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Background: In recent years, reports regarding stimulator of interferon genes (STING) and the 
progression of colorectal cancer (CRC) have emerged rapidly, yet their association remains controversial. 
This research was aimed to provide an insight into the prognostic biomarker and therapeutic target 
significance of STING in CRC. 
Methods: CRC Cell lines of HCT116 and SW480, as well as 32 paired CRC specimens were chosen for 
this study. STING expressions were examined by immunohistochemistry to evaluate the correlation with 
clinicopathological factors. Data analysis of STING expressions in colon cancer and rectal cancer were 
performed using The Cancer Genome Atlas (TCGA) database. siRNA was transfected into cell lines for 
knocking down the expression of STING. Transwell assay was employed to evaluate cell migration and 
invasiveness. CCK-8 assay was used for assessing the change of cell proliferation. Drug sensitive test was 
involved to evaluate drug resistance of cell lines. Gene Set Enrichment Analysis (GSEA) was applied for 
exploring potential downstream mechanism of STING in CRC progression and Western blotting is used for 
mechanism validation. 
Results: In the thirty-two paired CRC and adjacent normal tissues, we found a significant up-regulated 
in STING expression with immunohistochemical staining in cancer tissues compared with adjacent normal 
tissues (P<0.01), which was correlated with the tumor-node-metastasis (TNM) stage of patients (P=0.028). 
Meanwhile, GESA enrichment analysis indicated a remarkable change in mTOR signaling following 
STING regulation. In HCT116 and SW480 cell lines of CRC, When STING was down-regulated, its 
biological behavior of cell viability, cell invasion and drug sensitivity to 5-fluorouracil were significantly 
reduced (P<0.05), we also observed the up-regulation of P-AMPK (P<0.05) and down-regulation of p-mTOR 
(P<0.05). 
Conclusions: STING expressions was significantly up-regulated in CRC tissues. Expression of STING 
was correlated with the TNM stage of patients. STING is found to promote cell proliferation, invasion 
ability and drug resistance mediating AMPK-mTOR signaling in CRC. STING could be a promising target 
for the sensitization of chemotherapy and inhibits CRC progression.
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proliferation; drug resistance.
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Introduction

Colorectal cancer (CRC) is the third most common cancer 
and the second most common cause of cancer-related  
deaths (1). According to the latest, most up-to-date 
GLOBOCAN 2020 estimates, there were 1.9 million 
new cases of CRC, including anal cancer, and 935,000 
CRC-related deaths in 2020 (2). Surgery combined with 
chemotherapy can substantially ameliorate the prognosis 
of patients; however, many patients have poor clinical 
outcomes due to their advanced tumor stage at the time of 
diagnosis, distant metastasis, or drug resistance. In-depth 
research on the mechanism of CRC progression will help us 
to identify novel biomarkers and improve treatments.

Stimulator of interferon genes (STING), which is 
also, referred to as TMEM173 and STING1, is a key 
innate immune sensor (3-5). In higher eukaryotes, cyclic 
guanosine monophosphate-adenosine 5’-monophosphate 
(AMP) synthase (cGAS)-STING pathway activation has 
been characterized as an inflammatory mechanism that is 
induced by cytosolic double-stranded deoxyribonucleic acid 
(dsDNA) (6). Recent research suggests that STING may 
serve as an independent prognostic biomarker and potential 
target for improving anti-cancer immunity in CRC (7). The 
STING pathway in CRC has not yet been fully elucidated; 
however, multiple studies suggest that it mediates 
carcinogenesis (8,9). The rapid proliferation of cancer 
cells imposes a high energy demand. The AMP-activated 
protein kinase (AMPK)-mammalian target of the rapamycin 
(mTOR) pathway plays a vital part in the modification 
of energy metabolism. The AMPK-mTOR pathway is 
also related to tumor drug resistance (10,11). STING, 
which is involved in the regulation of the AMPK-mTOR 
pathway, has been found in multiple malignant tumors, 
such as melanoma, gastric cancer, and hepatocellular  
carcinoma (11-13).

Our previous study demonstrated that fatty acid 
2-hydroxylase depletion decreased the chemosensitivity 
of gastric cancer cells, partially by re-training the AMPK 
pathway (14). Further, research has shown that Glioma-
Associated Oncogene Homolog 1 (GLI1) overexpression, 
in combination with AKT-mTOR signaling, induces 
drug resistance in gastric cancer (15). However, further 

research needs to be conducted to determine whether 
STING mediates tumor regulation through the AMPK-
mTOR pathway and would be a promising therapeutic 
target in CRC. Our findings may facilitate the assessment 
of STING as a diagnostic biomarker and characterize the 
pathway by which STING regulates CRC. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-22-957/rc).

