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Background: Colorectal cancer (CRC) is a heterogeneous group of malignancies distinguished by distinct 
clinical features. The association of these features with venous thromboembolism (VTE) is yet to be clarified. 
Machine learning (ML) models are well suited to improve VTE prediction in CRC due to their ability 
to receive the characteristics of a large number of features and understand the dataset to obtain implicit 
correlations.
Methods: Data were extracted from 4,914 patients with colorectal cancer between August 2019 and 
August 2022, and 1,191 patients who underwent surgery on the primary tumor site with curative intent 
were included. The variables analyzed included patient-level factors, cancer-level factors, and laboratory 
test results. Model training was conducted on 30% of the dataset using a ten-fold cross-validation method 
and model validation was performed using the total dataset. The primary outcome was VTE occurrence in 
postoperative 30 days. Six ML algorithms, including logistic regression (LR), random forest (RF), extreme 
gradient boosting (XGBoost), weighted support vector machine (SVM), a multilayer perception (MLP) 
network, and a long short-term memory (LSTM) network, were applied for model fitting. The model 
evaluation was based on six indicators, including receiver operating characteristic curve-area under the curve 
(ROC-AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value 
(NPV), and Brier score. Two previous VTE models (Caprini and Khorana) were used as the benchmarks.
Results: The incidence of postoperative VTE was 10.8%. The top ten significant predictors included 
lymph node metastasis, C-reactive protein, tumor grade, anemia, primary tumor location, sex, age, D-dimer 
level, thrombin time, and tumor stage. In our results, the XGBoost model showed the best performance, with 
a ROC-AUC of 0.990, a SEN of 96.9%, a SPE of 96.1% in training dataset and a ROC-AUC of 0.908, a 
SEN of 77.5%, a SPE of 93.7% in validation dataset. All ML models outperformed the previously developed 
models (Caprini and Khorana).
Conclusions: This study developed postoperative VTE predictive models using six ML algorithms. The 
XGBoost VTE model might supply a complementary tool for clinical VTE prophylaxis decision-making and 
the proposed risk factors could shed some light on VTE risk stratification in CRC patients.
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Introduction

Venous thromboembolism (VTE), consisting of deep vein 
thrombosis (DVT) and pulmonary embolism (PE), is a 
common complication after surgery in cancer patients (1). 
The impact of specific cancers on venous thromboembolism 
has been studied for years (2). The risk of VTE occurrence 
in cancer patients varies greatly due to differences in tumor 
site, therapies, or other risk factors (3). Thus, the clinical 
benefit of VTE prophylaxis for cancer patients depends 
mainly on accurate and individual-appropriate predictive 
Models (4).

Colorectal cancer (CRC) is the third most common 
cancer worldwide (5,6). Current VTE risk screening 
guidelines for CRC patients, which are developed from 
incomplete CRC patient cohorts and are extrapolated 
from data of other cancer types, have low sensitivity and 
specificity. The Khorana score was initially developed using 
multivariate logistic regression method in ambulatory 
cancer patients and was further validated in hospitalized 
cancer patients (7). The score is based on five parameters: 
site of the cancer, obesity, platelet count, hemoglobin, and 
white blood cell count; colorectal cancer is scored as 0 for 

‘site of cancer’. Several validation studies of the Khorana 
model in patients with gastrointestinal cancer have shown 
conflicting results (8). Due to the limitations that some 
potential laboratory biomarkers (such as D-dimer) were not 
involved as predictors, the receiver operating characteristic 
curve-area under the curve (ROC-AUC) values of the 
Khorana model were previously in a range of 0.5–0.7, and 
a value of over 0.8 is expected (9). D-dimer and soluble 
P-selectin levels were subsequently added into the Vienna 
model, which led to improvement in VTE prediction (10).  
Nevertheless, the soluble P-selectin test has been less 
clinically applied than other laboratory predictors due to its 
high cost (10). The Caprini model, which is recommended 
by the guidelines of the American College of Chest 
Physicians (ACCP), is the most widely used model in 
surgical patients. Several studies have been performed to 
validate the predictive ability of the Caprini model for 
surgical patients with CRC, the ROC-AUC values were in a 
range of 0.6–0.7 (11,12). Despite the acceptable prediction 
performance of this model, the Caprini score was rightfully 
criticized for its complexity and difficulty in interviewing 
patients for all risk factors (more than 30 factors). It is 
worth noting that Caprini score is developed by a summary 
of risk factors from 538 patients not statistical method (13).

Colorectal  cancer is  a  heterogeneous group of 
malignancies distinguished by distinct clinical, biological, 
and genetic features. Although the particular primary 
location of a tumor in the large bowel, tumor stages and 
chemotherapy regimens have prognostic significance for 
patients, the association of these risk factors with venous 
thromboembolism is yet to be clarified (14-16).

Recently, various machine learning (ML) methods, 
including decision tree-based algorithms, support vector 
machines (SVMs), and artificial neutral networks (ANNs), 
have been developed for risk prediction in both diseases and 
disease-associated clinical complications (17,18). Due to the 
powerful computational learning ability without reliance 
on rule-based preprogramming, we hypothesized that ML 
might provide a powerful alternative approach for CRC 
patient-specific VTE predictive tool development. Another 
major advantage of ML techniques lies in their ability to 
handle the highly complex and uncertain error structure of 
clinical datasets, giving their ability to explain how much a 
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given input feature contributes to a model output.
Therefore, the aim of this study was to develop different 

binary classification VTE predictive models for surgically 
hospitalized CRC patients using different ML methods and 
to compare the performance of these ML models with that 
of previous risk models (Khorana and Caprini). We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-23-18/rc). 

Methods

Study design and participants

This is a single-center, retrospective observational study. 
The Institutional Review Board of the Sixth Affiliated 
Hospital, Sun Yat-sen University (approval number: 
2021ZSLYEC-420) approved this retrospective study with a 
waiver of informed consent due to its retrospective nature. 
This study was carried out with adherence to the stipulations 
of the Declaration of Helsinki (as revised in 2013). This 
study was limited to inpatients with nonemergent surgery 
(Table S1). All patients underwent CRC surgery on the 
primary tumor site with curative intent. Th eligibility 
criteria included: (I) at least 18 years of age at enrollment; 
(II) at least 7 days of hospital stay length; and (III) patients 
with a histopathologic diagnosis of malignant tumor before 
being diagnosed with VTE. The exclusion criteria consisted 
of the following items: (I) patients admitted for palliative 
care; (II) patients with recently diagnosed VTE who were 
actively receiving anticoagulation treatment; and (III) 
patients who died during hospitalization.

The data acquisition took place between August 2019 
and August 2022. Approaches used to identify VTE cases in 
patients with colorectal cancer have been reported (19). The  
clinical data from a total of 4,914 surgically hospitalized 
patients were recorded in an IRB-approved prospectively 
maintained colorectal cancer database. The variables 
included patient-level factors (sex, age at diagnosis, 
body mass index (BMI), comorbidities, cardiovascular 
and thromboembolic risk factors), cancer-level factors 
(tumor stages and grades, primary tumor location), and 
treatment-level factors (Table S2). The laboratory data 
during the patient’s hospital stay were collected repeatedly 
at different time intervals. Static features are defined as 
statistics including the mean, standard deviation, minimum, 
maximum, and median of laboratory data with multiple 
repeated measurements. Dynamic temporal features were 
generated based on the original laboratory data with a time 

interval of 24 hours. Each patient had 11 time points (from 
preoperative 3 days to postoperative 7 days). The details of 
all these variables are shown in Table S2.

