant changes in the immune environment between 
primary and metastatic lesions, although whether there is 
a causal relationship or correlation with metastasis needs 
to be further explored.

Construction of weighted gene co-expression network and 
PPI network

WGCNA can build gene co-expression networks to mine 
network modules closely related with clinical traits, and 
was used to determine the interactions of the correlation 
between immune infiltrating cells and genes. A total of 12 
modules were obtained by clustering the dissimilarity based 
on the consensus topological overlap, and the clustering 
dendrograms and module-trait relationship are shown in 
Figure 5A and online (available at https://cdn.amegroups.
cn/static/public/10.21037jgo-22-965-6.xlsx).

As there were 441 genes identified in the yellow module 
and it had the highest association (0.6) with liver metastases 
in the heat map of the module-trait relationship, this 
module was selected for further analysis. The results showed 
441 genes were significantly enriched in complement 
and coagulation cascades (Figure S2A) and, interestingly, 
only neutrophils among the immune infiltration cell 
types had a strong correlation (0.79) with the module. 
Based on the STRING database, 145 of the 441 genes 
had high interactions (combined score >0.4), including  
41 genes involved in complement and coagulation cascades 
(Figure 5B and Figure S2B). Collectively, we speculated the 

Figure 4 MCP-counter scores of the infiltrating immune cells in primary colorectal tissues (A) and metastatic liver tissues (B). MCP, 
Microenvironment Cell Populations; NK, natural killer.

A BMCP-counter colon MCP-counter liver

available at https://cdn.amegroups.cn/static/public/jgo-22-965-3.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-5.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-5.xlsx
https://cdn.amegroups.cn/static/public/JGO-22-965-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-22-965-Supplementary.pdf
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-6.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-22-965-6.xlsx
https://cdn.amegroups.cn/static/public/JGO-22-965-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-22-965-Supplementary.pdf
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Figure 5 Construction of WGCNA network and PPI network. (A) A gene dendrogram containing 12 modules was obtained by clustering 
the dissimilarity based on consensus topological overlap. Each module contains a set of highly connected genes and is represented by 
different colours. The correlation between consensus modules and the clinical indicators (including the abundance of immune factors) of 
CRCLM was constructed. The intensity and direction of correlation are indicated by different colours (red, positive; blue, negative), the 
numbers in the table represent the correlation coefficients, and P values are printed in parentheses below. PPI network of genes from the 
yellow (B) and brown (C) modules. The size of the ellipse corresponds to the combined score among the gene members in the module, and 
the magenta circles (B) and yellow circles (C) represent the gene sets (KEGG enrichment analysis) of the most enriched pathways in their 
respective module networks. DC, dendritic cell; WGCNA, weighted gene correlation network analysis; PPI, protein‑protein interaction; 
CRCLM, colorectal cancer with liver metastasis; ME, module eigengene; NK, natural killer; KEGG, Kyoto Encyclopaedia of Gene and 
Genome.

complement and coagulation cascade pathways might be 
the key pathways for the liver metastasis of CRC, and the 
differences may be caused by changes to the TME.

The brown module had a strong correlation with ECs 
(0.83) and CAFs (0.87), and KEGG analysis (Figure S2C) 
results demonstrated these genes were mainly involved in 
the focal adhesion and phosphoinositide 3-kinase (PI3K)-
Akt signalling pathways. Further, 158 genes were identified 
in the brown module (Figure 5C), and 21 were involved in 
regulation of the focal adhesion pathway (Figure S2D). 

In summary, we identified the yellow module and brown 
module as significantly related to CRCLM, and the 62 
genes with significant interactions were mainly related to 
complement and coagulation cascade and focal adhesion 
pathways. 

Construction of best-fitting logistic regression models and 
identification of potential metastasis markers

Best subset regression selects the best model from all 
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possible subsets according to some goodness-of-fit criteria 
(31,32). To find the best fit model for CRCLM from 
all possible subset models, we first performed optimal 
subset regression analysis of 41 hub genes associated with 
complement and coagulation cascades in the yellow module 
and 10 genes were identified (adjusted R2=0.85, Figure S3A). 
Following the same method, eight genes (adjusted R2=0.75) 
were screened from the set of 21 hub genes related to the 
focal adhesion pathway in the brown module (Figure S3B). 
The best subset regression analysis and backward stepwise 
regression analysis were performed on the above 18 genes, 
and finally, eight genes (adjusted R2=0.9, AIC =−240.56) 
were determined, including F10, FGG, KNG1, MBL2, 
PROC, SERPINA1, CAV1, and SPP1 (Figure S3C,S3D).

