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Background: Hepatocellular carcinoma (HCC) is one of the most common cancers and an important 
medical problem with poor prognosis. The role of messenger RNA (mRNA) has been broadly researched 
in the progression of different human cancers. Microarray analysis has demonstrated that kynurenine 
3-monooxygenase (KMO) expression is lower in HCC, but the mechanism of KMO in regulating the 
development of HCC remains unknown. 
Methods: Through comprehensive bioinformatics analysis of GSE101728 and GSE88839, including 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, protein-
protein interaction (PPI) network analysis, gene expression, and overall survival (OS) analysis, KMO was 
selected as the candidate molecular marker in HCC. The expression of KMO at the protein and RNA level 
was evaluated by Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). 
Furthermore, the cell proliferation, migration, invasion, and apoptosis, and the protein levels of epithelial-
mesenchymal transition (EMT) markers were examined with Cell Counting Kit 8 (CCK-8) assays, Transwell 
assay, flow cytometry, and WB. 
Results: Through comprehensive bioinformatics analysis, we found that the low expression of KMO in 
HCC is not conducive to a good prognosis of HCC. Then, through in vitro cell experiments, we found 
that low expression of KMO promoted HCC proliferation, invasion, metastasis, EMT, and cell apoptosis. 
Additionally, hsa-miR-3613-5p was found to be highly expressed in HCC cells and could negatively regulate 
the expression of KMO. Moreover, hsa-miR-3613-5p was found to be the target microRNA (miRNA) of 
KMO according to qRT-PCR verification.
Conclusions: KMO plays an important role in the early diagnosis, prognosis, occurrence, and development 
of liver cancer, and may target miR-3613-5p to function. This represents a novel insight into understanding 
the molecular mechanisms of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most 
common cancers and an important medical problem with 
poor prognosis. In 2020, the latest global statistics showed 
that the number of new cases of liver cancer was 905,677, 
accounting for 4.7% of all new cancer cases, and the number 
of deaths was 830,180, accounting for 8.3% all cancer 
deaths. HCC is ranked as the sixth most common neoplasm 
and the third leading cause of cancer death (1). The 
development of HCC is closely related to the presence of 
chronic liver disease, and the risk factors underlying HCC 
pathogenesis are highly variable, which is mainly related 
to hepatitis B virus (HBV) and hepatitis C virus (HCV) 
infection, aflatoxin B1 exposure, or nonalcoholic fatty 
liver disease (2,3). There are many traditional treatments 
for HCC, such as curative resection, liver transplantation, 
radiofrequency ablation, and systemic targeted agents 
(e.g., sorafenib), but the treatment of advanced HCC has 
remained a challenge for many years (4,5). Although there 
have been advances in surgery and other strategies, the 
prognosis of patients with HCC is still not optimistic due to 
the typically late diagnosis of HCC or the advanced stage at 
the time of diagnosis. Therefore, it is urgent to find an early 
diagnostic method and elucidate the molecular pathogenesis 
of HCC.

Recently, due to advances in microarray technology 
based on high-throughput platforms, bioinformatics 
analysis has been widely used to screen and identify key 

biomarkers and potential molecular mechanisms for certain 
cancers, and use of this technology has been shown to 
improve overall survival (OS) by up to 5 years. The Gene 
Expression Omnibus (GEO) online database is a public 
repository available worldwide for gene expression data 
sets, as well as original series and platform records (6). We 
downloaded and reanalyzed 2 original microarray data sets, 
GSE101728 and GSE88839, from the GEO database and 
found biomarkers and disease mechanisms that may be 
valuable for future research. Then, we identified kynurenine 
3-monooxygenase (KMO) as a potential gene for HCC 
patients that was significantly underexpressed in HCC 
tissues and associated with the poor prognosis of patients 
with HCC.

KMO  encodes a mitochondrial outer membrane 
protein that catalyzes the hydroxylation of a L-tryptophan 
metabolite, L-kynurenine, to form L-3-hydroxykynurenine. 
Numerous studies have shown that KMO plays a central role 
in the tryptophan metabolism, and KMO has been identified 
as the main pathogenic factor in neurodegenerative 
diseases (7-9). Recently, KMO was revealed to a known 
prognostic marker in human HCC, and some lymphomas 
and endometrial cancers exhibit moderate to strong KMO 
cytoplasmic immunoreactivity (7,10,11). In a summary, 
these studies strongly suggest that KMO is associated with 
the occurrence of HCC. However, little research has been 
conducted on the molecular mechanisms of KMO on HCC.