Methods

Patient specimens 

From 2016 to 2018, 32 pairs of CRC and adjacent tissues 
were obtained from patients undergoing radical surgery 
at The First Affiliated Hospital of Soochow University. 
The tissue specimens were stored in a liquid-nitrogen tank 
or underwent formalin tissue fixation immediately after 
resection. The clinicopathological features of the patients 
were obtained from their electronic medical records. The 
study was conducted in accordance with the  Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Biomedical Research Ethics Committee of The First 
Affiliated Hospital of Soochow University (2021-No:213). 
We also obtained the written informed consent from the 
patients and/or their family members. Table 1 sets out the 
clinicopathological features of the CRC samples.

Cell cultures and transfection

The CRC cell lines were obtained from the Cell Bank of 
Shanghai (Shanghai, China). After resuscitation, all of the 
cell lines were sub-cultured for <4 months and cultured 
in Roswell Park Memorial Institute Medium 1640 or 
Dulbecco’s Minimal Essential Medium (Thermo Fisher 
Scientific, Carlsbad, California, USA), which contained 
10% fetal bovine serum (FBS, GIBCO) at a temperature of 
37 ℃ and a humidity of 5% carbon dioxide (CO2).

For the transfection, PcDNA3.1-Flag-vector and 
pcDNA3.1-Flag-STING plasmids encoding human wild-
type STING were obtained from the Public Protein/
Plasmid Library (Nanjing, China). The plasmid sequences 
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were verified via Sanger sequencing. After incubation for  
24 hours, the plasmid (50 nm) was transfected into the LoVo 
cells by Lipofectamine 2000 (Thermo Fisher Scientific) 
in accordance with the manufacturer's instructions. The 
subsequent operations were carried out 24–48 hours after 
the plasmid transfection.

Western blot

Radioimmunoprecipitation assay buffer (Sigma Aldrich) 
was used to lyse the cells for 30 minutes to extract the total 
protein (15). Sodium dodecyl-sulfate polyacrylamide gel 
electrophoresis). was used to isolate the total protein and 
then transfer the protein to the polyvinylidene fluoride 
membranes. The bands were blocked with 5% skimmed 
milk and then incubated with a polyclonal antibody (Cell 
Signaling Technology) overnight. Next, it was incubated 
with the secondary antibody, and finally imaged by 
chemiluminescence. The results were analyzed using 
ImageJ software (version: 1.4.3, RRID: SCR_003070).

IHC and immunofluorescence staining

The tissues were embedded in paraffin and cut into 5 μm  
sections. The slices were dewaxed, rehydrated, and 
blocked with 30% hydrogen peroxide, and then dyed 
with hematoxylin and rinsed with tap water. Next, 0.5% 
hydrochloric acid ethanol solution was added into the 
slices. The samples were soaked for several seconds and 
then rinsed with tap water. Next, the samples were stained 
with eosin solution. The samples were dehydrated with 
ethanol and xylene. The tissues were sealed with neutral 
resin. After blocking with goat serum, the sections were 
incubated with antibodies (Cell Signaling Technology, 
USA; 1:200 dilution), and then rinsed and incubated with 
secondary antibodies for 30 minutes. And the results are 
calculated by the color intensity and the number of positive 
cells (14). The proportion fraction of positive cells (14).  
The proportion fractions of the positive cells in the 
immunohistochemical sections were as follows: 0: <5%; 1: 
5–25%; 2: 25–50%; 3: 50–75%; and 4: >75%. multiplied by 
dye intensity fraction; The degree of staining was divided 
into negative (0–1), weak positive (2–3), positive (4–7), 
and strong positive (8–12). In this study, immune response 
scores of 0–4 and 5–12 were considered negative and 
positive, respectively.