The best-fitting logistic regression model was then 
established to calculate the probability of liver metastasis in 
CRC. When P value >0.5, CRC samples were deemed to 
be more prone to have liver metastases, while P value <0.5 
indicated a low risk of developing liver metastases.

In addition, four genes including FGG, KNG1, CAV1, 
and SPP1 were significantly associated with CRCLM 
(P<0.0001, Figure S3D), and we hypothesized they might 
be potential metastatic markers for its early diagnosis.

Discussion

CRC is characterized by an aggressive phenotype, poor 
clinical outcomes, and a high rate of mortality, especially 
when liver metastasis occurs (33,34). Accordingly, there 
is an urgent need to find potential molecular biomarkers 
for CRC that could help to enhance the diagnosis and 
treatment efficacy of CRCLM.

Recent studies have shown numerous molecular 
biomarkers in cancer (35-37). For example, KNG1 and FGG 
have been found to be correlated with the progression and 
prognosis of hepatocellular carcinoma (38,39), and SPP1 
and CAV1 with overall survival in lung adenocarcinoma 
(40,41). Currently, there are no suitable serum markers 
with have high sensitivity and specificity in the diagnosis 
of CRCLM. Tumor markers such as CEA, CA19-9, 
CA242, CA72-4 in combination with biochemical markers 
such lactase dehydrogenase (LDH), gamma glutamyl 
transpeptidase (GGT) for liver function may improve the 
sensitivity and specificity for screening liver metastases in 
patients with CRC (42). Combining evaluation of SATB2 
with CK20 and CDX2 to form a three-marker panel in 
liver biopsy tissues by immunohistochemistry could be used 
to detect the CRCLM (43). Our results revealed 62 genes 

with significant interactions which were mainly related to 
complement and coagulation cascade and the focal adhesion 
pathway, and the FGG, KNG1, CAV1, and SPP1 genes 
were significantly associated with liver metastasis in CRC. 
Taken together, these findings suggest these genes might be 
metastatic markers for the early diagnosis of CRCLM.

Gene expression can be influenced by different factors 
including miRNAs (44,45), and to explore the possible roles 
of miRNAs in the complement and coagulation cascade 
pathways and renin secretion, we further analyzed the 
mRNA-miRNA interaction in miRNA array. However, 
no DEGs related to these two pathways were identified 
in the DEmiRNAs-DEGs regulatory network, suggesting 
the genes of these two pathways may not regulate CRC 
metastasis through miRNAs. 

Previous studies have revealed the relationships between 
immune cell infiltration, tumor purity, and biomarker 
gene expression to be quite valuable for developing 
appropriate immunotherapy (46,47). Studies have explored 
the correlations between tumor purity and marker genes 
expression to predict the clinical outcomes in different 
cancers (47,48). Liu et al. have assessed the immune cells 
in normal and cancerous human head and neck squamous 
cell carcinoma (HNSC) tissues using the CIBERSORT 
method (49) and found different cells, including neutrophil, 
B cells, CD4+ T cells, and CD8+ T cells were increased 
in the cancerous tissues compared with normal controls. 
Consistently, in our study, we also uncovered significant 
differences in neutrophils, monocytic lineage, and CAFs 
between primary tumor tissue and their liver metastases, 
which may help clinicians gain deeper insights into the 
TME landscape of CRCLM (Figure 6). 