In the study, KMO was identified as the hub gene. 
To more deeply understand the effect of KMO in the 
progression of HCC, the mechanism of KMO  was 
investigated in HCC cells. The expression of KMO was 
obviously inhibited in HCC cells and targeted microRNA 
(miR)-3613-5p. Finally, KMO was also shown to regulate the 
epithelial-mesenchymal transition (EMT) progression and 
the development of HCC in cells. Overall, our data provide 
insights into the diagnosis and treatment of HCC. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-23-147/rc).

Methods

Microarray data 

In this study, data were download from the online GEO 
database, which is a publicly accessible, functional 
genomics data repository supporting high-throughput 
gene expression data, chips, and microarrays (6). We 
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obtained the gene expression profiles of GSE101728 and 
GSE88839. GSE101728 contains paired HCC tumor and 
normal samples from 7 patients, from which we analyzed 
the expression of messenger RNA (mRNA); GSE88839 
contained 35 HCC tumor tissue and 3 normal liver tissue, 
from which the expression of mRNA was determined. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Microarray data analysis

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) is 
an online web software used for screening differentially 
expressed genes (DEGs) by comparing samples from GEO 
series. In our study, GEO2R was used to search DEGs 
between HCC and normal control samples. |Log fold 
change (FC)| ≥1 and P<0.05 were defined as the screening 
criteria for DEGs. Volcano maps were produced using the 
“ggplot2” package in R software (The R Foundation of 
Statistical Computing) with the screening criteria |log(FC)| 
≥1 and P<0.05. Subsequently, we used Venn online software 
(http://bioinfogp.cnb.csic.es/tools/venny/index.html) to 
identify the overlapping DEGs of the 2 data sets.

Function enrichment analysis of DEGs 

Gene Ontology (GO) provides an integrated source of 
digital data relating to the functions of genes (12). GO 
annotation contains 3 categories: biological process (BP), 
cellular component (CC), and molecular function (MF). 
Kyoto Encyclopedia of Genes and Genomes (KEGG) is 
a database with high-level functional interpretation and 
the practical application of genomic information (13). The 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) 6.8 (https://david.ncifcrf.gov) (14) is 
widely used for gene function analysis. In our study, DEGs 
obtained by Venn online software were enriched by GO 
function and KEGG pathway with DAVID, and a P value 
<0.05 was considered statistically significant.

Protein-protein interaction (PPI) network analysis of 
DEGs 

The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database (http://string-db.org) (15) was 
used to construct the PPI network, which provides critical 
assessment and integration of protein interactions, including 
direct and indirect associations. The results of the analysis 

were visualized in Cytoscape (v3.8.2) software (16). The plug-
ins CytoHubba (17) and minimal common oncology data 
elements (mCODE; degree cutoff =2, κ-score =2, maximum 
depth =100, node density cutoff =0.1, and node score cutoff 
=0.2) in Cytoscape were downloaded and installed (18). The 
top 10 scores or the first cluster was taken as the criterion to 
screen out the hub genes with high connectivity in the gene 
expression network.

Analysis of target genes 

First, through the Tumor IMmune Estimation Resource 
(TIMER) (http://timer.cistrome.org/) (19) website, the 
expression of the target gene in various tumors was found. 
Furthermore, Gene Expression Profiling Interactive 
Analysis (GEPIA) (20) (http://gepia.cancer-pku.cn/) and the 
UALCAN (http://ualcan.path.uab.edu/analysis.html) (21) 
websites were used to determine the expression of the target 
gene in HCC. 

Identification of microRNA-mRNA pairs

In our study, the microRNA (miRNA) gene pairs of the hub 
genes were screened using the miRDB (22) (http://mirdb.
org/index.html), TarBase v. 8.0 (23) (http://mirtarbase.
cuhk.edu.cn/php/index.php), starBase v. 3.0 (24) (http://
starbase.sysu.edu.cn/index.php), and TargetScan (http://
www.targetscan.org/vert_72/) databases (25); miRNAs 
appearing in at least 3 of these databases were identified as 
the potential miRNAs. 

Survival analysis of hub mRNAs and miRNAs 

A Kaplan‑Meier (K-M) plotter (26) (http://kmplot.com/
analysis/index.php?p=background) was used to predict the 
OS of the genes. To further clarify the relationship between 
bub mRNA and miRNA expression and HCC prognosis, 
the K-M plotter was used for survival analysis, while the 
log-rank test was used for statistical analysis. In the log-rank 
test, P<0.05 was considered statistically significant. The hub 
mRNAs and miRNAs were taken as the key genes in HCC 
prognosis.