The primary outcome was 30-day,  non central 
venous catheter (CVC)-associated VTE in patients with 
either DVT or PE. Cases were defined as patients with 
new diagnoses of VTE [within 30 days of the surgical 
procedure using a postoperative imaging study (CT and 
ultrasound)]. In our cancer center, systemic ultrasound 
and CT examinations were performed routinely for every 
surgical patient. Imaging studies were also performed if 
patients developed new-onset postoperative symptoms, 
such as edema of the limb, unexplained pain and fever, skin 
ulceration, gait disorders, or abnormal laboratory findings 
during hospitalization. Patients with CVC-associated 
VTE were considered to have only VTE if VTE was also 
present at other sites. For the patients with a stay of less 
than 30 days, two formally trained case reviewers were 
required to make patient contact via phone call or a WeChat 
message to conduct a thorough review of medical records to 
identify postoperative VTE diagnosed or managed at other 
institutions.

Khorana score and Caprini score

Each included patient was assessed retrospectively by two 
previous VTE models for VTE risk, including one general 
VTE risk model [Caprini (20)] and one cancer-specific 
VTE risk model [Khorana (21)]. The stratification of VTE 
risk was based on the cutoff points recommended in the 
corresponding derivation cohorts of the different models. 
In Khorana, the patients were categorized into three risk 
groups based on the score: “low” (score 0), “intermediate” 
(score 1–2), and “high” (score ≥3) (21). The Caprini score 
also produces a cumulative risk score based on 39 risk 
factors. According to the modified version of the Caprini 
RAM by the ACCP (the most widely used version of the 
Caprini RAM), patients are classified as follows: “very low 
risk” (score 0), “low risk” (1–2), “moderate risk” (3–4), and 
“high risk” (≥5) (18). The risk factors identified by these 
two models and the points assigned for each factor are 
shown in Table S3.

Machine learning model

Prior to training our model, the continuous variables were 
normalized, and the categorical variables were encoded as 
dummy variables. ML models including logistic regression 

https://jgo.amegroups.com/article/view/10.21037/jgo-23-18/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-23-18/rc
https://cdn.amegroups.cn/static/public/JGO-23-18-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-18-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-18-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-18-Supplementary.pdf
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(LR), random forest (RF), extreme gradient boosting 
(XGBoost), weighted support vector machine (SVM), a 
multilayer perception (MLP) network, and a long short-
term memory (LSTM) network were employed in this 
study for VTE prediction. Briefly, the LSTM model accepts 
dynamic data, while the other ML models accept static 
features. A grid search strategy based on 10-fold cross-
validation was applied for hyperparameter tuning and model 
training, which was conducted on the training dataset (30% 
of the total). The total cohort was used as the test dataset 
to compare the performance of all models based on six 
indicators, including the ROC-AUC, sensitivity (SEN), 
specificity (SPE), positive predictive value (PPV), negative 
predictive value (NPV), and Brier score.

Model interpretation

To enable model interpretability, a SHapley Additive 
exPlanations (SHAP) analysis was implemented. For 
explanation of ML models based on the static features, 
the SHAP values of individual patients were calculated 
to estimate the variable’s contribution to predict the class 
label in the model. For an explanation of the LSTM model 
based on dynamic features, SHAP values were calculated by 
fractions using 24-hour intervals. A global ranking of how 
each variable contributed to the predicted VTE outcome 
at the group level was derived from the mean absolute 
SHAP values in ML models except LSTM. For the LSTM 
model, the global ranking of each continuous variable was 
calculated at different time points.

Statistical analysis

All statistical analyses and graphs were realized using 
packages in the Python platform. Continuous variables were 
described using their median values and interquartile ranges. 
Categorical variables were described using frequency counts 
and percentages. Comparisons between the VTE and non-
VTE groups were conducted by ANOVA, nonparametric 
Student’s t test, or chi-square test in different situations. 
Missing data were imputed using multivariate imputation by 
the chained equations method in Python. All tests were two-
sided; P values less than 0.05 were considered statistically 
significant. The model performance was considered 
excellent for ROC-AUC values 0.9–1, good for ROC-AUC 
values 0.8–0.9, fair for ROC-AUC values 0.6–0.8, and poor 
for AUC values 0.5–0.6.

Results

Characteristics of the study cohort

Of the 4,914 patients who were admitted to the colorectal 
cancer center between August 2019 and August 2022, 1191 
surgical patients who met the eligibility criteria during 
the study were included. A brief description of the patient 
characteristics and the detailed description of all variables 
are shown in Table 1 and Table S2, respectively. All patients 
with CRC were Chinese, with a median age of 63 years, 
a median hospitalization duration of 32 days, and an 
American Society of Anesthesiologists (ASA) grade II to III. 
The overall VTE rate of our study population was 10.8%. 
The surgery-related information of the patients is shown in 
Table S1.

Results of the model performance

Six ML models were established (LR, RF, XGBoost, 
SVM, MLP, and LSTM). Table 2 shows the prediction 
performance of the VTE models in the CRC patients. Six 
indicators, including ROC-AUC, sensitivity, specificity, 
PPV, NPV, and Brier score, were applied to assess the 
candidate models. Additionally, the model performance 
was visualized in ROC curves, precision-recall (PR) curves, 
and with binary classification performance (Figure 1 and 
Figure S1). The previously developed Caprini score and 
Khorana score were applied to compare and evaluate model 
performance. Our results indicated that the XGBoost model 
achieved the overall best prediction, with an ROC-AUC of 
0.908 (95% CI: 0.870–0.941). Despite a lower ROC-AUC 
of 0.868 (95% CI: 0.818–0.915), the MLP model had the 
highest PPV of 64.8% (95% CI: 55.9–73.3%) among all the 
candidate models. Overall, all the ML models performed 
better than the previously developed models (Caprini and 
Khorana).

Interpretation and evaluation of machine learning models

The XGBoost model and MLP model were selected for 
further interpretation due to their better performance. We 
additionally interpreted the LSTM model, as time-series 
laboratory data analysis was only available in this model. 
The results of the SHAP analysis of XGBoost, MLP, and 
LSTM are shown in Figures 2-4, respectively. The SHAP 
values were used to represent the local contribution of 
each feature to the individual predictions made by the 

https://cdn.amegroups.cn/static/public/JGO-23-18-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-18-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-18-Supplementary.pdf


Qin et al. VTE machine learning models in CRC patients224

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2023;14(1):220-232 | https://dx.doi.org/10.21037/jgo-23-18

corresponding models.
Based on the mean absolute SHAP value, ten of the 

most significant clinically associated features for VTE 
prediction, including lymph node metastasis (N class 0), 
C-reactive protein (CRP over 10 mg/L), tumor grade (IIa/
IIIb), anemia, primary tumor location (sigmoid/rectum), 

sex, age (age group: 60 to 75), D-dimer (over 0.5 μg/mL), 
and tumor stage (I/II), were identified in the XGBoost 
model (Figure 2A,2B). Similarly, calculation of the SHAP 
values in the MLP model interpretation revealed that 
anemia, gender, lymph node metastasis (N class 0), tumor 
grade (IIa), tumor class 4a (T class 4a), primary tumor 