TME is a population of cells constituted with tumor cells 
and stromal cells recruited by tumor cells including T cells, 
macrophages, fibroblasts and so on (50). In CRCLM, the 
liver-infiltrating immune cells include neutrophils, myeloid-
derived suppressor cells (MDSCs), Monocyte, tumor-
associated macrophages (TAMs), metastasis-associated 
macrophages (MAMs), NK cells and so on (51). Moreover, 
the infiltrating immune cells found in the primary tumor 
of CRC differs from those in liver metastases in terms of 
their spatial distribution. More immunosuppressive cells are 
present in the liver metastases, with the most pronounced 
differential distribution found for macrophages (52).  
The infiltrated immune cells in the TME are closely 
associated with tumorigenesis and metastasis, as well as 
the cellular response to therapy. CD3+ and CD8+ T cell 
density correlates with better prognosis and high regulatory 

https://cdn.amegroups.cn/static/public/JGO-22-965-Supplementary.pdf
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Figure 6 The complement and focal adhesion pathway in the TME. MBL, mannan-binding lectin; MASP1, MBL-associated serine protease 
1; MASP2, MBL-associated serine protease 2; MAC, membrane attack complex; FAC, focal adhesion complex; IACs, integrin adhesion 
complexes; NK, natural killer; TME, tumor micro-environment.
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T cell (Treg cell) infiltrate correlates with shorter overall 
survival (53,54). Both the density and morphology of TAMs 
correlate with survival in patients with CRCLM (55,56). 
Lymphocyte infiltration and plasma cell infiltration are 
linked to prolonged patient survival in CRCLM (57).

The composition of the TME includes complex immune 
factors which play an important role in liver metastasis 
of CRC. The lectin pathway is one of three pathways of 
complement pathway and sees MBL and MASP2 form 
a complex, which cleaves C4 and C2 and generates C3 
convertase. C3 convertase promotes the proliferative 
activation of complement and promotes the formation of 
C5 convertase on the cell surface, which binds to C6, C7, 
and C8, forming a C5b-8 complex, which polymerizes 
several C9 molecules, forming the membrane attack 
complex (MAC). Complement system activation and 
generation of anaphylatoxins orchestrate an inflammatory 
and immune responses .  Anaphylatox ins  act ivate 
macrophages, neutrophils, and monocytic lineages, resulting 
in the production of cytokines which increase vascular 
permeability and enhance neutrophil extravasation and 
chemotaxis (58-60). ECs and fibroblasts are also key players 

in the TME and produce complement proteins, express 
regulators, and a lower level of complement receptors. 

Force sensing between cells and cell matrix via integrin 
and their associated integrin adhesion complexes (IACs) 
is involved in cell migration, matrix remodelling, and 
mechanosensing (61). In addition, focal adhesion kinase 
(FAK), regulated by integrin signalling, plays an important 
role in promoting TME remodelling, and activated FAK 
can promote angiogenesis in ECs (62,63) and recruit 
immune cells such as fibroblasts (64). However, direct 
evidence on how genes including FGG, KNG1, CAV1, 
and SPP1 regulate liver metastasis and immune cells 
infiltration in CRC is lacking, and the precise pathways and 
mechanisms requires further study.
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Table S1 DEGs identified in the liver tissues of CRC patients by comparing the synchronous and metachronous liver metastases