Cell lines and culture

The normal liver cell lines HL7702, and liver cancer cell 
lines MHCC97-L, MHCC97-H, and BEL-7402 were 
purchased from Beijing BeInnovation Biotechnology 
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Research Institute (BNCC; Beijing, China). The HCC-
9903 cell lines were stored in our laboratory. The HL7702 
and BEL-7402 cells were cultured in RPMI-1640 with 10% 
or 20% fetal bovine serum (FBS), while the MHCC97-L, 
HCC-9903, and MHCC97-H cells were cultured in 
Dulbecco’s Modified Eagle Medium (DMEM) with 10% 
FBS. All cells were cultured in a 37 ℃, 5% CO2 cell 
incubator.

Plasmid construction and transfection

miR-3613-5p mimics and inhibitors, small interfering 
KMO (si-KMO), and negative controls were purchased 
from RiboBio (Guangzhou, China). The transfection was 
conducted with Lipofectamine 2000 (Invitrogen, Thermo 
Fisher Scientific, Waltham, MA, USA), according to the 
manufacturer’s protocol.

RNA extraction and quantitative real-time polymerase 
chain reaction (qRT-PCR) 

Total RNA was extracted with TRIzol reagent (Invitrogen) 
according to the manufacturer’s instructions. Complementary 
DNA (cDNA) was reversed with a M-MuLV First Strand 
cDNA Synthesis Kit (Shanghai Sango Biotechnology Co., 
Ltd., Shanghai, China). qRT-PCR was carried out using 
SYBR Green. All primers were synthesized by Shanghai 
Sango Biotechnology Engineering Co., Ltd. (see the Table 1).  
The relative expression level of the target gene was 
calculated using the 2−ΔΔCt method.

Cell Counting Kit 8 (CCK-8) assay

The cells in the logarithmic lifetime at a density of  
2×104 cells/well were vaccinated into a 96-well plate at 
100 μL/plate. Cell Counting Kit (CCK) reagent (10 μL) 
(Beyotime Institute of Biotechnology, Jiangsu, China) was 

added to each well at 24, 48, 72, and 96 h after incubation, 
and incubation occurred for another 4 h thereafter. Finally, 
the plate was removed and placed on the enzyme marker 
(BioTek Instruments, Winooski, VT, USA) for detection 
of absorbance, and the absorbance values was recorded at a 
450-nm wavelength.

Transwell assay

Transwell assay was applied to analyze cell migration and 
invasion. Serum-free HCC medium cells at a cell density 
of 2×106 were added to the upper chamber of the Transwell 
cell. Matrigel matrix glue was added to the upper chamber 
of the invasion assay, but not add Matrigel matrix glue in the 
migration assay. The method was referred as the article (27). 
Finally, the cells were stained with 0.1% crystal violet for 
20 min and observed with an Olympus BX51 microscope 
(Olympus, Tokyo, Japan) and counted with ImageJ software 
(US National Institutes of Health, Bethesda, MD, USA).

Western blot assay

First ,  10% SDS-PAGE (sodium dodecyl  sul fate-
polyacrylamide gel electrophoresis) was used to extract and 
separate cellular proteins, after which the cell proteins were 
transferred to a polyvinylidene fluoride (PVDF) membrane 
(MilliporeSigma, Burlington, MA, USA). Second, the 
membranes were blocked with 5% skim milk in phosphate-
buffered saline with Tween20 (PBST) solution and 
incubated with the primary antibody of the target protein 
at 4 ℃ overnight. Third, the membrane was incubated with 
the secondary antibody at room temperature for 1 h and then 
exposed to an enhanced chemiluminescence (ECL) system 
(Bio-Rad, Hercules, CA, USA) to detect the protein bands. 
The antibodies used in this method are listed in Table 2.

Flow cytometry 

The liver cancer cells were digested with trypsin without 
ethylenediaminetetraacetic acid (EDTA), washed twice 
with cold PBS, and collected by centrifugation. Annexin 
V-enhanced green fluorescent protein (EGFP) and propidium 
iodide (5 μL) were added to the cells (1×106 cells/mL),  
mixed well, and then placed at room temperature without 
light for 15 minutes. After placement, 400 μL of 1× binding 
buffer was added, and then flow cytometry was used to 
detect apoptosis within 1 h.

Table 1 The PCR sequence of KMO and miR-3613-5p

Gene name Primer (forward-reverse)

KMO Forward: 5'-TGTCAACTCAAGCTGGTTCATT-3'
Reverse: 5'-TGGCTATCAGTGATCCCAAGAAA-3'

miR-3613-5p Forward: 5'-TGCGGTGTTGTACTTTTTT-3'
Reverse: 5'-CCAGTGCAGGGTCC-3'

PCR,  po lymerase  cha in  react ion ;  KMO,  kynuren ine 
3-monooxygenase.
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Statistical analysis 

Data were analyzed with SPSS v. 20 (IBM Corp., Armonk, 
NY, USA) and GraphPad Prism 7 (GraphPad Software, San 
Diego, CA, USA). Correlations were tested with Spearman 
rank correlation (Rs). Raw data are expressed as medians 
with ranges and presented graphically as box plots (showing 
median and quartiles), with outliers (according to Tukey 
criteria) indicated separately. Statistical significance was set 
at P<0.05.