Table 1 Patient characteristics at baseline

Patient characteristics
All patients, n (%) or 

median (IQR), n=1,191
All patients, n (%) or median 

(IQR), VTE, n=129
All patients, n (%) or median 

(IQR), non VTE, n=1,062
P value

Patient-related factors

Age (years) 63 (54 to 70) 64 (56 to 72) 63 (54 to 70) 0.169

Females 419 (35.1%) 61 (47.3%) 358 (33.6%) 0.003

BMI ≥25 224 (18.8%) 30 (23.3%) 194 (18.2%) 0.166

BMI ≥28 53 (4.4%) 7 (5.4%) 46 (4.3%) 0.564

Hypertension 315 (26.4%) 32 (24.8%) 283 (26.6%) 0.667

Diabetes mellitus 149 (12.5%) 13 (10.1%) 136 (12.8%) 0.382

Dyslipidemia 119 (10.0%) 8 (6.2%) 111 (10.4%) 0.131

Liver cirrhosis 7 (0.6%) 2 (1.6%) 5 (0.5%) 0.129

Hepatic dysfunction 46 (3.9%) 3 (2.3%) 43 (4.0%) 0.340

Chronic lung disease 30 (2.5%) 5 (3.9%) 25 (2.3%) 0.295

Heart failure 5 (0.4%) – 5 (0.5%) 0.435

History of a myocardial infarction 70 (5.9%) 4 (3.1%) 66 (6.2%) 0.157

History of a stroke 61 (5.1%) 7 (5.4%) 54 (5.15%) 0.862

Atrial fibrillation 16 (1.3%) 1 (0.8%) 15 (1.4%) 0.555

Varicose vein 6 (0.5%) 2 (1.6%) 4 (0.4%) 0.075

History of VTE 2 (0.2%) 2 (1.6%) – <0.001

History of major bleeding 37 (3.1%) 3 (2.3%) 34 (3.2%) 0.592

Cancer-related factors

Tumor stage I-II 570 (47.7%) 51 (39.5%) 519 (48.7%) 0.048

Tumor stage III-IV 624 (52.3%) 78 (60.5%) 546 (51.3%) 0.048

Metastasis disease 288 (24.1%) 39 (30.2%) 249 (23.4%) 0.086

The site of tumor

Right colon 316 (26.5%) 33 (25.6%) 283 (26.6%) 0.810

Transverse colon 92 (7.7%) 4 (3.1%) 88 (8.3%) 0.038

Left colon 221 (18.5%) 16 (12.4%) 205 (19.2%) 0.059

Sigmoid colon/rectum 563 (47.2%) 74 (57.4%) 489 (45.9%) 0.018

Appendix/cecum 2 (0.2%) 2 (1.6%) – <0.001

BMI, body mass index; IQR, interquartile range; VTE, venous thromboembolism.
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location (sigmoid/rectum), body mass index (BMI ≥25), 
thrombin time (TT <14 s), D-dimer (over 0.5 μg/mL), 
and C-reactive protein (CRP over 10 mg/L) had the most 
substantial contribution to the model output (Figure 3A,3B). 
Figure 2A and Figure 3A also demonstrate the direction of 

the correlation between the feature and model output. For 
example, primary tumor location (sigmoid/rectum) had 
an asymmetric distribution of SHAP values, with primary 
tumor location (sigmoid/rectum) indicating an increasing 
association with VTE occurrence.

Table 2 VTE occurrence prediction performance of the VTE models in CRC patients

Variables (model)
AUC/C-indexa  

(95% CI)
Brier score

Sensitivity  
(%, 95% CI)

Specificity  
(%, 95% CI)

Positive predictive 
value (%, 95% CI)

Negative predictive 
value (%, 95% CI)

Previous VTE-RAMs

Caprini score

Cutoff 5 pointsb 0.769 (0.711–0.821) – 96.9 (93.1–99.6) 100.0 10.5 (8.6–12.5) 100.0

Cutoff 9 pointsc – 59.7 (50.5–69.0) 85.0 (82.5–87.3) 32.6 (26.5–39.3) 94.6 (93.1–96.1)

Khorana score

Cutoff 3 pointsb 0.646 (0.598–0.699) – 10.9 (5.6–17.3) 98.0 (97.0–98.9) 40.0 (22.2–58.3) 90.1 (88.2–91.9)

Cutoff 1 pointsc – 62.0 (52.5–70.8) 63.8 (60.6–67.0) 17.2 (13.5–21.2) 93.3 (91.2–95.2)

Machine learning models

LR

Training cohort 0.937 (0.898–0.971) 0.046 82.8 (72.7–92.5) 90.8 (72.7–92.5) 51.9 (41.2–62.5) 97.8 (96.4–99.0)

Testing cohort 0.894 (0.856–0.929) 0.052 76.0 (67.8–84.7) 87.9 (85.9–90.0) 43.4 (36.6–50.3) 96.8 (95.5–98.0)

RF

Training cohort 0.912 (0.866–0.953) 0.066 78.1 (66.7–89.1) 88.1 (85.1–91.2) 44.2 (33.9–55.3) 97.1 (95.5–98.7)

Testing cohort 0.866 (0.822–0.908) 0.070 72.1 (63.4–80.9) 87.2 (84.9–89.3) 40.6 (33.5–47.5) 96.3 (94.8–97.5)

SVM

Training cohort 0.943 (0.921–0.961) 0.068 100.0 90.6 (87.9–93.3) 56.1 (46.7–66.7) 100.0

Testing cohort 0.879 (0.847–0.910) 0.071 79.1 (72.1–86.3) 88.8 (86.7–90.8) 46.2 (39.5–53.5) 97.2 (96.1–98.3)

XGBoost

Training cohort 0.990 (0.980–0.997) 0.029 96.9 (91.5–100.0) 96.1 (94.2–97.8) 74.7 (64.5–84.2) 99.6 (98.9–100.0)

Testing cohort 0.908 (0.870–0.941) 0.047 77.5 (69.3–85.4) 93.7 (92.1–95.3) 59.9 (51.9–68.2) 97.2 (96.0–98.2)

MLP

Training cohort 0.967 (0.917–99.8) 0.013 92.2 (83.9–98.2) 99.4 (98.7–99.8) 95.2 (88.9–99.8) 99.1 (97.9–99.9)

Testing cohort 0.868 (0.818–0.915) 0.066 71.3 (63.2–79.6) 95.3 (93.8–96.6) 64.8 (55.9–73.3) 96.5 (95.1–97.6)

LSTM

Training cohort 0.822 (0.812–0.916) 0.118 78.3 (70.1–86.3) 85.9 (83.7–88.2) 38.5 (31.5–45.6) 97.2 (96.1–98.3)

Testing cohort 0.803 (0.783–0.885) 0.122 74.2 (65.5–82.5) 86.5 (84.2–88.7) 39.7 (33.3–46.7) 96.5 (95.2–97.7)
a, The value of the C-index is the same as that of the AUC in the logistic regression model; b, Recommended cutoff points based on 
derivation studies; c, Calculated cutoff points based on ROC curves. Data are ROC-AUCs and (95% CI). ROC, receiver operating 
characteristic; AUCs, areas under the curve; CI, confidence interval; CRC, colorectal cancer; RAM, risk assessment model; LR, logistic 
regression; RF, random forest; SVM, support vector machine; MLP, multilayer perception network; LSTM, long short-term memory; VTE, 
venous thromboembolism. 
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In the LSTM model, the variable contributing to the 
predicted VTE outcome at the continuous variable level 
was derived from mean absolute SHAP values, which 
were calculated at different time points. The ten highest 
preforming clinically relevant variables in the LSTM model 
are exhibited, including creatine kinase (CK), creatinine 
(Cr), C-reactive protein (CRP), α-hydroxybutyrate 
dehydrogenase (α-HBDH), lactate dehydrogenase (LDH), 
lipoprotein (a) [Lp (a)], myoglobin (MYO), platelet (PLT), 
uric acid (UA), and white blood cells (WBC). Figure 4 shows 
that WBC level was the most impactful variable. The trends 
of these ten variables over time are also depicted in Figure 4.  
For example, the impact of WBC on the model output 
seems to increase gradually over time from preoperative 
Day 2 to postoperative Day 6.