Tag logFC AveExpr t P value adj.P.Val B

PAGE2 −1.0588 8.834422 −2.24183 0.03189 0.999863 −3.51181

GRPR −0.73281 10.40107 −2.68668 0.011006 0.999863 −2.78859

RPL22L1 −0.69118 12.07632 −2.7427 0.009578 0.999863 −2.69361

SLC5A1 −0.69059 13.64516 −2.12049 0.0412 0.999863 −3.6792

PCDHGA10 −0.60875 12.88078 −2.36057 0.024008 0.999863 −3.31814

MAGEC1 −0.51665 10.84899 −3.66535 0.00082 0.999863 −1.00408

CAPN6 −0.50413 12.20878 −2.4412 0.019892 0.999863 −3.19115

SYNPR −0.48609 10.98673 −2.19649 0.034842 0.999863 −3.56779

FZD3 −0.47134 12.80018 −2.26848 0.029641 0.999863 −3.45974

GDPD1 −0.46835 12.23495 −2.74397 0.009548 0.999863 −2.69144

SNCAIP −0.4631 12.71017 −2.44112 0.019896 0.999863 −3.19129

CEL −0.46104 13.4432 −2.09391 0.043655 0.999863 −3.71751

CEP290 −0.45753 12.24604 −2.42035 0.02089 0.999863 −3.22425

GLB1L3 −0.45568 11.07772 −2.89959 0.006445 0.999863 −2.42204

SHISA9 −0.45109 13.05117 −3.49356 0.001323 0.999863 −1.33282

TUBB8 −0.45079 11.062 −2.34694 0.024776 0.999863 −3.33933

KRT40 −0.45029 11.63853 −2.58329 0.01417 0.999863 −2.96093

ANXA13 −0.44575 13.21112 −2.89741 0.006481 0.999863 −2.42586

KLHL32 −0.42718 11.55337 −2.37344 0.023303 0.999863 −3.29805

PPBP −0.42602 12.54828 −2.11922 0.041314 0.999863 −3.68103

MAGEC2 −0.41789 11.1698 −2.05843 0.047131 0.999863 −3.7681

HRH4 −0.4166 9.241159 −2.32105 0.026295 0.999863 −3.37937

PAQR5 −0.40607 13.23308 −2.21422 0.03349 0.999863 −3.5414

KRT75 −0.38235 11.93962 −3.10741 0.003756 0.999863 −2.05086

OR1A2 −0.36087 11.34791 −2.11318 0.041862 0.999863 −3.68976

OR10A5 −0.34537 11.14506 −2.53951 0.015748 0.999863 −3.03271

C20orf96 −0.34393 12.32322 −2.24036 0.031584 0.999863 −3.50223

ANGPTL5 −0.33751 7.421051 −2.17226 0.036767 0.999863 −3.6036

WFDC11 −0.33615 10.45289 −2.20951 0.033844 0.999863 −3.54842

MUC7 −0.33369 10.82261 −2.10059 0.043025 0.999863 −3.70791

EREG −0.33121 13.95892 −2.41999 0.020908 0.999863 −3.22483

ZNF214 −0.32956 11.58271 −2.10793 0.042344 0.999863 −3.69734

STXBP4 −0.32221 12.55768 −2.23559 0.031924 0.999863 −3.5094

USP29 −0.31581 10.05404 −2.17741 0.03635 0.999863 −3.59601

TCEAL6 −0.31393 12.38811 −3.44433 0.001515 0.999863 −1.4261

AADACL2 −0.30081 10.27 −2.14081 0.039406 0.999863 −3.64967

CFTR −0.29948 14.04541 −2.3174 0.026516 0.999863 −3.38499

WFDC9 −0.29731 10.84212 −2.81509 0.007988 0.999863 −2.56929

OR10G8 −0.29592 12.18128 −2.04379 0.048636 0.999863 −3.7888

ASB14 −0.28425 10.65682 −2.64965 0.012055 0.999863 −2.85077

IL36G −0.27303 11.93714 −2.49854 0.017368 0.999863 −3.09921

DSC2 −0.26774 13.8035 −2.43185 0.020334 0.999863 −3.20602

GTSF1L −0.26605 11.07386 −2.08572 0.044436 0.999863 −3.72924

TMEM14EP −0.26336 11.80761 −2.13798 0.039652 0.999863 −3.65381

ZSCAN5A 0.263856 12.0826 2.251756 0.030783 0.999863 −3.48506

ISL1 0.267669 11.28736 2.289225 0.028278 0.999863 −3.42817

CDCA5 0.268206 13.12138 2.419712 0.020921 0.999863 −3.22526

PXK 0.27467 13.07765 2.088919 0.044129 0.999863 −3.72466

RPTN 0.27978 11.00448 2.412981 0.021254 0.999863 −3.23591

GFPT2 0.281686 12.63883 2.248426 0.031015 0.999863 −3.49008

TEX13A 0.284459 11.87127 2.6339 0.012529 0.999863 −2.87706

NKAIN3 0.288958 10.93199 2.043366 0.048679 0.999863 −3.78939