Results

Identification of DEGs in HCC 

According to the defined criteria, 2 array data sets 
(GSE101728 and GSE88839) were included in the research. 
The basic information for the two data sets in the Table 3.  
A total of 4,335 and 373 DEGs were extracted from 
GSE101728 and GSE88839 using the GEO2R online tool 

and visualized with a volcano plot (Figure 1A,1B). Then, the 
DEGs common to both data sets were identified via a Venn 
diagram. A comparison of HCC tissues to normal tissue 
yielded 132 common DEGs, of which 34 were upregulated 
(P value <0.05 and log2FC ≥1) and 98 were downregulated (P 
value <0.05 and log2FC ≤−1) in HCC tissues (Figure 1C).

GO and KEGG pathway analysis of DEGs in HCC 

The GO and KEGG pathway analysis of 132 DEGs was 
performed with DAVID database. The top 10 GO terms in 
the BP, CC, and MF categories are shown in Figure 2A-2C.  
The overlapping DEGs were mainly enriched in cell 
adhesion among the BP categories; the extracellular region 
in the CC categories; and oxidoreductase activity, acting on 
paired donors, and incorporation or reduction of molecular 
oxygen among the MF categories. The KEGG pathway 
analysis revealed that the DEGs were significantly enriched 
in the metabolic pathways (Figure 2D).

Table 2 Antibody information

Antibody Supplier Catalog # Application

KMO Abcam ab167274 WB (1:1,000)

Vimentin CST 5741 WB (1:1,000)

N-cadherin CST 13116 WB (1:1,000)

E-cadherin CST 14472S WB (1:1,000)

Slug Abcam ab27568 WB (1:1,000)

Snail Abcam ab216347 WB (1:1,000)

β-actin Abcam ab8226 WB (1:1,000) 

TWIST Abcam ab50887 WB (1:1,000)

Goat anti-mouse IgG H&L (HRP) Abcam ab205719 WB (1:5,000)

HRP anti-mouse CST 7076 WB (1:5,000)

HRP anti-rabbit CST 7074 WB (1:5,000)

KMO, kynurenine 3-monooxygenase; TWIST, twist family bHLH transcription factor 1; IgG, immunoglobin G; H&L, heavy and light chain; 
HRP, horseradish peroxidase; CST, Cell Signaling Technology; WB, Western blotting. 

Table 3 Basic information of the 2 data sets from the Gene Expression Omnibus 

Data source Platform Year Sample size (tumor/normal) Type Genes (up/down)

GSE101728 GPL21047 2019 7/7 mRNA 1,961/2,374

GSE88839 GPL570 2019 35/3 mRNA 108/265

mRNA, messenger RNA. 
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Analysis of PPI and modules 

The 132 DEGs were assembled into a DEG PPI network 
complex comprising 118 edges and 132 nodes (PPI 
enrichment P value =1.0e–16; Figure 3A). Next, the top 10 
hub genes were further analyzed using CytoHubba, which 
revealed that IGF1, FETUB, KMO, AGXT, PSAT1, GHR, 
F11, ASS1, CTH, and IGFALS were all downregulated 
genes (Figure 3B). Finally, according to the Cytoscape 
mCODE plug-in, the DEGs were enriched in the first 
clusters and with the score 3.833 (Figure 3C). 

Analysis of hub genes via TIMER, UALCAN, and GEPIA

Through PubMed literature search, we finally selected 
KMO, FETUB, and PSAT1 as the key research biomarkers. 
TIMER, GEPIA, and UALCAN were applied to analyze 
the expression data for the 2 hub genes. The results 
showed that 3 genes (KMO, FETUB, and PSAT1) were 
underexpressed in HCC samples compared with normal 
liver samples (Figure 4), which was consistent with the 

results of the chip array and suggested a correlation with 
the occurrence of HCC.

Prediction of miRNAs that regulate key hub genes

The miRNAs that regulate KMO, FETUB, or PSAT1 were 
screened using TargetScan, starBase, TarBase, and the 
miRDB website. The results are shown in the Table 4 and 
Figure 5 (FETUB did not meet the threshold setting). 

A total of 4 target miRNAs of KMO and 39 target 
miRNAs of PSAT1 were obtained from the online website 
(TarfetScan, miRDB, starBase & TarBase) (Figure 5A,5B). 