For a single patient prediction, the final model output 
and prediction confidence are formed by the sum of 
contributions made by each of their features (22). The 
XGBoost model predictions for three patients, including a 
patient with a significant positive outcome, a patient with an 
indeterminate outcome, and a patient with a strong negative 

outcome, are shown in Figure 2C-2E, respectively. Similarly, 
the MLP model predictions for three patients (positive, 
indeterminate, and negative) are depicted in Figure 3C-3E, 
respectively.

Discussion

This 1191-sample retrospective cohort study developed 
multiple prediction models for VTE in surgical patients with 
CRC. Six different types of supervised machine learning 
algorithms (LR, RF, XGBoost, SVM, MLP, and LSTM) were 
applied to examine the features in our cohort. Two widely 
used VTE models, the Caprini model and the Khorana 
model, were used as the benchmark models to compare the 
performance of the ML models. We found that the XGBoost 
model achieved the best classification performance with 
the highest ROC-AUC, and the MLP model achieved the 
highest PPV in our cohort. The performance of the two 
benchmark models was “moderate” (ROC-AUC of Caprini: 
0.769 and ROC-AUC of Khorana: 0.646), but all the ML 
models achieved an ROC-AUC over 0.8.

Figure 1 The model performance of the XGBoost model (plot A) and MLP model (plot B). The classification based on the best threshold, 
the ROC curve and PR curve were plotted to measure the performance of the two machine learning models, and the AUCs were also 
calculated with 95% CIs. The best threshold points of these PR curves were plotted with corresponding sensitivities and positive predictive 
values. AUC, area under the curve; CI, confidence interval; MLP, multilayer perception network; PPV, positive predictive value; PR, 
precision-recall curve; ROC, receiver operating characteristic curve; SEN, sensitivity; VTE, venous thromboembolism; XGBoost, extreme 
gradient boosting; Youden index: = sensitivity + specificity − 1.
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Figure 2 Interpretation and evaluation of the XGBoost model. Plot (A) reports the result of the SHAP analysis on the dataset. The study 
variables are described using mean absolute SHAP values. The variables ranked among the top ten are shown as distributions across 
individual patients. Each point in the figure represents the SHAP value of a single patient. The y-axis indicates the rank of the variable 
contribution to model prediction. The x-axis represents the mean absolute SHAP value. Blue and red colors indicate lower and higher 
values of the variables, respectively. Plot (B) shows the amount of a feature contributing to the model output indicated by the SHAP analysis. 
Individual predictions in the XGBoost model for (C) a patient with a strong positive outcome prediction, (D) a patient with an indeterminate 
prediction, and (E) a patient with a strong negative outcome prediction. The sum of the expected SHAP value (base value) and the 
calculated SHAP value of all individual variables is defined as the model output for a single patient. A model output value greater than the 
expected SHAP value indicates a positive prediction (VTE occurrence), while an output value less than the expected SHAP value indicates a 
negative prediction (no VTE occurrence). Blue and red colors indicate negative and positive effects of variables, respectively. The visual size 
represents the magnitude of the effect. BMI, body mass index; CRP, C-reactive protein; DD, D-dimer; INR, international normalized ratio; 
SHAP, SHapley Additive exPlanations; VTE, venous thromboembolism; XGBoost, extreme gradient boosting.
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Figure 3 Interpretation and evaluation of the MLP model. Plot (A) reports the result of the SHAP analysis on the dataset. The study 
variables are described using mean absolute SHAP values. The variables ranked among the top ten are shown as distributions across 
individual patients. Each point in the figure represents the SHAP value of a single patient. The y-axis indicates the rank of the variable 
contribution to model prediction. The x-axis represents the mean absolute SHAP value. Blue and red colors indicate lower and higher values 
of variables, respectively. Plot (B) shows the amount of a feature contributing to the model output indicated by SHAP analysis. Individual 
predictions in the MLP model for (C) a patient with a strong positive outcome prediction, (D) a patient with an indeterminate prediction, 
and (E) a patient with a strong negative outcome prediction. The sum of the expected SHAP value (base value) and the calculated SHAP 
value of all individual variables is defined as the model output for a single patient. A model output value greater than the expected SHAP 
value indicates a positive prediction (VTE occurrence), while an output value less than the expected SHAP value indicates a negative 
prediction (no VTE occurrence). Blue and red colors indicate negative and positive effects of variables, respectively. The visual size 
represents the magnitude of the effect. BMI, body mass index; CRP, C-reactive protein; DD, D-dimer; MLP, multilayer perception network; 
TT, thrombin time; SHAP, SHapley Additive exPlanations; VTE, venous thromboembolism; WBC, white blood cell.
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In our study, the Caprini model and the Khorana model 
had acceptable NPV (>90%) but a low PPV (<40%). Thus, 
these models are highly effective at identifying patients with 
CRC who are at low risk for VTE, but the models may not 
be as predictive in individual specific cancers because they 
were designed as a tool for a mixed solid tumor population. 
Of note, although the Caprini model exhibited a satisfactory 
sensitivity (over 90% by the recommended cutoff points 
based on derivation studies), it stratified more than 90% of 
patients as high risk, and its low PPV (approximately 10%) 
suggested that a large portion of patients may be exposed to 
unnecessary risks associated with VTE prophylaxis.

In general, an ideal prediction model should simultaneously 
achieve excellent sensitivity and specificity; however, there 
is a trade-off between these two desirable properties. It 

is unclear how this trade-off affects the clinical benefit of 
VTE prophylaxis. In fact, patients with colorectal cancer 
who have high VTE risk frequently present with venous 
cavernomas and/or signs of portal hypertension, which 
can lead to complications such as variceal bleeding (23). 
These patients are routinely seen in clinical practice, but 
they are underrepresented in clinical trials, making VTE 
prophylaxis and treatment decisions difficult. Taking the 
increased risk of bleeding in CRC patients into account, we 
believe that the VTE prediction model for this population 
should have high sensitivity and positive predictive value. 
Our results show that the XGBoost model has the highest 
ROC-AUC and the second highest PPV. Despite the fact 
that the MLP model’s performance was comparable to 
that of the XGBoost model, the sum of sensitivity and 
positive predictive value of the XGBoost model was higher. 
Therefore, we considered that this model was the optimal 
model for postoperative VTE prediction in CRC patients.

Machine learning models can receive the characteristics 
of a large number of features and understand the dataset 
to obtain implicit correlations to serve complex binary/
multiclass classification. SHAP is an explainable framework 
that allows researchers to comprehend and trust the results 
and output created by ML algorithms. Seven common 
impactful predictors in both the XGBoost model and MLP 
model were identified, including N class, sex, CRP, D-dimer, 
anemia, primary tumor location (sigmoid/rectum), and 
tumor grade. Tumor Nodes Metastases (TNM) stages of 
tumor lesions, sex, D-dimer and CRP are known risk factors 
for VTE, and there are more data to support their use in 
various cancer types (24). However, primary tumor location 
in the large bowel is a unique risk factor in CRC. While 
the prognostic value of primary tumor location for overall 
survival in CRC seems clear and consistent in reports in 
recent decades, the association between primary tumor 
location and VTE remains unclear. Our results showed that 
patients with a primary tumor site at the sigmoid/rectum 
had a higher risk of VTE than patients with other primary 
tumor sites. Since all patients in this study underwent CRC 
surgery at the primary tumor site with curative intent, we 
hypothesized that surgical factors may be implicated in 
postoperative VTE occurrence.