EPHX3 0.290299 12.66766 2.640093 0.012341 0.999863 −2.86673

FAM167A 0.294564 12.66914 2.185533 0.035701 0.999863 −3.58401

ZNF75D 0.295719 12.36248 2.137618 0.039683 0.999863 −3.65433

IQCF2 0.308313 10.60545 2.62379 0.012842 0.999863 −2.89389

CLEC9A 0.312115 10.75696 2.16988 0.036961 0.999863 −3.60711

ZNF655 0.312992 13.31962 2.621054 0.012928 0.999863 −2.89844

POU4F3 0.316591 11.97574 2.379243 0.022992 0.999863 −3.28898

SNORA77 0.327117 12.8573 3.170393 0.003179 0.999863 −1.93606

TRIM36 0.33054 12.42079 2.089804 0.044045 0.999863 −3.72339

OSBPL6 0.330661 12.60858 2.083214 0.044678 0.999863 −3.73282

SH2D1B 0.335444 10.89708 2.343105 0.024996 0.999863 −3.34528

ADGRE1 0.336423 11.84148 2.407019 0.021552 0.999863 −3.24532

PIWIL4 0.345199 13.45551 2.664765 0.011616 0.999863 −2.82545

KBTBD8 0.345277 11.20389 2.087047 0.044309 0.999863 −3.72734

ARNTL 0.348979 13.09691 4.406286 9.66E−05 0.789844 0.452101

BNIP3 0.352699 13.88717 2.19846 0.034896 0.999863 −3.56792

CRISP1 0.353202 9.863335 2.493978 0.017558 0.999863 −3.10658

NME8 0.358893 9.159359 2.099194 0.043156 0.999863 −3.70992

TRIM48 0.362365 10.71387 3.073574 0.004106 0.999863 −2.1121

GAD1 0.365212 11.90011 2.27235 0.029382 0.999863 −3.45387

PPIL6 0.366826 11.92791 2.426618 0.020585 0.999863 −3.21432

CDC14C 0.367293 10.77132 2.733105 0.00981 0.999863 −2.70995

HUNK 0.381564 12.76172 2.68875 0.01095 0.999863 −2.7851

PLEKHG1 0.3935 12.76051 2.629646 0.01266 0.999863 −2.88415

RNASE3 0.395957 11.72401 2.258932 0.030288 0.999863 −3.47421

SDR42E1 0.417584 12.83105 3.271672 0.002424 0.999863 −1.74943

CYP26A1 0.428998 11.8507 2.2282 0.032458 0.999863 −3.52049

SLAIN1 0.44549 12.2229 2.379446 0.022981 0.999863 −3.28866

OR6C68 0.465618 10.25114 4.291648 0.000135 0.789844 0.224343

CD226 0.484044 11.60287 2.279453 0.028913 0.999863 −3.44307

DPH3P1 0.487039 9.846845 2.097148 0.043348 0.999863 −3.71286

CXorf58 0.501813 9.168746 2.226285 0.032598 0.999863 −3.52336

TAS2R31 0.504158 11.09448 2.5893 0.013966 0.999863 −2.95103

KIAA0319 0.506881 12.32017 2.635829 0.01247 0.999863 −2.87385

RPGRIP1 0.524015 10.06052 2.571256 0.014589 0.999863 −2.98074

SPAG16 0.531744 12.71616 2.487472 0.017831 0.999863 −3.11706

MIR99AHG 0.570395 9.453328 2.132419 0.040138 0.999863 −3.66189

ADGRG2 0.579713 11.264 2.115231 0.041675 0.999863 −3.6868

OR6C1 0.588606 8.623054 2.078193 0.045166 0.999863 −3.73999

ATP12A 0.598017 12.03793 2.148107 0.038779 0.999863 −3.63903

ZDHHC11B 0.633251 12.8559 2.568465 0.014688 0.999863 −2.98533

SPINK7 0.672686 8.644482 2.068891 0.046082 0.999863 −3.75325

CNTLN 0.680737 11.48618 2.691111 0.010886 0.999863 −2.78112

FUT9 0.699768 8.441847 4.407687 9.62E−05 0.789844 0.454887

IL13RA2 0.719021 10.39282 2.628168 0.012838 0.999863 −2.89482

ASPA 0.749501 11.36381 2.245045 0.031252 0.999863 −3.49517

OR5H15 0.750191 8.460118 2.521068 0.016459 0.999863 −3.06273

TAS2R46 0.853411 9.728956 2.104017 0.043163 0.999863 −3.70747

IL5RA 0.907942 11.46483 2.058268 0.047148 0.999863 −3.76833

C19orf18 0.92955 10.87452 2.51537 0.016685 0.999863 −3.07198

DEGs, differentially expressed genes; FC, fold change; CRC, colorectal cancer.