Furthermore, we searched the PubMed database and 
selected the KMO and PSAT1 as candidate research 
molecules (Table 5). KMO had 4 potential target miRNAs 
and PSAT1 had 14 potential target miRNAs.

Survival analysis

In order to further verify the effect of the candidate genes 

Figure 1 Identification of DEGs shared between the 2 databases. (A,B) Volcano plots for DEGs in HCC based on the GSE101728 and 
GSE88839 data sets. (C) Overlapping genes between GSE101728 and GSE88839. DEG, differentially expressed gene; HCC, hepatocellular 
carcinoma.
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Figure 2 GO analysis and KEGG pathway analysis of 132 DEGs. (A-C) DEG enrichment in GO. (D) DEG enrichment in KEGG pathway. 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene.
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on HCC, the K-M plotter was applied to analyze their 
association with OS of the hub genes (Figure 6). We found 
that low KMO, hsa-miR-302c-5p, hsa-miR-302f, and hsa-
miR-6793-3p expression was associated with a shorter 
OS in patients with HCC (Figure 6A,6A2-A4; P<0.05 and 
P<0.001), while, hsa-miR-3613-5p was associated with the 
longer OS of patients with HCC (Figure 6A1; P<0.01). 
Therefore, hsa-miR-3613-5p was chosen as the potential 
target miRNA of KMO. We subsequently found that the 
high expression of PSAT1, hsa-miR-200c-3p, hsa-miR-570-
3p, and hsa-miR-579-3p was associated with the shorter 
OS of patients with HCC (Figure 6B1,B4-5; P<0.01 and 
P<0.001), while the low expression of hsa-miR-1297, hsa-
miR-4524b-5p, hsa-miR-6838-5p, hsa-miR-5094, hsa-miR-
5195-3p, hsa-miR-5680, hsa-miR-4524a-5p, and hsa-miR-

524-5p was associated with the longer OS of patients with 
HCC (Figure 6B7-14; P<0.001, P<0.05, and P<0.001). The 
other miRNAs, hsa-miR-323a-3p, hsa-miR-409-3p, and 
hsa-miR-1277-5p did not show a statistically significant 
difference (Figure 6B2-3,B6; P>0.05). Therefore, hsa-
miR-1297, hsa-miR-4524b-5p, hsa-miR-6838-5p, hsa-
miR-5094, hsa-miR-5195-3p, hsa-miR-5680, hsa-miR-
4524a-5p, and hsa-miR-524-5p were identified as candidate 
miRNAs target genes of PSAT1. These results further 
revealed that hsa-miR-3613-KMO, hsa-miR-1297, hsa-
miR-4524b-5p, hsa-miR-6838-5p/hsa-miR-5094, hsa-
miR-5195-3p, hsa-miR-5680, hsa-miR-4524a-5p, and hsa-
miR-524-5p-PSAT1 are associated with the prognosis of 
HCC. To further analyze the role of these KMO and hsa-
miR-3613 in HCC, we examined hsa-miR-3613-KMO in 
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Figure 3 STRING and module analysis-built DEG PPI network. (A) The DEG PPI network complex had a total of 132 DEGs. (B,C) 
Module analysis through the CytoHubba and mCODE plugins. STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; 
DEG, differentially expressed gene; PPI, protein-protein interaction; mCODE, minimal common oncology data elements. 

subsequent experiments. 

KMO was downregulated in HCC cells 

To explore the expression level of KMO in liver cancer cells, 
the normal liver cell line HL7702 and 4 liver cancer cell 
lines MHCC97, MHCC97-H, HCC-9903, and BEL-7402 
were selected for qRT-PCR and Western blot experiments. 
The results showed that compared with normal liver cells, 
4 liver cancer cell lines had significantly reduced expression 
levels of KMO mRNA and protein (Figure 7A,7B). It was 
concluded that KMO had low expression in liver cancer 
cells. It was also found that among these 4 liver cancer cell 
lines, KMO had the highest expression in MHCC97 and 
the lowest expression in MHCC97-H. Therefore, we chose 
MHCC97 and MHC997-H for follow-up experiments.

The expression level of KMO regulated the proliferation, 
invasion, migration, and EMT of HCC cells, and induced 
cell apoptosis

A KMO interfering RNA plasmid was transfected in 
MHCC97 cells, and a KMO-overexpressing plasmid 
was transfected in MHCC97-H cells. The qRT-PCR 
and Western blot results showed that the expression 
level of KMO in MHCC97 cells was significantly 
reduced after transfection of KMO interfering RNA 
plasmid but significantly increased in MHCC97-H 
cells after transfection of KMO-overexpressing plasmid  
(Figure 8A,8B). Subsequently, we examined the effects of 
KMO expression on the proliferation, invasion, migration, 
EMT, and apoptosis of HCC cells.