Table 1 Association between stimulator of interferon genes 
(STING) and the clinicopathological factors of 32 patients with 
colorectal cancer (CRC) 

Clinical 
parameters

Case no.
STING expression

P value
None or low High

Total 32 15 (46.9%) 17 (53.1%)

Age, years

<65 14 3 (21.4%) 11 (78.6%) 0.2656

≥65 18 8 (44.4%) 10 (55.6%)

Gender

Male 19 7 (36.8%) 12 (63.2%) >0.9999

Female 13 4 (30.8%) 9 (69.2%)

Tumor size, mm

≤5 18 7 (38.9%) 11 (61.1%) 0.7120

>5 14 4 (28.6%) 10 (71.4%)

Tumor location

Colon 12 4 (33.3%) 8 (66.7%) >0.9999

Rectum 20 7 (35.0%) 13 (65.0%)

Depth of invasion

T1–2 4 2 (50.0%) 2 (50.0%) 0.5932

T3–4 28 9 (32.1%) 19 (67.9%)

Lymph node metastasis

Yes 21 8 (38.1%) 13 (61.9%) 0.0278*

No 11 9 (81.8%) 2 (18.2%)

Degree of differentiation

Well 19 7 (36.8%) 12 (63.2%) >0.9999

Poor 13 4 (30.8%) 9 (69.2%)

Metastasis

Yes 8 2 (25%) 6 (75%) 0.6808

No 24 9 (37.5%) 15 (62.5%)

Venous or neural invasion

Negative 21 9 (42.9%) 12 (57.1%) 0.2481

Positive 11 2 (18.2%) 9 (81.8%)

TNM stage

I/II 21 8 (38.1%) 13 (61.9%) 0.0278*

III/IV 11 9 (81.8%) 2 (18.2%)

*P<0.05. TNM, tumor-node-metastasis.
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Bioinformatics analysis

GSE100179 data set is based on the GPL17586 platform 
(HTA-2_0) Affymetrix Human Transcriptome Array 
2.0 [transcript (gene) version]. The GSE100179 data set 
comprised 20 pairs of non-cancerous and CRC tissues. The 
gene expression data of the 40 samples were used for the 
in-depth analysis. The Cancer Genome Atlas (TCGA) of 
UALCAN (http://ualcan.path.uab.edu/) was also used for 
the in-depth analysis. The correlations between STING 
messenger ribonucleic acid (RNA) expression in colon 
adenocarcinoma (COAD) and individual tumor stage and 
lymph node metastasis were analyzed. The Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) tools were used for the gene annotation. In 
this study, we used Metascape to analyze the genes that 
interact with STING. We also used the STRING online 
database (https://string-db.org/) as a search tool to identify 
the interacting genes. TCGA Pan-Cancer Atlas data set 
was used to explore the co-expression of "STING" and 
"mTOR." The competing endogenous RNA (ceRNA), 
the TCGA, pancancer Atlas dataset was choosed. CeRNA 
network comprised coding RNA and non-coding RNA. 
First, we used TargetScan and ENCORI (The Encyclopedia 
of RNA Interactomes, http://starbase.sysu.edu.cn/index.
php) to predict all the STING miRNAs (microRNAs). 
Second, we searched for the miRNAs in COAD on 
ENCORI. Third, we used LncBase v.2 to predict the 
associated long non-coding RNAs (Precision-Recall (PR) 
score >0.8). Finally, a ceRNA network was constructed 
using Cytoscape software. TIMER (https://cistrome.
shinyapps.io/timer/) is a website mainly related to immune 
penetration abundance, which is calculated by various 
immune deconvolution methods. We retrieved the “STING; 
COAD” from the in “Gene module” and performed 
an immune infiltration analysis. We also analyzed the 
expression data of STING in many tumors. All the gene 
expression data were obtained from UCSC Xena. R-package 
“ggpubr” was used to generate all the charts 

6-carboxy-FAM-labeled siRNA uptake

The cells were cultured in 96-well plates for 24 hours. 
Transfection reagent (RNAiMAX/liposome™ 2000) 
was added to the medium with 5, 10, or 20 nm of 
phosphoramidate (FAM)-labeled negative control small-
interfering RNA (FAM siRNA). Next, use 100 μL Opti-

Minimal Essential Medium (MEM) (1x), glutamine and 
5% FBS replace the medium, and then add Lipofectamine 
RNAiMAX reagent to the dish. Reagents and different 
concentrations of FAM siRNA were diluted in serum-free 
Opti-MEM at a ratio of 1:1. When the cells were cultured 
for 5 hours and 24 hours incubation, the cells were washed 
with phosphate buffer solution once respectively. We used 
Hoechst 33342 (Cell Signaling Technology) fluorescent dye 
to co culture with cells for 15 minutes to make the nucleus 
fluorescent. ImageJ software was used to analyze the image 
by background subtraction.