A previous study also suggested that postoperative venous 
thrombosis development in patients receiving colon and 
rectal surgery could be affected by surgical features, including 
resection site, use of laparoscopic surgery, and procedure 
time (25). In this study, more patients with VTE underwent 

Figure 4 Interpretation and evaluation of the LSTM model. In 
the LSTM model, the variable contributing to the predicted VTE 
outcome at the continuous variable level was derived from mean 
absolute SHAP values, which were calculated at different time 
points. The ten highest preforming clinically relevant variables in 
the LSTM model are exhibited according to the mean absolute 
SHAP values at different time intervals. The position on the x-axis 
indicates days before surgery (negative numbers) and after surgery 
(positive numbers); Day 0 indicates the day of surgery; the rank 
on the y-axis is determined by the mean absolute contribution 
of the variable to the model’s output. CK, creatine kinase; Cr, 
creatinine; CRP, C-reactive protein; α-HBDH, α-hydroxybutyrate 
dehydrogenase; LDH, lactate dehydrogenase; Lp (a), lipoprotein 
(a); LSTM, long short-term memory; MYO, myoglobin; PLT, 
platelet; UA, uric acid; WBC, white blood cells.
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laparoscopic surgery, with more tumors located in the right 
colon and sigmoid/rectum. To our knowledge, few studies 
have reported the association between surgical factors and 
postoperative VTE in CRC patients. However, an animal 
study and a human study suggested that laparoscopic surgery 
might promote portomesenteric venous thrombosis (PMVT) 
due to portal and mesenteric venous flow decline through 
insufflation of the abdomen and increased intra-abdominal 
pressure (26,27). Furthermore, a previous 1,224-patient study 
reported a higher incidence (10.8%) of PMVT in patients 
undergoing restorative proctocolectomy than in patients 
undergoing left (3.9%) and right (1.9%) colectomy (28). In 
our study, the incidence of VTE in patients undergoing 
proctectomy/proctocolectomy was 13.2%, higher than the 
incidence in patients undergoing left (7.2%), transverse 
(4.3%), and right (10.5%) colectomy, which was consistent 
with the previous study (28). Considering the different 
underlying mechanisms between PMVT and VTE 
(including DVT and PE), further investigation is warranted 
to validate the interaction between VTE and surgical factors 
in CRC patients.

Generally, SHAP works well on static features but not 
on dynamic time series features. In ML models accepting 
static features, each predictor was grouped as model input 
and model interpretation, which show correlations but 
not causality. In the present study, we attempt to apply the 
SHAP framework in the LSTM model. The dynamic data 
of the CRC patients were transformed into a n*11*78 size 
3D matrix before entering the model. The contribution of 
continuous variables to model prediction was quantified by 
the mean absolute SHAP values, which were calculated at 
11 time points (from preoperative 3 days to postoperative 
7 days). The impact of WBC on the model output 
gradually increased over time from preoperative Day 2 
to postoperative Day 6, which is consistent with previous 
reports in the literature (29). However, the influence of 
other dynamic variables was not significant, and there was 
no obvious trend.

Our study had potential limitations: (I) The study 
was performed in a single center. (II) Our study was a 
retrospective analysis of a consecutively collected colorectal 
cancer database. However, because of incorrect coding, 
there could have been missing individuals when identifying 
patients with VTE. (III) Although we found that some 
potential surgical factors had the potential to be used in 
postoperative VTE prediction in CRC patients, further 
research is required among different populations utilizing a 
larger study sample size.

Conclusions

This study shows that machine learning for predictive 
modeling is a novel approach to accurately predict the 
occurrence of VTE in surgical CRC patients. Furthermore, 
we developed an XGBoost model with high sensitivity 
and positive predictive value in the prediction of VTE 
occurrence, which might supply a complementary tool for 
clinical VTE prophylaxis decision-making in colorectal 
cancer.  The proposed risk factors through model 
interpretation, such as surgical factors, could shed some 
light on VTE risk stratification in CRC patients.
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Supplementary

Table S1 Surgical variables of the whole cohort

Surgical variables
All patients, n (%), 

n=1,191
All patients, n (%),  

VTE, n=129
All patients, n (%), Non  

VTE, n=1,062
P value

ASA classification

2 759 (63.6%) 86 (66.7%) 673 (63.2%) 0.681

3 435 (36.4%) 43 (33.3%) 392 (36.8%) 0.514

Type of resection

Right colon 316 (26.5%) 33 (25.6%) 283 (26.6%) 0.810

Transverse colon 92 (7.7%) 4 (3.1%) 88 (8.3%) 0.038

Left colon 221 (18.5%) 16 (12.4%) 205 (19.2%) 0.059

Proctectomy/Proctocolectomy 563 (47.2%) 74 (57.4%) 489 (45.9%) 0.018

Length of surgery

0–59 min 6 (0.5%) 1 (0.8%) 5 (0.5%) 0.643

60–119 min 38 (3.2%) 2 (1.6%) 36 (3.4%) 0.263

120–179 min 227 (19.0%) 20 (15.5%) 207 (19.4%) 0.282

≥180 min 923 (77.3%) 106 (82.2%) 817 (76.7%) 0.265

Surgical approach

Open 257 (21.5%) 25 (19.5%) 232 (21.8%) 0.868

Laparoscopic/Robotic 937 (78.5%) 104 (80.6%) 833 (78.2%) 0.890

ASA, American Society of Anesthesiologists; CRC, colorectal cancer patient; VTE, venous thromboembolism.



