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Introduction

Gastric cancer (GC) is the world’s fifth most widespread 
malignancy and the fourth leading cause of death (1). 
The incidence and fatality rates of GC have reduced in 
most populations due to improvements in hygiene and 

Helicobacter pylori (HP) prevention (2). However, the 
incidence of GC is increasing among young adults in some 
European countries, probably due to microbiota dysbiosis 
induced by antibiotic abuse (3,4).

Noncardiac GC is considered to be caused by chronic 
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HP infection (5,6). The study has shown that HP infections 
trigger nuclear factor-κB (NF-κB)-induced inflammation 
by long noncoding RNA (lncRNA) H19, which leads to 
the growth of GC cells (7). Copper is an essential element 
and participates in many important redox reactions. The 
study has shown that copper is also associated with HP 
infection. For example, in mice, copper deprivation affects 
HP infection, and copper tetrathiomolybdate chelate 
reduces the role of macrophages in these infections by 
reducing copper utilization (8). Some studies have found 
that copper depletion caused by tetrathiomolybdate (TM) 
can affect immune response, which may regulate PD-L1 
expression and affect tumor immune escape (9,10). and the 
study has also shown that the prognosis model constructed 
by the genes related to cuproptosis and ferroptosis has 
good prognosis benefits in liver cancer (11). It indicates 
that there is a correlation between cuproptosis and cancer 
development. Additionally, the study has claimed there 
to be a connection between serum copper levels and HP 
infection in the stomach (12). A previous study has also 
indicated that copper directly binds to the lipid components 
of the tricarboxylic acid (TCA) cycle, causing protein toxic 
stress and ultimately leading to cell death in a process called 
cuproptosis (13). Moreover, other research has found that 
the copper-exporting protein ATP7A promotes tumor 
growth by increasing copper levels in cells (14). Several 
studies have also indicated that copper plays a major role 
in GC. For example, the production of reactive oxygen 
species (ROS) by disulfiram (DSF)/Cu induces the growth 
inhibition of GC cells via glycolysis (15,16). Nevertheless, 
the role of cuproptosis in GC remains unclear. 

Therefore, in the present study, we performed a functional 
analysis of the cuproptosis-related genes in GC, established a 
cuproptosis-related signature (CRs), and evaluated the tumor 
immunity of this signature. We then compared the expression 
of genes linked to immunology, m6A, m7G, ferroptosis, and 
chemoresistance in the 2 sets of the CRs. Finally, we used 
single-cell RNA sequencing (scRNA-seq) to analyze the 
expression of cuproptosis-related genes (CRGs) in different 
clusters and explored their potential functions. Although 
several similar reports about the CRs have been published 
(17-19) , the majority do not joint prediction of immunology, 
m6A, m7G, ferritosis, and chemoresistance effects of GC, 
and not combine scRNA-sq multi-dimensional analysis of the 
differential expression of CRGs in gastric cancer. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-23-62/rc).

Methods

Data collection

The RNA-seq data for stomach adenocarcinoma (STAD) 
transcriptome profiling data, single-nucleotide variation, 
and clinicopathological data of patients with GC were 
retrieved from The Cancer Genome Atlas (TCGA; http://
www.cbioportal.org/). The corresponding CRGs were 
downloaded from a previous article (13). We also retrieved 
the GSE54129 scRNA-seq data for GC from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). The miRcode database (http://www.
mircode.org/) was used to obtain the “highly conserved 
miRNA families” file.

The FerrDb database (http://www.zhounan.org/ferrdb/
legacy/index.html) was used to collect the ferroptosis-
related genes. The Molecular Signatures Database 
(MSigDB; https://www.gsea-msigdb.org/gsea/msigdb) was 
used to obtain the “hallmark gene sets browse 50 gene sets” 
file (H-related genes).

Differential expression analysis of CRGs in GC and tumor 
mutation burden (TMB)

The Pearson correlation coefficient was used to analyze 
the expression level of CRGs in GC, with P<0.05 being 
considered statistically significant. Genomic events in these 
genes and overall TMB analysis were visualized using the 
“maftools” package in R (The R Foundation for Statistical 
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Computing).