STING silencing

The synthetic siRNA targeting human STING (specific 
target sequence: 5'-GCAUCAAGGAUCGGGUUU-3') 
c o m e s  f r o m  I B S B I O .  A n  i n t e r f e r i n g  s i R N A 
(5'-UUCUCCGAACGUGUCACGUTT-3') was used as 
a negative control. Before the experiment, the cells were 
inoculated in 6-well dishes with (2.5–3)×105 cellsper well and 
cultured in their respective medium for 24 hours. The CRC 
cells were transfected using Lipofectamine rnaimax (Thermo 
Fisher Scientific) reagent as described previously (14).

Cell viability

The Cell Counting Kit-8 (CCK-8; Donjindo, Japan) was 
used to measure cell viability. The cells were cultured 
in 96 well dishes. After 24 hours of incubation, the 
supernatant from each well was removed. CCK-8 solution 
and cell culture medium was added in accordance with the 
manufacturer’s instructions. Finally, the absorbance was 
detected for 5 consecutive days using a multifunctional 
microplate reader. Each operation was carried out in 
triplicate.

Transwell invasion and migration assays

Transwell plates (Corning Incorporated, USA) were used 
for the subsequent experiments. The matrix gel used for the 
invasion test was slowly thawed on ice at 4 ℃. The chamber 
insert used for the invasion analysis was coated with a dilute 
matrix gel and dried at 37 ℃. The cells (1×105) were placed 
in the upper chamber of each incubator, and suspended in 
serum-free medium. 20% FBS intact medium was added to 
the inferior chamber to induce the cells to move downward. 
After 24 hours of incubation, the cells were fixed and 

http://ualcan.path.uab.edu/
https://string-db.org/
http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/index.php
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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stained. Finally, the transitional cells were quantified using 
an inverted microscope (Nikon).

Glucose-uptake assays

After the siRNA transfections, the cells were treated with  
0.1 mM of 2-NBDG (2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-
4-yl) Amino)-2-Deoxyglucose) (Invitrogen) in a culture 
medium. The plates were incubated at 37 ℃ with 5% CO2 
for a set period as described above. The unified acquisition 
settings on the fluorescence microscope (Leica) were used 
to obtain images. The average fluorescence intensity was 
analyzed by image J.

Statistical analysis

The data are presented as the mean ± standard deviation. 
GraphPad Prism 8.0 (GraphPad Software, Inc.) was used 
for the statistical analysis. The χ2 or Fisher’s exact test was 
used to evaluate the relationships between the categorical 
clinicopathological variables and the STING expression 
levels. A 2-tailed Student’s t-test was used to compare the 
experimental groups. A 2-way analysis of variance and 
Sidak’s post-hoc test were used to compare the groups. A 
value P<0.05 indicated a statistically significant difference. 

Results

In CRC, STING expression is upregulated and correlated 
with advanced tumor stage and a poor prognosis 

The analysis of the COAD Gene Expression Omnibus 
(GEO) data set (GSE100179) and TCGA data set revealed 
that the expression level of STING was significantly 
increased in the CRC tissues (Figure 1A,1B).The UALCAN 
results showed that the messenger RNA (mRNA) of 
STING was particularly high in patients with a high 
histological grade (poor differentiation) and a high clinical 
stage (Figure 1C,1D). The immunohistochemistry (IHC) 
staining results revealed that STING was expressed in 17 
of the 32 tumor samples and 4 of the 32 paired adjacent 
tissues (Figure 1E-1G). Furthermore, the expression level of 
STING was related to whether the patients had lymph node 
metastasis. The STING expression of the CRC patients 
with lymph node metastasis was significantly increased 
(Figure 1H, P<0.01). Both the Western blot and IHC 

staining results demonstrated that STING was more highly 
expressed in the CRC tissues than the matched surrounding 
normal tissues (Figure 1I,1J).

The expression level of STING was related to the 
clinicopathological indexes of patients with CRC

T h e  S T I N G  e x p r e s s i o n  l e v e l s  w e r e  c l a s s i f i e d 
according to the IHC staining scores and related to the 
clinicopathological indicators. STING expression was 
associated with lymphatic metastasis (P<0.05) and tumor, 
node, metastasis (TNM) stage (P<0.05). However, no 
significant associations were found among the following 
parameters: age, sex, tumor diameter, depth of tumor 
invasion, and tumor differentiation (Table 1). The P values 
of each group were >0.05, and while there was no statistical 
difference between the groups, the number of samples 
and the effect of the cut-off value for STING expression 
may have limited the statistical power of parameters: age, 
sex, tumor diameter, depth of tumor invasion, and tumor 
differentiation.