Table S2 The characteristics of the whole cohort

Patient characteristics
All patients, n (%) or 

median (IQR), n=1,191
All patients, n (%) or median 

(IQR), VTE, n=129
All patients, n (%) or median 

(IQR), Non VTE, n=1,062
P value

Patient-related factors

Age 63 [54 to 70] 64 [56 to 72] 63 [54 to 70] 0.169

Females 419 (35.1%) 61 (47.3%) 358 (33.6%) 0.003

BMI ≥ 25 224 (18.8%) 30 (23.3%) 194 (18.2%) 0.166

BMI ≥ 28 53 (4.4%) 7 (5.4%) 46 (4.3%) 0.564

Hypertension 315 (26.4%) 32 (24.8%) 283 (26.6%) 0.667

Diabetes mellitus 149 (12.5%) 13 (10.1%) 136 (12.8%) 0.382

Dyslipidemia 119 (10.0%) 8 (6.2%) 111 (10.4%) 0.131

Liver cirrhosis 7 (0.6%) 2 (1.6%) 5 (0.5%) 0.129

Hepatic dysfunction 46 (3.9%) 3 (2.3%) 43 (4.0%) 0.340

Chronic lung disease 30 (2.5%) 5 (3.9%) 25 (2.3%) 0.295

Heart failure 5 (0.4%) – 5 (0.5%) 0.435

History of a myocardial infarction 70 (5.9%) 4 (3.1%) 66 (6.2%) 0.157

History of a stroke 61 (5.1%) 7 (5.4%) 54 (5.15%) 0.862

Atrial fibrillation 16 (1.3%) 1 (0.8%) 15 (1.4%) 0.555

Varicose vein 6 (0.5%) 2 (1.6%) 4 (0.4%) 0.075

History of VTE 2 (0.2%) 2 (1.6%) – < 0.001

History of major bleeding 37 (3.1%)  3 (2.3%) 34 (3.2%) 0.592

Cancer-related Factors

Tumor stage I-II 570 (47.7%) 51 (39.5%) 519 (48.7%) 0.048

Tumor stage III-IV 624 (52.3%) 78 (60.5%) 546 (51.3%) 0.048

T stage

1 54 (4.5%) 6 (4.7%) 48 (4.5%) 0.941

2 148 (12.4%) 11 (8.5%) 137 (12.9%) 0.158

3 694 (58.1%) 73 (56.6%) 621 (58.3%) 0.708

4a 227 (19.0%) 31 (24.0%) 196 (18.4%) 0.124

4b 71 (5.9%) 8 (6.2%) 63 (5.9%) 0.897

N stage

0 624 (52.3%) 51 (39.5%) 573 (53.8%) 0.001

1a 210 (17.6%) 32 (24.8%) 178 (16.7%) 0.023

1b 93 (7.8%) 13 (10.1%) 80 (7.5%) 0.304

1c 24 (2.0%) 2 (1.6%) 22 (2.1%) 0.694

2a 162 (13.6%) 20 (15.5%) 142 (13.3%) 0.497

2b 81 (6.8%) 11 (8.5%) 70 (6.6%) 0.404

M stage

0 978 (81.9%) 100 (77.5%) 878 (82.4%) 0.170

1a 177 (14.8%) 23 (17.8%) 154 (14.5%) 0.309

1b 13 (1.1%) 1 (0.8%) 12 (1.1%) 0.716

1c 26 (2.2%) 5 (3.9%) 21 (2.0%) 0.162

Metastasis disease 288 (24.1%) 39 (30.2%) 249 (23.4%) 0.086

The site of tumor

Right colon 316 (26.5%) 33 (25.6%) 283 (26.6%) 0.810

Transverse colon 92 (7.7%) 4 (3.1%) 88 (8.3%) 0.038

Left colon 221 (18.5%) 16 (12.4%) 205 (19.2%) 0.059

Sigmoid colon/Rectum 563 (47.2%) 74 (57.4%) 489 (45.9%) 0.018

Appendix/cecum 2 (0.2%) 2 (1.6%) – < 0.001

Treatment-related Factors

Radiotherapy 46 (3.9%) 4 (3.1%) 42 (3.9%) 0.639

Neoadjuvant chemotherapy 227 (19.0%) 25 (19.4%) 202 (19.0%) 0.910

Preoperative chemotherapy regimens

FLOT a 1 (0.1%) 1 (0.8%) – 0.207

FOLFIRI b 4 (0.3%) 1 (0.8%) 3 (0.3%) 0.368

FOLFIRI b + targeted drug k 2 (0.2%) – 2 (0.2%) 0.622

mFOLFOX6 c 145 (12.2%) 19 (14.7%) 126 (11.9%) 0.347

mFOLFOX6 c + targeted drug k 11 (0.9%) 2 (1.6%) 9 (0.8%) 0.431

FOLFOXIRI d 30 (2.5%) 2 (1.6%) 28 (2.6%) 0.457

FOLFOXIRI d + bevacizumab i 8 (0.7%) 4 (3.1%) 4 (0.4%) < 0.001

FOLFOXIRI d + cetuximab j 4 (0.3%) – 4 (0.4%) 0.485

XELIRI e 1 (0.1%) – 1 (0.1%) 0.727

XELO f + targeted drug k 1 (0.1%) – 1 (0.1%) 0.727

XELOX g 24 (2.0%) 2 (1.6%) 22 (2.1%) 0.691

PD-1/PD-L1 inhibitors 19 (1.6%) 3 (2.3%) 16 (1.5%) 0.483

Postoperative chemotherapy 43 (3.6%) 13 (10.1%) 30 (2.8%) < 0.001

Postoperative chemotherapy regimens

FOLFIRI b 2 (0.2%) / 2 (0.2%) 0.622

FOLFIRI b + targeted drug k 2 (0.2%) 1 (0.8%) 1 (0.1%) 0.074

mFOLFOX6 c 10 (0.8%) 1 (0.8%) 9 (0.8%) 0.932

mFOLFOX6 c + targeted drug k 19 (1.6%) 1 (0.8%) 18 (1.7%) 0.431

FOLFOXIRI d 22 (1.8%) 3 (2.3%) 19 (1.8%) 0.669

FOLFOXIRI d + bevacizumab i 8 (0.7%) 2 (1.6%) 6 (0.6%) 0.196

FOLFOXIRI d + cetuximab j 1 (0.1%) – 1 (0.1%) 0.727

XELIRI e 1 (0.1%) – 1 (0.1%) 0.727

XELO f + targeted drug k 3 (0.3%) 1 (0.8%) 2 (0.2%) 0.209

XELOX g 2 (0.2%) – 2 (0.2%) 0.622

De Gramont h 3 (0.3%) – 3 (0.3%) 0.546

PD-1/PD-L1 inhibitors 19 (1.6%) 2 (1.6%) 17 (1.6%) 0.966

Patients receiving prophylaxis (LMWH) 297 (24.9%) 36 (27.9%) 261 (24.5%) 0.806

Laboratory-level factors (dynamic temporal data)