© Journal of Gastrointestinal Oncology. All rights reserved. https://dx.doi.org/10.21037/jgo-22-965

Supplementary



© Journal of Gastrointestinal Oncology. All rights reserved. https://dx.doi.org/10.21037/jgo-22-965

Figure S1 Comparison of GEO data before and after merging. (A) Data distribution plot before removing batch effects. (B) Data 
distribution plot after removing batch effects. (C) Intersection of genes between the two datasets. The first column represents the number 
of genes in the two GEO datasets, the second column represents the unique elements of the one set, and the third column represents the 
element values corresponding to the intersection. GEO, Gene Expression Omnibus. 
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Table S2 The score of immune cells using the MCP-counter algorithm and the t-test results between the primary tumor tissues and metastatic liver tissues in CRC patients

GSE
T cells CD8+ T cells Cytotoxic lymphocytes B lymphocytes NK cells Monocytic lineage Myeloid dendritic cells Neutrophils Endothelial cells CAFs

Colon Liver Colon Liver Colon Liver Colon Liver Colon Liver Colon Liver Colon Liver Colon Liver Colon Liver Colon Liver

GSM875949 9492.66 8637.84 3693.20 4080.81 4803.36 4569.50 8065.97 6431.44 4789.10 6077.04 11749.03 8513.35 5118.98 4768.10 8079.20 8102.92 9690.91 8212.87 16875.99 14451.03 

GSM875961 7765.78 8587.02 3091.83 2810.58 4573.58 4569.23 6112.37 6595.73 5169.89 6055.82 9303.02 9765.86 4363.34 5346.13 7849.02 8832.61 8431.24 8693.21 16190.20 14005.01 

GSM875951 8342.42 9365.74 3406.83 2841.26 6646.76 8171.18 5959.64 6576.60 6605.05 5533.79 8333.74 15971.09 4468.91 6397.20 8838.85 9625.56 9329.17 9821.49 16215.43 15960.41 

GSM876001 7366.96 9877.54 3465.13 3719.79 4243.84 5136.33 5747.41 6626.74 4348.40 5782.70 9079.73 13262.40 4260.90 5033.66 8018.96 9481.70 9001.80 8815.40 15406.68 16142.36 

GSM875953 7607.24 8130.31 3301.49 3663.54 4065.95 4773.36 5677.82 6254.73 4636.21 5239.75 7951.48 10675.24 4519.26 5145.72 8091.63 8116.45 8762.41 8917.77 15295.46 15175.63 

GSM875962 8536.45 8498.39 3075.47 2878.08 3928.01 4016.84 7606.82 6088.89 5106.47 4388.43 9586.65 14443.02 4900.99 5275.43 7899.25 9465.82 8747.16 9108.08 12474.54 15436.15 

GSM875956 8456.24 8226.21 3473.31 3146.04 4253.95 4764.65 6268.97 6407.26 4325.25 5471.09 10445.89 12042.05 5164.56 4926.88 8515.18 8820.36 8776.67 9025.85 15630.20 15120.82 

GSM876003 8414.17 8473.72 3090.81 2530.35 4738.99 4848.27 7367.74 6403.97 5423.01 5554.09 7817.05 12503.13 5180.39 5521.63 8535.21 8259.33 9149.07 8888.64 14552.67 15912.07 

GSM875959 8002.73 7993.15 3256.49 2229.67 4470.12 4751.31 6459.34 6014.25 5386.25 5556.68 8456.24 10480.94 5213.45 5097.59 8369.02 8518.32 8926.32 8801.55 14499.52 15618.29 

GSM875990 7641.90 7431.30 3231.94 4517.52 3916.58 4290.41 6019.57 5489.87 4923.79 4780.07 7510.15 9808.47 4329.74 4470.32 8641.31 9078.01 8319.57 8746.40 13873.95 15043.24 

GSM875980 8568.10 8065.26 2611.15 1552.62 4347.07 4366.81 6638.04 6021.03 5738.92 4242.70 11146.44 10636.59 5758.87 4461.42 8250.64 9743.16 8187.24 8013.54 11252.59 15326.19 