Effects of targeting STING expression on the proliferation, 
migration, invasion, and drug sensitivity of the CRC cell 
lines

Western blotting was used to detect STING protein 
expression in all 5 CRC cell lines. The expression levels 
were elevated in all the CRC cell lines except LoVo. The 
expression levels of the HCT116 and SW480 lines were 
similar (Figure 2A). Transfecting the HCT116 and SW480 
cells with STING-siRNA (Figure 2B) significantly reduced 
STING expression (Figure 2C). The number of migrating 
and invading cells in the STING-knockdown (STING-KD) 
group was significantly lower than that in the control group 
(Figure 2D,2E, P<0.05). Further, different expression levels 
of STING affected the migration and invasion of CRC cells. 
The CCK-8 results confirmed that the cell proliferation of 
the STING-KD group was significantly more decreased at 
72 hours compared to that of the untreated group and the 
negative control group (NC-siRNA) (Figure 2F, P<0.05). 
These results suggest that elevated STING expression may 
promote CRC cell proliferation. Further, the CCK-8 assays 
also demonstrated that the CRC cells in the STING-siRNA 
group were highly sensitive to 72 hours of 5-FU exposure 
(Figure 2G, P<0.05).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57957
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Figure 1 STING expression in CRC and adjacent tissues. (A,B) The analysis of the COAD GEO (GSE100179) and TCGA data sets 
confirmed that the protein and mRNA levels of STING was significantly increased in the CRC tissues (N: Normal; T: Tumor). (C,D) The 
UALCAN (http://ualcan.path.uab.edu/index.html) results confirmed that the mRNA levels of STING was significantly higher in patients 
with a high histological grade (poor differentiation) and a more advanced clinical stage. (E) Hematoxylin and eosin staining of CRC tissue 
sample (10×, scale: 100 µm). (F,G) An IHC method was adopted to detect STING expression in 32 pairs of CRC and adjacent tissues (F: 
100 µm, G: 50 µm). (H) IHC scores of STING in 32 pairs of CRC and adjacent tissues: Paired samples t-test; IHC score analysis of tumor 
tissues with and without lymph node metastasis. (I,J) The expression levels of STING in CRC and adjacent tissues were detected by Western 
blot, and the gray values of the cancer and adjacent tissues were analyzed quantitatively. P<0.05 was considered statistically significant. 
*P<0.05, **P<0.01, and ****P0.0001. LNM, lymph node metastasis; CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; COAD, 
colon adenocarcinoma; GEO, Gene Expression Omnibus; STING, stimulator of interferon genes; IHC, immunohistochemistry.
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The effects of STING on CRC cells are mediated by the 
AMPK-mTOR pathway, and STING regulates glucose 
uptake in CRC cells

We conducted a number of bioinformatics analyses, 
including co-expression, GO, KEGG and protein-protein 
interaction (PPI) analyses, to examine the potential 
functions of STING in CRC. First, using the STRING 
database, a PPI network comprising 21 proteins was 
established (Figure 3A). Next, a GO/KEGG enrichment 

analysis of the 21 genes was conducted, and the results 
showed that STING was involved in a series of biological 
processes in CRC (Figure 3B,3C).  The cBioPortal 
outcomes indicated that STING is related to the mTOR 
in CRC (Figure 3D). Combined with the above results, we 
hypothesized that STING promotes the progress of CRC 
through the mTOR pathway. Transfecting the HCT116 
and SW480 cells with STING-siRNA inhibited STING 
expression (Figure 3E). Additionally, the expression levels 