According to CCK-8 assay, knockdown of KMO 

A

B

C
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Figure 4 The expression of KMO, PSAT1, and FETUB was significantly lower in HCC tissues. (A,B) The expression of KMO according to 
the TIMER, GEPIA, and UALCAN websites. (B) The expression of PSAT1 according to the TIMER, GEPIA, and UALCAN websites. (C) 
The expression of FETUB according to the TIMER, GEPIA, and UALCAN websites. All of 3 genes were underexpressed in HCC samples 
compared to normal samples (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001). Tumor tissues are represented by the red color, and normal 
tissues are represented by the green/blue color. KMO, kynurenine 3-monooxygenase; HCC, hepatocellular carcinoma; TPM, transcripts per 
million; LIHC, liver hepatocellular carcinoma; TCGA, The Cancer Genome Atlas.

Figure 5 A Venn diagram was used to identify the common target miRNAs of KMO and PSAT1 in HCC. (A) The target miRNAs of KMO. (B) 
The target miRNAs of PSAT1. KMO, kynurenine 3-monooxygenase; HCC, hepatocellular carcinoma; miRNA, microRNA.
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Table 4 Basic information of the target miRNAs

Gene symbol Regulation Target miRNAs

KMO Down hsa-miR-3613-5p 

hsa-miR-6793-3p

hsa-miR-302f

hsa-miR-302c-5p 

PSAT1 Down hsa-miR-15a-5p

hsa-miR-16-5p

hsa-miR-15b-5p

hsa-miR-195-5p

hsa-miR-424-5p

hsa-miR-429

hsa-miR-497-5p

hsa-miR-340-5p

hsa-miR-224-5p

hsa-miR-18a-5p

hsa-miR-26a-5p

hsa-miR-26b-5p

hsa-miR-1-3p

hsa-miR-186-5p

hsa-miR-18b-5p

hsa-miR-485-3p

hsa-miR-1277-5p

hsa-miR-126-5p

hsa-miR-5680

hsa-miR-570-3p

hsa-miR-200b-3p

hsa-miR-142-5p

hsa-miR-145-5p

hsa-miR-200c-3p

hsa-miR-323a-3p

hsa-miR-409-3p

hsa-miR-524-5p

hsa-miR-520d-5p

hsa-miR-545-3p

Table 4 (continued)

Table 4 (continued)

Gene symbol Regulation Target miRNAs

hsa-miR-577

hsa-miR-579-3p

hsa-miR-1297

hsa-miR-4524a-5p

hsa-miR-5094

hsa-miR-5195-3p

hsa-miR-4524b-5p

hsa-miR-664b-3p

hsa-miR-5590-3p

hsa-miR-6838-5p

miRNA, microRNA; KMO, kynurenine 3-monooxygenase.

Table 5 The potential target miRNAs

Gene symbol Regulation Target miRNAs

KMO Down hsa-miR-3613-5p 

hsa-miR-6793-3p

hsa-miR-302f

hsa-miR-302c-5p 

PSAT1 Down hsa-miR-1277-5p

hsa-miR-5680

hsa-miR-570-3p

hsa-miR-200c-3p

hsa-miR-323a-3p

hsa-miR-409-3p

hsa-miR-524-5p

hsa-miR-579-3p

hsa-miR-1297

hsa-miR-4524a-5p

hsa-miR-5094

hsa-miR-5195-3p

hsa-miR-4524b-5p

hsa-miR-6838-5p

miRNA, microRNA; KMO, kynurenine 3-monooxygenase.



Xu et al. KMO in hepatocellular carcinoma 526

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2023;14(2):516-532 | https://dx.doi.org/10.21037/jgo-23-147

Figure 6 OS of the hub genes in HCC tissues. (A) The association of OS in patients with HCC with KMO and its target miRNAs according 
the K-M plotter. (B) The association of OS in patients with HCC with PSAT1 and its target miRNAs according to the K-M plotter. KMO, 
kynurenine 3-monooxygenase; HR, hazard ratio; OS, overall survival; K-M, Kaplan‑Meier; HCC, hepatocellular carcinoma.
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significantly enhanced the viability of MHCC97 cells, while 
increased KMO expression level significantly inhibited the 
viability of MHCC97-H (Figure 8C). Transwell invasion 
and migration experiments showed that the decrease of 
KMO expression level could promote the invasion and 
migration ability of liver cancer MHCC97 cells, and the 
increase of expression level could inhibit the invasion 
and migration ability of liver cancer MHCC97-H cells 