GSM875955 8245.78 8116.54 3636.95 3382.29 4841.37 4547.25 6420.76 6301.37 4541.80 5201.98 12104.25 11160.45 4503.52 4601.75 9390.85 9317.31 10073.56 9082.54 17229.45 14451.41 

GSM876008 8064.57 8155.04 3739.22 3161.38 4930.35 4418.99 6091.91 5309.12 4891.42 4964.04 8483.12 6762.10 4837.52 3781.93 7962.51 8263.94 8304.09 7704.38 13370.22 11899.34 

GSM876006 13072.24 7620.47 6160.03 1664.10 6821.51 4247.19 13634.70 5977.20 5810.47 4019.43 12065.16 11638.45 6002.90 4722.13 8325.46 7877.79 8899.59 7758.81 16479.91 14015.57 

GSM875979 7723.34 8137.29 2999.78 3047.85 4325.09 4448.68 6240.83 6759.17 5103.29 5180.10 10389.76 10801.57 4405.83 4803.52 9083.64 9963.15 9379.77 9128.80 16782.19 15750.07 

GSM875992 8275.59 8706.32 2548.76 3259.56 4014.67 3818.27 5869.99 6327.07 4471.36 4306.95 8785.85 11946.87 4962.05 4998.67 7883.79 8890.78 9123.02 9305.13 16138.06 14636.56 

GSM2157173 8516.17 7922.34 2773.90 3070.54 4256.06 4288.03 6966.02 6221.15 6553.47 6319.96 9157.22 9492.13 4566.81 4952.81 8413.29 8302.66 9086.56 9307.16 15743.41 16110.13 

GSM2157174 8281.11 7498.82 2577.09 2738.72 5212.38 4321.42 6476.33 6432.52 6506.76 5871.11 12129.17 9997.23 4775.13 4162.19 8102.29 7694.13 9465.35 8027.84 17023.89 13666.21 

GSM2157175 8487.52 10967.74 3257.85 2308.97 4401.72 4406.07 7252.60 7711.57 4626.37 6697.50 9244.95 9951.46 5022.10 4610.88 8813.66 9711.49 8704.65 8905.59 15712.25 14125.90 

GSM2157176 8223.18 8540.23 3197.00 3023.01 3654.61 4583.65 7325.38 6591.76 4362.47 4856.30 8233.08 10659.28 5002.81 5272.41 8160.38 9690.20 8769.97 8551.72 15356.06 15055.01 

GSM2157177 8884.69 8892.60 2507.68 3601.08 3876.30 4944.24 6040.71 5994.38 4702.91 5271.00 10675.24 12619.35 5976.50 6816.07 8241.53 10265.68 9804.74 9246.40 16950.17 15507.74 

GSM2157178 10991.48 8018.98 5249.73 2800.52 5905.21 4445.38 11055.48 5989.94 5416.73 6724.73 13802.44 9272.11 6755.67 4156.01 8527.72 8497.02 10338.15 7905.14 16726.85 13555.75 

GSM2157179 8500.72 9610.88 2778.66 3617.24 4630.72 4965.35 8490.84 6919.02 4968.59 5341.41 10698.25 11924.25 5148.86 6699.79 9097.93 11243.99 9953.01 9355.29 16859.53 15379.03 

GSM2157180 7354.14 7530.65 2757.74 3268.31 3494.55 4346.73 6193.02 6502.41 5090.98 4952.86 10787.48 12204.62 4198.66 4402.44 8300.30 8478.66 9162.11 8164.59 15572.12 13107.06 

GSM2157181 8197.95 12564.21 3753.20 4584.18 4017.06 7951.54 6969.19 8410.65 4790.76 5000.45 8026.88 16381.18 4138.76 6823.90 7780.35 9699.68 7949.48 11448.54 12571.91 17916.91 

GSM2157182 8690.36 8119.06 3055.33 4183.91 4369.93 3969.18 6399.34 6304.24 4738.28 4839.08 10220.74 11512.75 5201.41 5061.80 8331.84 8557.64 9083.77 9050.01 15397.24 15265.02 

GSM2157183 9226.14 7643.32 3110.48 3249.29 5501.47 4338.43 7718.10 5555.22 5038.44 4727.62 12878.90 9608.54 5386.96 4268.01 8630.73 8163.59 9910.63 7959.13 16618.08 13365.89 