Figure 2 STING promotes CRC tumor cell growth, migration, invasiveness, and drug sensitivity. (A) Detection of STING expression in 
CRC cell lines using western blotting; Quantitative analysis of STING expression in CRC cells. (B) Transfection efficiency of siRNA in 
CRC cells verified by fluorescent siRNA probe (10×, scale: 100 µm). (C) Verification of knockdown and overexpression efficiency using 
western blot. (D,E) 24 hours after transfection, the numbers of migrating and invasive cells after treatment with NC-siRNA = NC, STING-
siRNA = STING-KD, VEC, STING-OE were determined and recorded using transwell assays [3–5 fields were taken for each group, and 
the results were analyzed quantitatively; Crystal Violet Staining of CRC cells (10×, scale: 100 µm)]. (F) CCK-8 assays were carried out to 
evaluate the proliferation ability of the cells (HCT116 and SW480 cells) at 24, 48, and 72 hours. (G) The concentration absorbance of each 
group was measured after 24, 48, and 72 hours using CCK-8 assays for the CTL group, STING-siRNA group, and 5-fluorouracil-treated 
cell group, and the results was then analyzed and calculated (5-fluorouracil concentration: 2.5 µM). P<0.05 was considered statistically 
significant; *P<0.05, **P<0.01, and ***P<0.001. CRC, colorectal cancer; STING, stimulator of interferon genes; OE, overexpression; KD, 
knock down; VEC, vector; NC, Normal control; CTL, control.
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Figure 3 STING regulates biological characteristics through the AMPK-mTOR pathway and glucose uptake in CRC cells. (A-C) GSEA 
was conducted using gene sequencing data from the GEO GSE129436 and 100179 data sets (KEGG enrichment, tumor-associated 
pathways). (D) cBioPortal indicated that STING is closely related to the mammalian target of the rapamycin (mTOR) signaling pathway 
in CRC. (E) 48 hours after the transfection of STING siRNA and the negative control siRNA, the expressions of p-mTOR, T-mTOR, 
p-guanosine monophosphate-adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK), T-AMPK, and STING were 
detected by Western blot assays. (F) For the quantitative analysis of the gray value of results in (E), we repeated the experiment three times.  
(G) A glucose fluorescent probe was used to detect the glucose uptake of the HCT116 and SW480 CRC cells. Average fluorescence intensity 
was quantified by randomly selecting 5 microscopic fields. P<0.05 was considered statistically significant. *P<0.05, **P<0.01, and ***P<0.001. 
CRC, colorectal cancer; GSEA, Gene Set Enrichment Analysis; GEO, Gene Expression Omnibus; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; NC, normal control; CTL, control; STING, stimulator of interferon genes. 
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of AMPK, p-AMPK, mTOR, and p-mTOR were detected 
(Figure 3F). Western blot results showed that STING 
knockdown significantly inhibited AMPK-mTOR signaling, 
which provided further evidence of the regulatory effects of 
STING. Thus, our results showed that STING promotes 
the occurrence and development of CRC cells by inhibiting 
AMPK and activating the mTOR-related pathway.

Our experimental results provided preliminary evidence 
that STING regulates the migration, proliferation, 
invasiveness, and drug sensitivity of CRC cells by mediating 
the AMPK-mTOR pathway, which in turn regulates 
a series of important functions, such as intracellular 
energy metabolism and biosynthesis. AMPK and mTOR 
are intracellular energy receptors that balance the 
production, consumption, and synthesis of intracellular 
energy sources through negative feedback regulation to 
maintain homeostasis. Additionally, mTOR mediates 
some downstream signaling pathways and is involved in 
the metabolism of sugars, lipids, amino acids, and other 
substances. We examined whether the increased glucose 
uptake observed in the tumor cells was regulated by STING 
signaling, and found that the glucose uptake of the STING 
knockdown group was significantly lower than that of the 
control group (Figure 3G). This suggests that STING is not 
only involved in regulating AMPK-mTOR pathway activity, 
but also regulates glucose uptake, which might further 
mediate CRC cell proliferation and metastasis.

hsa-miR-193b-3p may be a key miRNA in the ceRNA 
network

Based on the prediction results of TargetScan and ENCORI, 
we identified 20 miRNAs (number of repetitions ≥7).  
We then used lncbase v.2 (PR score >0.8) to predict the 105 
lncRNAs related to these miRNAs. Next, we constructed a 
STING ceRNA network using Cytoscape (Figure 4A,4B). 
A search of the 20 miRNAs on ENCORI showed that in 
terms of the differential expression and the survival rate, 
only has-mir-193b-3p had obvious clinical significance 
(Figure 4C,4D).

STING affects the infiltration of immune cells in COAD 
and is a key factor in many tumors

The TIMER results confirmed that in COAD, STING was 
related to B cells, cluster of differentiation (CD)4+ T cells, 
CD8+ T cells, macrophages, neutrophils and, mDC cells in 
the infiltrating tumor tissues (Figure 4E). Thus, our findings 

that STING affects the progression of CRC by regulating 
immune cell infiltration represents a promising research 
direction. Further, our Pan-Cancer analysis showed that 
STING was potentially a common oncogene in many 
tumors (Figure 4F-4H).