RBC (< 4 × 1012/L) 1133 (95.1%) 123 (96.9%) 1009 (94.9%) 0.332

HCT (< 0.37) 1184 (99.4%) 127 (99.2%) 1057 (99.4%) 0.762

HGB (< 110 g/L) 1042 (87.5%) 120 (93.8%) 922 (86.7%) 0.023

MCH (< 27 pg) 235 (19.7%) 21 (16.4%) 214 (20.1%) 0.317

MCHC (< 310 g/L) 30 (2.5%) 6 (4.7%) 24 (2.3%) 0.097

MCV (< 80 fL) 114 (9.6%) 7 (5.5%) 107 (10.1%) 0.095

MPV (> 11 fL) 209 (17.5%) 27 (21.1%) 182 (17.1%) 0.264

PDW-SD (< 9.8) 19 (1.6%) 3 (2.3%) 16 (1.5%) 0.474

RDW-CV (> 14.5) 687 (57.7%) 80 (62.5%) 607 (57.1%) 0.243

RDW-SD (< 35 fL) 3 (0.3%) 1 (0.8%) 2 (0.2%) 0.206

NRBC/100 WBC (> 0.1) 985 (82.7%) 106 (82.8%) 879 (82.7%) 0.972

NRBC (> 0.05 × 109/L) 94 (7.9%) 6 (4.7%) 88 (8.3%) 0.155

FPG (> 7.9 mmol/L) 513 (43.1%) 60 (46.9%) 453 (42.6%) 0.358

CO2CP (> 29 mmol/L) 14 (1.2%) 0 14 (1.3%) 0.192

CO2CP (< 22 mmol/L) 18 (1.5%) 1 (0.8%) 17 (1.6%) 0.474

PLT (> 350 × 109/L) 137 (11.5%) 14 (10.9%) 123 (11.5%) 0.815

D-dimer (> 0.5 μg/mL) 927 (77.6%) 128 (99.2%) 799 (75.0%) < 0.001

FIB (> 4 g/L) 171 (14.3%) 25 (19.4%) 146 (13.7%) 0.082

PT (< 10 s) 14 (1.2%) – 14 (1.3%) 0.190

PT-INR (< 1) 282 (23.6%) 20 (15.5%) 262 (24.6%) 0.022

aPTT (< 20 s) 3 (0.3%) 3 (2.3%) – < 0.001

TT (< 14 s) 387 (32.4%) 55 (42.6%) 332 (31.2%) 0.009

A/G (> 2.0) 15 (1.3%) 4 (3.1%) 11 (1.0%) 0.045

GLb (< 20 g/L) 123 (10.3%) 15 (11.7%) 108 (10.2%) 0.584

ALT (> 40 U/L) 361 (30.3%) 44 (34.4%) 317 (29.8%) 0.290

AST (> 40 U/L) 482 (40.5%) 61 (47.7%) 421 (39.6%) 0.080

γ-GT (> 50 U/L) 610 (51.2%) 69 (53.9%) 541 (50.9%) 0.519

AFP (> 400 μg/L) 23 (1.9%) 1 (0.8%) 22 (2.1%) 0.317

AKP (> 135 U/L) 12 (1.0%) 2 (1.6%) 10 (0.9%) 0.506

ALb (> 51 g/L) – – – –

PA (> 0.35 g/L) – – – –

TP (< 60 g/L) 931 (78.2%) 101 (78.9%) 830 (78.1%) 0.831

TG (> 1.81 mmol/L) 437 (36.7%) 53 (41.4%) 384 (36.1%) 0.241

CH (> 5.68 mmol/L) – – – –

Lp (a) (> 300 mg/L) 626 (52.6%) 67 (52.3%) 559 (52.6%) 0.958

ApoA1 (> 2.36 g/L) – – – –

ApoB (> 1.28 g/L) – – – –

LDL (> 3.36 mmol/L) – – – –

HDL (< 0.78 mmol/L) 248 (20.8%) 21 (16.4%) 227 (21.4%) 0.193

TBA (> 10.0 μmol/L) 5 (0.4%) 2 (1.6%) 3 (0.3%) 0.034

TBIL (> 17.1 μmol/L) 270 (22.7%) 42 (32.8%) 228 (21.4%) 0.004

DBIL (> 6.8 μmol/L) 365 (30.6%) 58 (45.3%) 307 (28.9%) < 0.001

IBIL (> 10.2 μmol/L) 506 (42.5%) 47 (36.7%) 459 (43.2%) 0.162

U-BLD (+, μmol/L) 143 (12.0%) 13 (10.2%) 130 (12.2%) 0.495

U-BIL (> 14 μmol/L) 906 (76.1%) 96 (75.0%) 810 (76.2%) 0.764

URO (-, μmol/L) 7 (0.6%) 2 (1.6%) 5 (0.5%) 0.127

KET (+, mg/L) 340 (28.5%) 35 (27.3%) 305 (28.7%) 0.750

PRO (+, g/L) 39 (3.3%) 2 (1.6%) 37 (3.5%) 0.249

LEU (+,/μL) 47 (3.9%) 6 (4.7%) 41 (3.9%) 0.648

BUN (> 8.8 mmol/L) 65 (5.5%) 5 (3.9%) 60 (5.6%) 0.413

USG (> 1.03) 4 (0.3%) 1 (0.8%) 3 (0.3%) 0.357

SQEP (> 21.4/μL) – – – –

BYST (μL) 86.4 ± 28.2 90.7 ± 22.8 85.92 ± 28.8 0.068

HYAL (μL) 2.1 ± 0.5 2.3 ± 0.5 2.1 ± 0.5 < 0.001

Cr (> 133.0 μmol/L) 674 (56.6%) 53 (41.4%) 621 (58.4%) < 0.001

CYS-C (> 1.03 mg/L) 1129 (94.8%) 117 (91.4%) 1012 (95.2%) 0.068

RBP (> 57.9 mg/L) 5 (0.4%) – 5 (0.5%) 0.437

UA (> 416 μmol/L) 5 (0.4%) – 5 (0.5%) 0.437

WBC (> 11 × 109/L) 215 (18.0%) 40 (31.0%) 175 (16.4%) < 0.001

LYM (> 3.5 × 109/L) 11 (0.9%) – 11 (1.0%) 0.248

LYM (< 0.8 × 109/L) 37 (3.1%) 2 (1.6%) 35 (3.3%) 0.287

LYMR (> 0.4) – – – –

NEU (> 7 × 109/L) 1151 (96.6%) 125 (97.7%) 1026 (96.5%) 0.793

NEUR (> 0.7) 1186 (99.6%) 127 (99.2%) 1059 (99.6%) 0.503

MONO (> 0.8 × 109/L) 1017 (85.4%) 115 (89.8%) 902 (84.9%) 0.131

MONOR (> 0.08) 274 (23.0%) 37 (28.9%) 237 (22.3%) 0.093

EOS (> 0.5 × 109/L) 188 (15.8%) 20 (15.6%) 168 (15.8%) 0.958

EOSR (> 0.05) 8 (0.7%) 1 (0.8%) 7 (0.7%) 0.872

BASO (> 0.1 × 109/L) 299 (25.1%) 20 (15.6%) 279 (26.2%) 0.009

BASOR (> 0.005) 292 (24.5%) 37 (28.9%) 255 (24.0%) 0.222

PCT (> 0.5 ng/mL) 887 (74.5%) 97 (75.8%) 790 (74.3%) 0.720

CRP (> 10 mg/L) 778 (65.2%) 103 (79.8%) 675 (63.4%) < 0.001

hs-CRP (> 3 mg/L) 1191 (100%) – – –

NSE (> 5.4 μg/L) – – – –

MYO (> 75 ng/mL) 182 (15.2%) 22 (17.1%) 160 (15.0%) 0.544

HsTnI (> 0.2 ng/mL) 38 (3.2%) 10 (7.8%) 28 (2.6%) 0.002

CK (> 174 U/L) 150 (12.6%) 14 (10.9%) 136 (12.8%) 0.535

CKMB (> 25 U/L) 106 (8.9%) 18 (14.0%) 88 (8.3%) 0.032

LDH (> 245 U/L) 179 (15.0%) 29 (22.5%) 150 (14.1%) 0.012

α-HBDH (> 220 U/L) 48 (4.0%) 7 (5.4%) 41 (3.8%) 0.389
a cycle of FLOT chemotherapy consisted of the following: Day 1: Intravenous (IV) leucovorin 200 mg/m2 in 2 h; IV oxaliplatin 85 mg/m2 in 
120 min; IV docetaxel 50 mg/m2; 5-fluorouracil (5-FU) 400 mg/m2 bolus IV then 2400 mg/m2 perfusion IV over 46 h. The next chemotherapy 
cycle was repeated on the 15th day. b A cycle of FOLFIRI chemotherapy consisted of the following: Day 1: IV irinotecan 180 mg/m2 in 
90 min; IV leucovorin 200 mg/m2 in 2 h; 5-FU 400 mg/m2 bolus IV then 2400 mg/m2 perfusion IV over 46 h. The next chemotherapy cycle 
was repeated on the 15th day. c A cycle of mFOLFOX6 consists of the following: Day 1: IV oxaliplatin 85 mg/m2 in 120 min; IV leucovorin 
200 mg/m2 in 2 h; 5-FU 400 mg/m2 bolus IV then 2,400 mg/m2 perfusion IV over 46 h. The next chemotherapy cycle was repeated on 
the 15th day. d A cycle of FOLFOXIRI consisted of the following: Day 1: IV irinotecan 165 mg/m2 in 90 min; IV oxaliplatin 85 mg/m2 in 120 
min; IV leucovorin 200 mg/m2 in 2 h; 5-FU 400 mg/m2 bolus IV then 2,400 mg/m2 perfusion IV over 46 h. The next chemotherapy cycle 
was repeated on the 15th day. e A cycle of XELIRI consists of the following: Day 1: IV irinotecan 165 mg/m2 in 90 min; capecitabine 
1,000 mg/m2 PO twice daily for 14 out of 21 days. f A cycle of XELO consists of the following: Day 1: IV oxaliplatin 130 mg/m2 in 120 min; 
capecitabine 1,000 mg/m2 PO twice daily for 14 out of 21 days. g A cycle of XELOX consists of the following: capecitabine 1,000 mg/m2 