GSM2157184 8075.91 8116.72 2751.08 2714.00 4369.51 3610.87 6942.60 6635.36 4915.46 4812.66 7451.59 14061.41 3692.61 4814.31 8469.20 8215.77 7916.90 9783.16 12669.70 15900.01 

GSM2157185 8258.06 9437.04 3365.29 2467.75 4389.32 4861.81 6424.50 6570.24 5722.80 5992.31 12742.84 12754.64 4944.56 5274.91 9781.99 10673.85 9425.77 9246.81 16169.27 15121.73 

GSM2157186 8564.86 8314.38 3478.43 2752.03 5908.45 4624.65 6016.48 6116.94 4109.01 4581.03 13431.93 13797.67 6774.20 6684.28 8363.69 7999.98 9205.22 9066.95 17043.81 15093.77 

GSM2157187 9103.11 8342.29 3065.79 3082.90 4656.51 3994.08 7268.40 5980.68 5033.10 4500.43 13452.63 12057.29 5855.82 4787.83 8950.02 9450.47 10926.09 8144.19 17588.11 14432.97 

GSM2157188 9757.40 8541.03 2688.33 3797.89 5682.56 5283.51 7605.03 6847.68 5378.31 4580.92 15952.05 12791.41 6374.61 4331.88 9045.12 8638.39 10251.78 8029.59 18112.33 13732.39 

GSM2157189 8437.55 8977.80 2909.86 3499.34 4411.56 5470.58 7019.65 8308.94 4446.68 6293.94 9232.69 12301.71 4703.26 5361.04 8135.88 9795.80 8743.37 9551.55 15331.90 16313.41 

GSM2157190 9590.90 9174.88 2112.16 2529.55 3901.10 4001.06 7211.63 7261.42 6308.11 5815.04 8599.62 9241.47 5463.15 4577.56 8755.19 8389.76 9814.61 9535.48 15954.32 16371.47 

GSM2157191 8423.35 8550.50 5687.09 2694.99 6122.66 4652.70 5934.31 7366.82 4802.78 5394.63 12617.23 9167.44 5623.90 3944.26 8543.76 8282.37 9528.44 8380.10 17654.70 15687.66 

t Stat 0.038496296 1.053208564 -0.173136213 1.782060816 -1.203729721 -2.062928077 0.192223258 -3.761478906 1.662788425 1.718682233

P (one-tailed test) 0.48475857 0.14983653 0.431785498 0.041836379 0.118504062 0.023411769 0.424355422 0.000318927 0.052773957 0.047383376

t (one-tailed test) 1.690924255 1.690924255 1.690924255 1.690924255 1.690924255 1.690924255 1.690924255 1.690924255 1.690924255 1.690924255

P (two-tailed test) 0.96951714 0.299673061 0.863570996 0.083672759 0.237008124 0.046823539 0.848710844 0.000637855 0.105547913 0.094766752

t (two-tailed test) 2.032244509 2.032244509 2.032244509 2.032244509 2.032244509 2.032244509 2.032244509 2.032244509 2.032244509 2.032244509

CRC, colorectal cancer; MCP, Microenvironment Cell Populations; GSE, gene set enrichment; CAFs, cancer-associated fibroblasts; NK, natural killer.
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Figure S2 Functional enrichment analysis of genes in candidate modules. Top 10 enrichment results of pathway analysis by KEGG analysis 
for co-expressed genes in yellow (A) and brown (C) modules. Top eight enrichment results of genes by KEGG analysis in the PPI network 
of yellow (B) and brown (D) modules. The shade of colour of the inner ring represents the P value. KEGG, Kyoto Encyclopaedia of Gene 
and Genome; PPI, protein‑protein interaction; PI3K, phosphoinositide 3-kinase; ECM, extracellular matrix.
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Figure S3 The best-fitting regression model for the analysis of CRCLM. The optimal subset regression of hub genes in the yellow module 
(A), brown module (B), and further filtering the two (C). The left of the forest plot is the adjusted R2 value corresponding to the combination 
of different gene subsets, and the colour of the grid corresponds to the value. (D) The result of the backward stepwise regression. *, P<0.05; 
***, P<0.001. CRCLM, colorectal cancer with liver metastasis.
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