Discussion

The tumorigenesis of gastrointestinal malignancies is 
closely related to non-specific inflammation resulting from 
the aberrant activation of the innate immune system (16). 
STING dysfunction may cause CRC and increase the 
susceptibility of melanoma cells to oncolytic viruses (17,18). 
STING dysfunction may cause CRC and increase the 
susceptibility of melanoma cells to oncolytic viruses (17,19), 
thus, STING may serve as an adjunctive therapeutic 
target for CRC. Further, human papillomavirus E7 and 
adenovirus E1A oncoproteins bind to STING and inhibit 
its function (20), which suggests that STING, to some 
extent, plays a protective role against infections caused by 
these carcinogenic viruses.

STING expression is reduced in gastric cancer, and 
decreased levels of STING are associated with a poor 
prognosis (21). Our TCGA database analysis confirmed that 
the expression of STING is elevated in CRC patients. In 
an earlier study, STING served as a biomarker for overall 
survival after adjusting for tumor stage and intratumoral 
CD8+ T-cell infiltration (7). Further, STING expression 
was shown to be upregulated in a consensus molecular 
subgroup-1 of CRC patients (6,22). Thus, we hypothesized 
that elevated STING expression in CRC tissues indicates 
a poor prognosis. To test our hypothesis, we evaluated 
STING expression levels in multiple patient-derived CRC 
tissue specimens and corresponding adjacent normal tissues, 
and found that STING expression was elevated in the CRC 
tissues. We also examined the correlation between STING 
expression levels and clinical indicators, and found that high 
STING expression levels were related to advanced TNM 
stages of CRC.

Previous studies have shown that STING-mediated 
immune pathways are involved in the tumorigenesis 
of many malignancies. Abnormal STING function 
significantly affects cancer cell proliferation, metastasis, 
and anti-tumor immunity (18). Tumor drug sensitivity is 
enhanced by the recruitment and infiltration of immune 
effector cells stimulated by STING-mediated interferon 
(IFN) production triggered by increased cytoplasmic 
dsDNA induced by adjuvant chemotherapy (18,23-26). 
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Figure 4 A bioinformatics analysis predicted the relationship between STING and miRNA, and between STING and infiltrating immune 
cells. (A,B) Using the Cytoscape tool, we constructed a ceRNA network of STING; mRNA is represented by the orange oval, miRNA is 
represented by the green diamond, and lncRNA is represented by the blue rectangle. (C,D) Based on the ENCORI database, the expression 
of hsa-mir-193b-3p and the relationship between the expression of hsa-mir-149-3p and overall survival rates were detected. (E) The 
correlation between STING expression and the infiltration of immune cells in COAD in the TIMER database. (F-H) The Pan-Cancer 
analysis showed that STING may be a common oncogene in a variety of cancers. *P<0.05, **P<0.01, and ***P<0.001. STING, stimulator 
of interferon genes; ceRNA, competing endogenous RNA; ENCORI, Encyclopedia of RNA Interactomes; COAD, colon adenocarcinoma; 
TIMER, Tumor Immune Estimation Resource; TCGA, The Cancer Genome Atlas; RPM, reads per million.
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However, further research needs to be conducted on the 
potential roles of STING-related pathways as therapeutic 
targets that inhibit tumorigenesis, enhance anti-tumor 
immunity, and reduce drug resistance in CRC (27,28). 
And the sensing of cytoplasmic micronucleus (the product 
of faulty segregation of damaged chromosomes during 
mitosis) is considered to be the key event linking genotoxic 
stress with aging phenotype (including SASP) by cGAS 
and STING. Interferon-β (IFN β) is produced in cells with 
DNA damage, CGAS-STING signal has been proved to be 
effective in IRF3 driven IFN β induction in some but not all 
conditions promoting cellular senescence (29). 

In the present study, we selected HCT116 and SW480 
CRC cell lines with high STING expression levels 
and then downregulated STING expression by siRNA 
interference. We then used the constructed cell model 
to perform relevant cell function experiments. First, 
we found that CRC cell proliferation was significantly 
decreased after STING knockdown, which supported our 
hypothesis that elevated STING expression promotes 
CRC cell proliferation. We also confirmed these results by 
conducting clonogenic assays. In addition, our transwell 
assays indicated that STING knockdown reduced CRC 
cellular migration and invasiveness. Taken together, our 
results suggest that STING signaling significantly promotes 
CRC development.