PO twice daily for 14 out of 21 days. h A cycle of De Gramont consists of the following: Day 1: IV leucovorin 200 mg/m2 in 2 h; 5-FU 400 
mg/m2 bolus IV then 1,200 mg/m2 perfusion IV over 46 h. The next chemotherapy cycle was repeated on the 15th day. i Bevacizumab (5 
mg/kg IV every 14 days) and standard fluoropyrimidine-based chemotherapy. j Cetuximab (500 mg/m2 IV every 14 days) and standard 
fluoropyrimidine-based chemotherapy. k Targeted drug: oral molecular target drugs including sorafenib, regorafenib, and fruquintinib. AFP, 
alpha-fetoprotein; A/G, albumin/globulin; AKP, alkaline phosphatase; ALb, albumin; ALT, alanine aminotransferase; ApoA1, apolipoprotein 
A1; ApoB, apolipoprotein B; aPTT, activated partial thromboplastin time; AST, aspartate aminotransferase; BASO, basophils; BASOR, 
basophils ratio; BMI, body mass index; BUN, blood urea nitrogen; BYST, Budding yeast cells; CH, cholesterols; CK, creatine kinase; 
CKMB, creatine kinase isoenzyme; CO2CP, carbon dioxide combining power; Cr, creatinine; CRP, C-reactive protein; hs-CRP, high 
sensitivity-C-reactive protein; CYS-C, cystatin C; DBIL, direct bilirubin; EOS, eosinophils; EOSR, eosinophils ratio; FGP, fasting glucose 
proxy measure; FIB, fibrinogen; GLb, globulin; γ-GT, γ-glutamyltranspeptidase; α-HBDH, α-hydroxybutyrate dehydrogenase; HCT, 
hematocrit; HGB, hemoglobin; HDL, high-density lipoprotein; HsTnI, high-sensitivity troponin I; HYAL, hyalinecasts; IBIL, indirect bilirubin; 
IQR, interquartile range; KET, ketone bodies; LDH, lactate dehydrogenase; LDL, low-density lipoprotein; LEU, urine leukocytes; LMWH, 
low molecular weight heparin; Lp (a), lipoprotein (a); LYM, lymphocytes; LYMR, lymphocytes ratio; MCH, mean corpuscular hemoglobin; 
MCHC, mean cell hemoglobin concentration; MCV, mean corpuscular volume; MONO, monocyte; MONOR, monocyte ratio; MPV, mean 
platelet volume; MYO, myoglobin; NEU, neutrophils; NEUR, neutrophils ratio; NRBC, nucleated red blood cells; NSE, neuron-specific 
enolase; PA, prealbumin; PCT, Serum procalcitonin; PDW-SD, platelet distribution width-standard deviation; PLT, platelet; PRO, urinary 
protein; PT, prothrombin time; PT-INR, prothrombin time-international normalized ratio; RBC, red blood cells; RBP, plasma-retinol binding 
protein; RDW-CV, red blood cell distribution width-coefficient of variability; RDW-SD, red blood cell distribution width-standard deviation; 
SQEP, squamous epithelial cells; TBA, total bile acid; TBIL, total bilirubin; TG, total triglycerides; TP, serum total protein; TT, thrombin 
time; UA, uric acid; U-BLD, urine routine: occult blood; U-BIL, urine routine: bilirubin; URO, urobilinogen; USG, urine specific gravity; VTE, 
venous thromboembolism; WBC, white blood cells.
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Table S3 Previous VTE risk assessment models and risk factors used as predictors

Risk factors in Caprini score Relative risk score Risk factors in Khorana score Relative risk score

Age, 41–60 1 Site of cancer b 3

Age, 61–74 2 Very high risk (stomach, pancreas) 3

Age, 75+ 3 High risk (lung, lymphoma, gynecologic, 
bladder, testicular

3

Acute myocardial infarction 1 Prechemotherapy platelet count 350×109/L or 
more

3

Heart failure 1 Hemoglobin level less than 100 g/L or use of 
red cell growth factors

2

Varicose veins 1 Prechemotherapy leukocyte count more than 
11×109/L

1

Obesity (BMI >25) 1 BMI ≥35 1

Inflammatory bowel disease 1

Sepsis (within 1 month) 1  

COPD or abnormal pulmonary function 1  

Severe lung disease, including pneumonia (within 
1 month)

1

Oral contraceptives or hormone replacement 
therapy

1

Pregnancy or postpartum (within 1 month) 1

History of unexpected stillborn infant, recurrent 
spontaneous abortion (≥3), premature birth with 
toxemia or growth-restricted infant

1

Medical patient currently at bed rest 1

Minor surgery planned 1

History of prior major surgery (within 1 month) 1

Swollen legs 1

Central venous catheter 2

Arthroscopic surgery 2

Major surgery (>45 min) 2

Malignancy (present or previous) 2

Laparoscopic procedure >45 min 2

Patient confined to bed (>72 h) 2

Immobilizing plaster cast (within 1 month) 2

History of VTEc 3

Positive Factor V Leiden; positive prothrombin 
G20210A; elevated serum homocysteinea

3

Positive lupus anticoagulanta 3

Heparin-induced thrombocytopenia 3

Family history of VTEc 3

Elevated anticardiolipin antibodies 3

Stroke (within 1 month) 5

Multiple trauma (within 1 month) 5

Elective major lower extremity arthroplasty 5

Hip, pelvis, or leg fracture (within 1 month) 5

Acute spinal cord injury (paralysis) (within 1 month) 5
a, These risk factors cannot be tested at our site. b, Cancer patients with local or distant metastases and/or in whom chemotherapy 
or radiotherapy had been performed in the past 6 months. c, All types of VTE are included with the exception of superficial vein 
thromboembolism. BMI, body mass index; COPD, chronic obstructive pulmonary disease; VTE, venous thromboembolism.
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Figure S1 The model performance of the LR model (plot A), RF model (plot B), SVM (plot C), and LSTM (plot D). The classification 
based on the best threshold, the ROC curve and PR curve were plotted to measure the performance of the four machine learning models, 
and the AUCs were also calculated with 95% CIs. The best threshold points of these PR curves were plotted with corresponding sensitivities 
and positive predictive values. AUC, area under the curve; CI, confidence interval; LR, logistic regression; LSTM, long short-term memory; 
PPV, positive predictive value; PR, precision-recall curve; RF, random forest; ROC, receiver-operating characteristic curve; SEN, sensitivity; 
SVM, support vector machine; VTE, venous thromboembolism; Youden index: = sensitivity + specificity - 1.