Differentially expressed CRGs and CRs

The TCGA-STAD RNA-seq data set was analyzed using 
R studio software. The relationship between lncRNAs and 
the CRGs of GC was assessed using Pearson correlation 
coefficient. The CRs of GC were screened using a P value 
<0.05 and a correlation coefficient >0.3. The differentially 
expressed (DE)-CRGs were screened using a P value <0.05. 
A |log fold change (FC)| >1 and false discovery rate (FDR) 
<0.05 were used as cutoff points to identify DE-CRGs. 

Functional analysis and construction of the gene expression 
networks

The pathway enrichment associated with DE-CRGs was 
determined based on the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO). Rstudio 
software was used to extract the DE-associated microRNAs 
(miRNAs) from the “highly conserved miRNA families” 
file from the miRcode database. The cuproptosis-related 
messenger RNA (mRNA)-lncRNA-miRNA network was 
constructed using Cytoscape (v. 3.8.0).

By applying the single-sample gene set enrichment 
analysis (ssGSEA) method from the “GSVA” R package, 
we calculated the extent of H-, ferroptosis-, m6A-, and m7G-
related genes according to their expression levels (ssGSEA-
score). The relationship between CRGs and ssGSEA-score 
was assessed using Pearson correlation coefficient with the 
R package “Hmisc”.

Construction of the prognostic signature (CRs) 

We examined the relationship between the overall survival 
(OS) and the 2 groups of the CRs using Cox regression. 
The DE-CRGs with P<0.05 were considered to have 
prognostic value. The training data set included 371 patients 
with GC from TCGA. Then, 199 patients within TCGA 
were randomly selected as the testing data set. We used 
least absolute shrinkage and selection operator (LASSO) 
and multivariate Cox regression analyses to construct the 
CRs using the following formula: risk score = (expression 
of lncRNA1) × coefficient (lncRNA1) + (expression 
of lncRNA2) × coefficient (lncRNA3) + (expression of 
lncRNAn) × coefficient (lncRNAn). The median risk score 
was used as the risk cutoff criteria to divide GC patients 
into low- and high-risk groups. Using the “survminer” R 

package via Rstudio, we generated Kaplan-Meier survival 
curves to analyze the OS of the low- and high-risk groups. 
The area under the receiver operating characteristic (ROC) 
curve (AUC) value was used to evaluate the performance of 
the CRs via the “timeROC” R package.

Independent prognostic analysis and nomogram 
construction

We used univariate and multivariate Cox regression 
analyses to evaluate the prognostic value of the CRs. 
Considering grade, stage, age, gender, and risk score, we 
evaluated the predictive prognostic accuracy of the CRs 
and other clinicopathological features using AUC values. 
The decision curve analysis (DCA) was used to assess the 
utility of the CRs for decision-making. A heatmap was 
used to clarify the correlation between clinicopathological 
features and risk scores. Finally, to evaluate the clinical 
utility of the CRs, we constructed a nomogram predicting 
the 1, 2, and 3-year OS.

Gene set enrichment analysis

We used the software (4.1.0) to perform GSEA and 
identify which signaling pathways were enriched in the 
different groups of the CRs. The canonical pathways 
MSigDB category (c2.cp.v7.5.symbols.gmt) were used as 
the reference gene set, and other parameters were set based 
on default values. The top 10 most relevant pathways were 
drawn using the “multiGSEA” package.

Immunity analysis and gene expression

Cell-type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT), tumor immune estimation 
resource (TIMER), Microenvironment cell populations-
counter (MCP-counter) and Cell types enrichment analysis 
(xCell) algorithms were used to quantify the tumor-
infiltrating immune cells between the 2 groups of the CRs. 
Moreover, the immune function of the CRs was assessed 
using ssGSEA. The FerrDb was used to retrieve ferroptosis-
related genes. Then, we analyzed the relation between the 
expressions of immunological checkpoints, m6A-, m7G-, and 
ferroptosis-related genes and the CRs.