(Figure 8D,8E). Flow cytometry detection of cell apoptosis 
showed that knocking down the expression of KMO could 
inhibit the apoptosis of liver cancer MHCC97 cells, while 
overexpression of KMO promoted the apoptosis of liver 
cancer MHCC97-H cells (Figure 8F). Western blot results 
showed that knocking down KMO could promote the 
expression of N-cadherin, slug, snail, twist, and vimentin, 
while inhibiting the expression of E-cadherin in MHCC97 
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Figure 7 The relative expression of KMO in HCC cell lines. (A) The relative expression of KMO in HCC cell lines according to qRT-PCR. 
(B) The relative expression of KMO in HCC cell lines according to Western blotting. HCC cell lines included MHCC97, MHCC97-H, 
HCC-9903, and BEL-7402; the normal control cell line was HL7702. **, P<0.01; ***, P<0.001. KMO, kynurenine 3-monooxygenase; HCC, 
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cells; conversely, in MHCC97-H cells, the overexpression 
of KMO could inhibit N-cadherin, slug, snail, twist, and 
vimentin, while promoting the expression of E-cadherin 
(Figure 8G).

hsa-miR-3613-5p was highly expressed in HCC cells and 
negatively regulated the expression level of KMO

To verify the expression level hsa-miR-3613-5p in liver 
cancer cells, the normal liver cell line HL7702 and 4 liver 
cancer cell lines MHCC97, MHCC97-H, HCC-9903, and 
Bel-7402 were examined with qRT-PCR assay. The results 
showed that the expression level of hsa-miR-3613-5p was 
significantly increased in all 4 HCC cell lines compared 
with normal liver cells (Figure 9A). Among the 4 HCC 
lines, the expression of hsa-miR-3613-5p was the lowest in 
MHCC97 and the highest in MHCC97-H; we thus selected 
2 cell lines, MHCC97 and MHC997-H, for subsequent 
experiments. 

qRT-PCR results showed that the expression level of hsa-
miR-3613-5p was significantly decreased while the expression 
level of KMO was significantly increased after knockdown 
of hsa-miR-3613-5p in MHCC97-H cells (Figure 9B,9C). 
After overexpression of hsa-miR-3613-5p, the expression 
level of hsa-miR-3613-5p was significantly increased and 
the expression level of KMO was significantly decreased in 
MHCC97 cells (Figure 9B,9C). These results indicated that 
hsa-miR-3613-5p is highly expressed in HCC cells and can 
negatively regulate the expression level of KMO.

Discussion

HCC is one of the major global public health problems and 

a leading cause of death. HCC is characterized by its rapid 
progression, rapid recurrence, rapid metastasis, high degree 
of malignancy, and high mortality (28,29). There are many 
treatments for HCC, such as radiotherapy, embolization, 
and chemotherapy (2,30). However, HCC patients have a 
high frequency of tumor recurrence after these treatments 
(31,32). In recent years, genome-wide expression profiling 
screening has attracted great attention in the diagnosis and 
treatment of patients with HCC (33). Thus, it is necessary 
to identify suitable molecular biomarkers for early diagnosis 
and potential targets for HCC therapies.

In this study, we found 132 integrated DEGs in HCC 
with a comprehensive analysis of the GSE101728 and 
GSE88839 data sets. The 132 integrated DEGs were then 
subjected to GO (BP, CC, and MF) analysis. The top 3 
terms generated by the DEG enrichment analysis were the 
following: cell adhesion, reduction process, and xenobiotic 
metabolic process (BP); extracellular region, insulin-like 
growth factor ternary complex, and extracellular exosome 
(CC); and oxidoreductase activity, acting on paired donors, 
and incorporation or reduction of molecular oxygen, heme 
binding, and monooxygenase activity (MF). These results 
indicate that these DEGs are involved in the metabolic 
process, invasion, and metastasis of liver cancer cells. 
KEGG pathway analysis showed that DEGs were mainly 
enriched in metabolic pathways, biosynthesis of antibiotics, 
and arachidonic acid metabolism. Two different pathway 
enrichment metabolic processes showed that DEGs of 
HCC are involved in the process of cell metabolism. The 
alterations in intracellular and extracellular metabolites that 
can accompany cancer-associated metabolic reprogramming 
have profound effects on gene expression, cellular 
differentiation, and the tumor microenvironment (34). Thus, 
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studying these pathways will help elucidate the underlying 
mechanisms of HCC proliferation and invasion and help 
predict cancer progression. 