STING signaling may also affect CRC drug resistance 
(22,30). Our study suggests that STING knockdown 
improves the chemosensitivity of CRC cells to 5-FU. 
Notably, 5-FU activates the cGAS-STING pathway that 
produces the type I IFN in CRC cells. Conversely, Tian  
et al. reported that STING did not significantly change the 
lethal effect of 5-FU on colon cancer cells in vitro. Tian  
et al. speculated that endogenous IFN expression by cancer 
cells was insufficient to achieve enhanced cytotoxicity  
in vitro (30).

STING-mediated signaling also inhibits tumor 
growth by activating the innate immune system, thereby 
upregulating the downstream secretion of immune 
regulatory factors, such as IFN, and the consequent 
recruitment and infiltration of immune effector cells, 
including macrophages, dendritic cells,  and CD8 + 
lymphocytes (18,19,22). However, functional defects in 
STING-related pathways may inhibit IFN secretion in 
CRC cell lines (31-34). A recent study confirmed that 
CGAs prevents colon cancer (35). Recently, many studies 
have shown that activating STING and stimulating the 
production of type I interferon are very important for anti-

cancer immune response (36,37). In addition, new research 
also shows that STING can also regulate anti-cancer 
immunity in a way independent of type I interferon. For 
example, STING activation has been proven to enhance the 
presentation of cancer antigens, help start and activate T 
cells, promote T cell trafficking and infiltration into tumors, 
and promote T cells to recognize and kill cancer cells (28).

Our study showed that STING overexpression was 
associated with markers of advanced CRC. We knocked 
down STING in the CRC cell line and found that reduced 
STING expression was accompanied by decreased 
proliferation and migration and enhanced 5-FU sensitivity. 
However, STING-related signaling is often impaired in 
CRC. Other studies have shown that STING-mediated 
downstream antitumor immune responses activated by 
DNA damage enhance radiation- and chemotherapy-
induced cytotoxicity (7,26,38). In view of the above results, 
we hypothesized that STING regulates the function of 
CRC cells through an IFN-independent pathway.

In this study, we used GEO microarray data for the gene 
set enrichment analysis (GSEA) to identify the pathways 
that were significantly enriched after STING activation. 
We then focused on changes in mTOR-related pathway 
function. Combined with our previous findings (14,15,39), 
our present findings demonstrate that STING activation 
upregulated the mTOR-related pathway. Research has 
shown that mTOR activation promotes intracellular 
metabolism, enhances protein synthesis, inhibits autophagy, 
and forms a negative feedback loop with AMPK (9). Thus, 
it appears that STING regulates CRC cells through the 
AMPK-mTOR pathway. We found that AMPK function 
increased after STING downregulation, while mTOR 
function decreased. This suggests that a series of high 
energy-consuming processes are inhibited in CRC cells (40).  
Additionally, the effect of STING signaling on glucose 
uptake in the CRC cells was explored. The glucose uptake 
rate decreased with the downregulation of STING, 
which provides further evidence that STING regulates 
energy metabolism. Thus, the above results show that the 
regulation of STING is mediated by the AMPK-mTOR 
pathway, which may alter energy metabolism and affect 
proliferation, migration, and drug sensitivity.

The present study had some limitations. First, we only 
briefly described the effect of the mTOR pathway on cell 
energy homeostasis. Second, while glucose entry into cells 
is mediated by membrane transporters, the correlation 
between mTOR pathway and glucose uptake appears 
to be very small. However, it should be noted that the 
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mTOR pathway is closely related to autophagy. A variety 
of organelle membranes are involved in autophagy, and 
the renewal of various organelle membranes is inseparable 
from cell membranes. The renewal of cell membranes 
must involve dynamic changes in cell membrane proteins. 
More importantly, there is also an important link between 
autophagy and energy metabolism. There is no doubt 
that the most important mechanism of cell metabolism is 
glucose metabolism. In the future, we intend to explore 
this mechanism further. Notably, in vivo experiments and 
experiments that monitor important CRC-related indicators 
need to be conducted. And, we boldly put forward the 
following ideas on how to further treat CRC through 
STING. STING inhibitors can cooperate with traditional 
chemotherapy drugs to trigger anti-tumor response; 
STING inhibitor combined with tumor vaccine may be 
applied to human tumor therapy.

Conclusions

In this study, we identified a novel mechanism that links 
STING to the AMPK-mTOR pathway. This mechanism 
can be used to monitor the progression of CRC, identify 
therapeutic targets, and thus improve clinical outcomes. 
We also reverse constructed a STING ceRNA network 
in COAD and identified a key miRNA that can be used in 
further in-depth research.
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