Prediction of response to chemotherapy

The “pRRophetic” R package was used to predict the half 
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maximal inhibitory concentration (IC50) of the common 
chemotherapeutic agents. IC50 indicates the effectiveness of 
a substance in inhibiting specific biological or biochemical 
functions. The difference between groups was tested with 
Wilcoxon test analysis. 

Processing of the scRNA-Seq data 

First, the matrix was converted to a Seurat object, and the 
data were filtered by setting genes >50 and mitochondrial 
content <5%. The dimension reduction analysis was based 
on the principal component analysis (PCA) algorithm and 
cluster analysis using the t-distributed stochastic neighbor 
embedding (tSNE) algorithm. Marker genes were screened 
by setting an adjusted P value <0.05 and |log Fc| >1 as 
the cutoff criteria. KEGG enrichment analysis and cellular 
functions of each cluster were performed using ClueGO in 
Cytoscape. Finally, the cellular annotation was processed 
using the R package ‘SingleR’, and the study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Statistical analyses

R software (v. 3.6.3) was used to analyze the data. The 
Wilcoxon test was used to screen the DE-lncRNAs. The 
survival of patients with GC was assessed using Kaplan-
Meier survival curves. The ROC and DCA curves were used 
to analyze the accuracy and detection rate of the CRs and 

clinicopathological variables for GC. Logistic regression 
analysis was used to explore the correlation between the 
CRs and clinicopathological symptoms. A P value <0.05 was 
considered statistically significant.

Results

Analysis of genetic differences and TMB of the CRGs in GC

A total of 8 DE-CRGs were obtained from the TCGA-
STAD RNA-seq expression profile (Figure 1A). There were 
9 CRGs with TMB >1% in GC (Figure 1B). The results 
showed that DE-CRGs were correlated with GC (P>0.05), 
and the TMB values suggested that the high expression of 
LIPT1 and ATP7A may have better immunotherapy effects.

Enrichment analyses and construction of an mRNA-
lncRNA-miRNA Network

A total of 697 DE-CRGs were obtained from the TCGA-
STAD RNA-seq expression profile, and 83 lncRNA-
associated miRNAs were retrieved from miRcode (https://
cdn.amegroups.cn/static/public/jgo-23-62-1.xlsx). Then, we 
constructed a cuproptosis-related mRNA-lncRNA-miRNA 
network (Figure 2A). The GO analysis showed that the 8 
DE-CRGs, among which included DLAT, GCSH, PDHA1, 
FDX1, and LIPT1, mainly participated in the following 
biological functions: acetyl-CoA biosynthetic process 
from pyruvate, thioester biosynthetic process, nucleoside 
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Figure 2 Functional enrichment analyses of DE-CRGs and construction of the mRNA-lncRNA-miRNA network. (A) The mRNA-
lncRNA-miRNA network. Red represents CRs, purple represents CR-associated miRNAs, and yellow represents DE-CRGs. (B) GO 
enrichment analysis. (C) KEGG pathway enrichment analysis. (D) Association between DE-CRGs and ssGSEA-score of the H-related 
genes. (E) Association between DE-CRGs and ssGSEA-score of the ferroptosis-related genes. (F) Association between DE-CRGs and 
ssGSEA-score of the m6A- and m7G-related genes. DE, differentially expressed; CRGs, cuproptosis-related genes; CRs, cuproptosis-related 
lncRNAs; KEGG, Kyoto Encyclopedia of Genes and Genomes; ssGSEA, single-sample gene set enrichment analysis; BP, biological process; 
CC, cellular component; MF, molecular function.
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bisphosphate biosynthetic process, and tricarboxylic acid 
(TCA) cycle. These genes participated in the regulation 
of the following molecular functions: oxidoreductase, 
s-acyltransferase activity, metal ion transmembrane 
transporter activity, cell composition of the mitochondrial 
ma t r i x ,  ox idoreduc ta se  complex ,  d ihydro l ipoy l 
dehydrogenase complex, and TCA cycle enzyme complex 
(Figure 2B). The KEGG enrichment analysis revealed 
that the 8 DE-CRGs, among which were DLAT, PDHA1, 
and DLD, were primarily involved in carbon metabolism, 
platinum drug resistance, TCA cycle, multiple amino acid 
metabolic pathways, pyruvate metabolism, and glycolysis/
gluconeogenesis (Figure 2C). 