We constructed a PPI network with 132 integrated 
DEGs and identified the following 10 hub genes: IGF1, 
FETUB, KMO, AGXT, PSAT1, GHR, F11, ASS1, CTH, and 
IGFALS. Most of these factors affect the occurrence and 
development of cancer mainly by affecting the metabolic 
process. These central genes may be used as therapeutic 
targets for HCC. KMO, FETUB, and PSAT1 were analyzed 
in depth through PubMed literature research. We then 
performed an expression analysis of the 3 hub genes using 
the TIMER, GEPIA, and UALCAN websites. KMO and 
PSAT1 both had low expression in cancer tissue, consistent 
with the GEO data results, while FETUB not.

To further investigate KMO and PSAT1 and their 
function in the HCC, we predicted their miRNAs using 
the miRDB, TarBase v. 8.0, starBase v. 3.0, and TargetScan 
databases. Further analyses provided insight into the 
potential functions of these predicted associated miRNAs, 
especially those involved in the PI3K-Akt/AKT-MAPK 
signaling pathway (35,36). These results will help us 
understand the role of these candidate genes and provide 
potential biomarkers and targets for further clinical 
application in HCC prognostic monitoring and targeted 
therapy. In addition, we investigated the association of 
KMO-miRNAs and PSAT1-miRNAs with HCC prognosis. 
Surprisingly, the expression levels of hsa-miR-3613-5p-

KMO, hsa-miR-1297/hsa-miR-4524b-5p, hsa-miR-6838-
5p, hsa-miR-5094, hsa-miR-5195-3p, hsa-miR-5680, 
hsa-miR-4524a-5p, and hsa-miR-524-5p-PSAT1 were 
associated with the prognosis of patients with HCC cancer. 
Comprehensive literature analysis revealed hsa-miR-3613-
5p-KMO to be a major pathway in HCC progression.

Previous research suggests that KMO exerts tumor-
promoting effects in HCC 11, KMO expression levels were 
reported to be high in TNBC, and KMO knockdown was 
found to decrease lung metastasis and prolong survival (37); 
moreover, patients with colorectal cancer and higher KMO 
expression were associated with higher metastasis and 
poorer survival rates (38). In our study, KMO knockdown 
promoted the proliferation, invasion, metastasis, apoptosis, 
and EMT of HCC cells in vitro. Furthermore, using 
bioinformatics comprehensive analysis, we found that KMO 
may be the target molecule of miR-3613-5p. The role of 
miR-3613-5p has been investigated in previous studies. 
For example, Cao et al. demonstrated that miR-3613-5p 
enhances the metastasis of pancreatic cancer (39). He et al. 
reported that miR-3613-5p promotes the proliferation of 
lung adenocarcinoma (36). Qin et al. identified miR-3613-
5p as a predictor of OS in HCC (40). In our study, we found 
that the expression of miR-361-3p was obviously increased 
in HCC cells as predicted by bioinformatics and PCR 
assays. Furthermore, miR-3613-5p knockdown stimulated 
the expression of KMO, while miR-3613-5p overexpression 
inhibited the expression of KMO. These results indicate that 
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Figure 9 The relationship between hsa-miR-3613-5p and KMO in MHCC97-H cells. (A) qRT-PCR was used to determine the expression 
of hsa-miR-3613-5p in HCC cells. (B) The transfection efficiency of MHCC97-H cells transfected with hsa-miR-3613-5p inhibitor and 
that of MHCC97 cells transfected with hsa-miR-3613-5p mimic was verified with qRT-PCR. (C) The effect of hsa-miR-3613-5p expression 
on the expression level of KMO mRNA in MHCC97-H and MHCC97 cells was detected with qRT-PCR. **, P<0.01; ***, P<0.001. NC, 
normal control; KMO, kynurenine 3-monooxygenase; qRT-PCR, quantitative real-time polymerase chain reaction; HCC, hepatocellular 
carcinoma.
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KMO may be a novel candidate molecular for human HCC.
However, there were several limitations in the present 

study. First, no further experimental validation for verifying 
the roles of miR-3613-5p was conducted; thus, extended 
functional studies are needed to investigate the roles of 
the miR-3613-5p in HCC cells. Second, experiments 
clarifying mechanisms of KMO in vivo should be conducted 
to complement the functional research of KMO in HCC. 
Despite these limitations, this study yielded an important 
finding, demonstrating that KMO may serve as a promising 
predictor of the OS in patients with HCC.

Conclusions

We conducted a comprehensive study in which the 
molecular biomarkers in patients with HCC were screened. 
We found that KMO was significantly underexpressed in 
HCC tissues and cells. Furthermore, KMO as an oncogene 
could promote HCC cell proliferation, migration, invasion, 
apoptosis, and EMT. These findings point to KMO as a 
candidate gene in HCC development and progression. 
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