Through Pearson correlation analysis, the results showed 
that the DE-CRGs were associated with cell junction, 
repair of DNA damage , genes encoding cell cycle related 
targets of E2F transcription factors, mTOR signaling 
pathway, regulation of cancer promoting gene MYC, 
oxidative phosphorylation process, P53 signaling pathway, 
notch signaling pathway, spermatogenesis, TGF-β signaling 
pathway, and UV damage response process (Figure 2D),  
indicating that DE-CRGs may be involved in DNA 
repair process, cell cycle and proliferation, epithelial cell–
mesenchymal transformation (EMT), mTOR signaling 
pathway, regulatory process of activating proto-oncogene 
Myc, oxidative phosphorylation pathway, P53 signaling 
pathway, and Notch signaling pathway. In the correlation 
analysis with ferroptosis, m6A, and m7G, the results showed 
that LIPT1 and FDX1 had a significant correlation with 
ferroptosis (P<0.05; Figure 2E); DLAT, GCSH, PDHA1, 
FDX1, LIPT1, and ATP7B had significant correlations 
with m6A and m7G (P<0.05); and DLD and SLC31A1 had 
a significant correlation with m6A (P<0.05; Figure 2F),  
suggesting that the occurrence of cuproptosis may be 
related to the m6A and m7G methylation pathways and the 
ferroptosis pathway.

Construction of the CRs

The multivariate Cox analysis identified 6 DE-CRGs 
(AL512506.1, AC016737.1, AC090204.1, AP001363.2, 
TYMSOS, and AL353804.2) that were associated with GC 
prognosis (Table S1, Figure 3A). The heatmaps of 6 CRs 
associated with GC prognosis are shown in Figure 3B.  
Next, we constructed a CRs. In the training data set, 
patients with GC were separated into 2 groups: high-risk 
(n=185) and low-risk (n=186). The high-risk group had 
a significantly lower OS rate than did the low-risk group 

(Figure 3C; P<0.01). The time-dependent AUCs were used 
to evaluate the validity of the CRs. The AUC values of the 
CRs were 0.668, 0.697, and 0.733 for 1-, 2-, and 3-year OS, 
respectively (Figure 3D). In the testing data set, patients 
with GC were also separated into 2 groups: high risk (n=100) 
and low risk (n=99). Significant variations in the OS rates 
were detected between the 2 groups (Figure 3E; P<0.01). 
The AUC values for the 1-, 2-, and 3-year OS were 0.638, 
0.715, and 0.715, respectively (Figure 3F). 

Independent prognostic analyses and nomogram 
construction 

The CRs, stage, and age were strongly related to the 
poor outcome of patients with GC in both the univariate 
and multivariate Cox regression analyses (Figure 4A,4B). 
The AUC of the CRs was 0.668 (Figure 4C). The DCA 
demonstrated that the CRs provided greater predictive 
benefit compared to the original clinicopathological 
features (Figure 4D). Based on the nomogram, the greater 
the value of the CRs was, the higher the contribution to 
the model, and the lower the 1-, 3-, and 5-year survival 
rates were (Figure 4E). Finally, we used a heatmap to 
explore the association between the CRs and traditional 
clinicopathological manifestations (Figure 4F).

Gene set enrichment analysis

The GSEA indicated that the high-risk samples were 
involved in hypertrophic cardiomyopathy, dilated 
cardiomyopathy, tumor growth factor-β (TGF-β) signaling 
pathway, extracellular matrix (ECM)-receptor interaction, 
vascular smooth muscle contraction, focal adhesion, 
complement and coagulation cascades, glycosaminoglycan 
biosynthesis-keratan sulfate, and cytochrome P450 
metabolism (Figure 5A). Meanwhile, low-risk samples were 
enriched in base excision repair, DNA mismatch repair 
(MMR), primary immunodeficiency, DNA replication, 
homologous recombination (HR), RNA degradation, 
nucleotide excision repair (NER), pantothenate and CoA 
biosynthesis, nicotinate and nicotinamide metabolism, and 
terpenoid backbone biosynthesis (Figure 5B).

Immunity analyses and gene expression

Based on TCGA-STAD data, a heatmap of tumor-immune 
infiltrates according to different algorithms between the  
2 groups of the CRs was created (Figure 6A). MHC class-I 

https://cdn.amegroups.cn/static/public/JGO-23-62-Supplementary.pdf
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and type II interferon (IFN) response was remarkably 
different between the 2 subgroups of the CRs according 
to the immune function correlation study based on 
TCGA-STAD data (Figure 6B). A significant disparity in 
the expression of immunological checkpoints, including 
TNFSF18, CD200, TNFRSF25, NRP1, LGALS9, and 
TNFRSF14, among others, was also detected between the  
2 groups of the CRs (Figure 6C).

Moreover, the correlation analysis indicated that the 
levels of m6A-related genes, including ZC3H13, RBM15, 
YTHDC1, METTL3, and YTHDC2, and m7G-related genes, 
including METTL1 and WDR4, were remarkably different 
among the 2 groups of the CRs (Figure 7A). Interestingly, 
the expression of many ferroptosis-related genes, including 
ferroptosis-driver, ferroptosis-suppressor, and ferroptosis-
marker genes, were remarkably different between the  
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Figure 5 GSEA for the different CRs subgroups: (A) high-risk samples and (B) low-risk samples. GSEA, gene set enrichment analysis; CRs, 
cuproptosis-related lncRNAs.

2 groups of the CRs (Figure 7B-7D).

Drug sensitivity prediction

Based on the pRRophetic algorithm, we explored the 
relationship between risk score and chemoresistance by 
calculating the IC50 of the 7 common chemotherapeutic 
agents (elesclomol, sorafenib, DMOG, epothilone B, 
GDC0941, embelin, and FH535) for GC. The results 
showed that the IC50 value of these drugs in the high-
risk group of the CRs was greater than that in the low-
risk group and had a statistically significant value (P<0.05), 
suggesting that the prognosis model of CRs was related to 
drug sensitivity in patients with GC (Figure 8A-8G). 

Single-cell sequencing analysis 

The scRNA-seq data were used to identify cell clusters and 
the expression of 12 CRGs in different cell clusters using the 
tSNE algorithm. The DLAT, FDX1, and LIPT1 genes were 
upregulated in cluster 0; ATP7B, PDHA1, PDHB, and GCSH 
were upregulated in clusters 1 and 4; and SLC31A1 was 
upregulated in cluster 5 (Figure 9A,9B). The cell annotation 
results showed that clusters 0, 1, 2, 3, and 4 were composed 
of endothelial cells, whereas cluster 5 was composed of 
macrophages (Table S2). KEGG pathway enrichment analysis 
(https://cdn.amegroups.cn/static/public/jgo-23-62-2.xlsx) in 
ClueGO indicated that the genes of cluster 0 were primarily 

enriched in the following signaling pathways: epithelial cell 
signaling in HP infection; interactions of viral proteins with 
cytokine receptor and cytokine; and NF-κB, interleukin 17 
(IL-17), NOD-like receptor, and TNF signaling pathways 
(Figure 9C). The genes in cluster 1 were mainly involved 
in protein digestion and absorption, complement and 
coagulation cascades, IL-17 signaling pathway, epithelial cell 
signaling, the apelin signaling pathway, and ECM-receptor 
interaction (Figure 9D). The cluster 2 genes were primarily 
enriched in the Huntington disease, prion disease, and 
neurodegeneration pathways (Figure 9E). Cluster 3 genes 
were linked to mineral absorption, glioma, fluid shear stress, 
and atherosclerosis (Figure 9F). The genes in cluster 4 were 
mainly involved in the proteasome, ribosome, coronavirus 
disease, oxidative phosphorylation, cardiac muscle 
contraction, and thermogenesis (Figure 9G). The genes of 
cluster 5 were primarily concentrated in immune-related 
signaling pathways, including the NF-κB signaling pathway; 
antigen processing and presentation; TNF signaling pathway; 
inflammatory bowel disease; B-cell receptor signaling 
pathway; toll-like receptor signaling pathway; chemokine 
signaling pathway; and the intestinal immune network for 
immunoglobin A (IgA) production, and T helper type 1 
(Th1), Th2, and Th17 cell differentiation (Figure 9H).

Discussion

Cuproptosis involves a novel type of cell death caused 
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Figure 7 Correlation between the 2 groups of the CRs with m6A-, m7G-, and ferroptosis-related genes. (A) Correlation between the 2 
groups of the CRs with the m6A and m7G-related genes. The red box represents the m7G-related genes. (B) Correlation between the 2 
groups of the CRs with the ferroptosis-driver genes. (C) Correlation between the 2 groups of the CRs with the ferroptosis-marker genes. 
(D) Correlation between the 2 groups of the CRs with the ferroptosis-suppressor genes. ns, P≥0.05; *, P<0.05; **, P<0.01; ***, P<0.001. CRs, 
cuproptosis-related lncRNAs.
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by toxic copper-dependent protein stress. Many copper 
ion carriers are widely used as antitumor drugs, such as 
quinolin-8-ol, flavonoids, and carbamate (20-22). Hence, 
cuproptosis might be a breakthrough strategy for cancer 
therapy. Based on TCGA and GEO scRNA data sets, we 
first identified 8 DE-CRGs in GC. There were 9 CRGs 
with TMB values >1%. We then examined the correlation 
between the 2 sets of the CRs and tumor-infiltrating 
immune cells, immunological function, and m6A-, m7G, 
and ferroptosis-related gene expressions. Finally, the single-
cell sequencing was performed to assess the expression of 
these CRGs in different clusters and explore their cellular 
functions. Overall, we found potential biomarkers and 
functions related to cuproptosis in GC.

Previous study has shown that most cancer cells prefer 
glycolysis over oxygen circulation, a process known as the 
Warburg effect (23). Here, we showed that CRGs, such 
as DLAT, PDHA1, and DLD, were primarily engaged in 
glycolysis/gluconeogenesis and oxidative phosphorylation 
pathway. This suggested that the CRGs might influence 
the development of GC by regulating the Warburg effect. 
Additionally, cancer cell proliferation is inhibited without 
the electron receptors provided by respiration. Tumor cells 
often lack the ability to de novo synthesize L-asparagine (24).  

In this case, pyruvate serves as an additional electron 
acceptor in the respiratory metabolism, and the promotion 
of cancer cells can be promoted by using the extra pyruvate 
to generate L-aspartic acid (25). In the present study, DLD 
was involved in the pyruvate metabolic pathway. Hence, 
by converting lactic acid from glycolysis to pyruvate, DLD 
might boost cancer cell growth. Some studies have found 
that the mitochondrial respiration of cancer cells also 
requires electron-accepting cofactors, such as nicotinamide 
adenine dinucleotide (NAD) and flavin adenine dinucleotide 
(FAD) (26,27). Based on our previous findings, we 
postulated that CRGs, such as DLAT, PDA1, and DLD, are 
involved in GC cell hyperproliferation via glycolysis. 

In the present study, DE-CRGs, including DLAT, 
PDHA1 ,  and  DLD ,  were found to be involved in 
mitochondrial electron transport, NAD binding process, 
and oxidoreductase activity acting on NAD(P)H. Moreover, 
these genes were enriched in the TCA cycle and iron–sulfur 
cluster binding. Recent study has shown that copper ions 
can cause protein stress and downregulation of iron-sulfur 
cluster proteins by binding to the fatty acylated components 
of the TCA cycle in mitochondrial respiration, ultimately 
leading to cell death. Copper binding to the lipid-acylated 
TCA cyclin leads to oligomerization of DLAT (13). 

Figure 9 Single-cell sequencing analysis. (A) Bubble pattern of the expression of CRGs in different clusters. (B) Expression of CRGs 
in different clusters. KEGG results for (C) cluster 0, (D) cluster 1, (E) cluster 2, (F) cluster 3, (G) cluster 4, and (H) cluster 5. CRGs, 
cuproptosis-related genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Moreover, the inactivation of PDHA1 results in the decrease 
of TCA cycle intermediates and affects ATP and acetyl-
CoA levels as well as the NADH/NAD ratio (28). DLD is 
the component of the pyruvate dehydrogenase complex that 
catalyzes the conversion of pyruvate into the precursor for 
the TCA cycle (29). These characteristics are consistent 
with our current results.

Furthermore, we constructed a CRs consisting of 
AL512506.1, AC016737.1, AC090204.1, AP001363.2, 
TYMSOS, and AL353804.2. The GC cases with high-risk 
scores lived for a shorter time than did those with low-
risk scores. Compared with other models (30,31), this 
paper found that CRs have independent GC prognostic 
characteristics through univariate and multivariate cox 
regression analysis, and can be used as an independent 
prognostic factor of gastric cancer. Risk score is unique and 
sensitive in predicting the prognosis of patients with gastric 
cancer (Figure 4A,4B). The three-year AUC of risk score 
(AUC >0.7) is also higher than other clinicopathological 
features, indicating that CRs is a reliable prognostic risk 
model for gastric cancer. Compared to age, gender, grade, 
and stage, the CRs demonstrated high predictive ability and 
applicability in clinic. It has been found that TYMSOS is 
linked not only to a poor outcomes for those with non-small 
cell lung cancer, but also to the proliferation, migration, 
and invasion of GC (32). Recent study has found that 
AL512506.1 and AC016737.1 are independent prognostic 
factors for GC (33), which consistent with our current 
results. Hence, developing a CRs model is critical for GC. 
AL512506.1 and AC016737.1 are also inflammation-related 
lncRNAs that have an important function in regulating the 
development of innate immune cells and the expression of 
inflammatory genes (34). These lncRNAs might also play 
a major role in converting inflammation into malignancy. 
Thus, we hypothesized that the CRs could be linked to 
antitumor immune processes. Therefore, we analyzed the 
relation between tumor immune infiltration and the CRs. 
We detected significant differences in MHC class I, type 
II INF responders, and the levels of multiple immune 
checkpoints between the 2 groups of the CRs.

Moreover, we performed GSEA to analyze the molecular 
functions of different subcohorts of the CRs. The high-risk 
group was mainly enriched for angiogenesis, and important 
metabolic pathways, such as ECM-receptor interaction, 
vascular smooth muscle contraction, focal adhesion, 
glycosaminoglycan biosynthesis-keratan sulfate, TGF-beta 
signaling pathway, and the metabolism of xenobiotics by 
cytochrome P450. ECM HAPL1N1 protein remodeling 

promotes lymph node metastasis in melanoma (35), while 
ECM stiffness stimulates tumor angiogenesis (36,37). The 
TGF-β signaling pathway is well known for its role in 
carcinogenesis and progression, promoting tumor migration 
and invasion. 1α,25-dihydroxyvitamin D3 upregulates 
the TGF-β/Smad2/3 signaling pathway, which promotes 
angiogenesis in rats (38). Cytochrome P450 induces 
mutations and cell transformation by covalent binding of 
DNA with electrophilic intermediates produced by the 
activation of numerous carcinogenic chemicals, ultimately 
leading to cancer development (39). Therefore, we 
hypothesized that the poor outcome of those with high-risk 
GC was associated with the activation of these pathways, 
which promote GC development. 

Previous study has found that m6A methylation can 
interfere with the antitumor effect of copper chelating 
agents. For example, PRPF6 m6A methylation inhibits the 
anticancer effects induced by copper chelating agents (40).  
Additionally, m7G is a posttranslational modification of 
mRNAs and lncRNAs in eukaryotic cells that is critical 
for effective gene expression and cell viability (41). Here, 
we showed that the CRs was related to m6A methylation 
regulatory genes including RBM15, YTHDC1, YTHDC2, 
and METTL3, as well as m7G regulatory genes, including 
METTL1 and WDR4. The Study has also revealed that 
m6A methyltransferase METTL3 affects autophagy and 
progression of nasopharyngeal carcinoma by regulating 
the stability of the lncRNA ZFAS1 (42). This indicates 
that m6A and m7G methylation mechanisms might be 
related to cuproptosis. Additionally, other study has found 
that DSF/Cu can cause iron-like cell death by severely 
impairing mitochondrial homeostasis and enhancing 
lipid peroxidation. DSF/Cu combined with sorafenib can 
effectively inhibit tumor growth in vivo (43). Additionally, 
the loss of fumarase mitigates ferroptosis by interfering 
with the TCA cycle (44). Finally, the downstream metabolic 
products of the TCA cycle can trigger ferroptosis (45).

Copper ions can bind to the fatty acylated components in 
the TCA cycle, resulting in protein toxicity stress, ultimately 
leading to cuproptosis. The mechanisms of ferroptosis 
and cuproptosis are related to mitochondrial components 
and the TCA cycle. However, the relationship between 
ferroptosis and cuproptosis has not been studied. In our 
study, we found that the CRs was highly associated with the 
most ferroptosis-driven, ferroptosis-marker, and ferroptosis-
suppressor genes. Hence, ferroptosis and cuproptosis 
might be linked by lncRNAs. Moreover, previous study 
has found that endothelial cells are involved in tumor 
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angiogenesis and can determine disease prognoses (46),  
which is consistent with our findings. In this study, we 
analyzed the drug sensitivity of the copper-based carrier 
drug elesclomol and found that the drug sensitivity differed 
between the high- and low-risk groups. The ClueGO and 
scRNA-seq analyses demonstrated that the marker genes 
in endothelial cells were enriched in angiogenesis-related 
pathways, including in protein digestion and absorption, 
ECM-receptor interaction, NF-κB signaling pathway, 
and focal adhesion. NF-κB triggers endothelial cells that 
affect the tumor microenvironment and promote tumor 
angiogenesis (47). The scRNA-seq analysis revealed that 
11 of the 12 CRGs were upregulated in endothelial cells, 
indicating that the CRGs might be involved in angiogenesis. 
Finally, the high-risk group of the CRs was associated with 
some critical angiogenesis pathways. Therefore, CRGs 
might have a potential role in angiogenesis via lncRNAs.

Conclusions

The CRs was demonstrated to be a valuable independent 
prognostic factor that can predict the prognosis of GC. The 
signature risk score was related to immune cell content and 
function, as well as the levels of immune checkpoints, m6A-,  
m7G-, and ferroptosis-related genes.
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Table S1 COX regression analysis of 6 lncRNA

ID coef HR HR.95L HR.95H P value

AL512506.1 -1.61381 0.199127 0.082897 0.478325 0.000307

AC016737.1 0.513791 1.671616 1.373831 2.033948 2.85E-07

AC090204.1 0.047318 1.048455 1.003051 1.095915 0.036187

AP001363.2 0.595322 1.813614 1.133421 2.902008 0.013059

TYMSOS -0.13377 0.874791 0.787934 0.971223 0.012168

AL353804.2 -0.61537 0.540439 0.281878 1.036173 0.063887

Table S2 Label information of 5 groups

ID Labels

0 Epithelial_cells

1 Epithelial_cells

2 Epithelial_cells

3 Epithelial_cells

4 Epithelial_cells

5 Macrophage
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