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Introduction

Gastrointestinal (GI) cancers such as esophageal, gastric, 
pancreatic, hepatobiliary and colorectal cancers (CRCs) 
account for approximately 20% of newly diagnosed cancers 
and a substantial proportion of all cancer-related deaths 
in the United States each year (1). Radiation therapy 
(RT) has become an important treatment modality in the 
management of GI malignancies for definitive local therapy, 
adjuvant treatment or palliative care. With technological 
advances in the treatment planning and delivery, including 
incorporation of functional imaging, CT/MRI-based 

3-dimensional treatment planning, and image-guided 
radiotherapy, RT has become a safer, more precise and 
effective approach to achieving local control of tumor 
progression (2). 

Over the past decade the rapid emergence and 
availability of targeted immunotherapies, especially immune 
checkpoint blockade (ICB) therapies have dramatically 
transformed the treatment landscape for solid tumor 
oncology (3). Unlike traditional chemotherapy or RT, 
which directly kill cancer cells, immunotherapy harnesses 
the host’s preexisting immune system to eradicate tumor 
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cells by activating immune cell anti-tumor activity. For 
GI malignancies, immunotherapies have likewise gained 
increasing attention over the past several years. ICB, 
vaccine therapies, and adoptive cell transfer therapies have 
particularly demonstrated promising clinical activity for 
a subset of patients with metastatic GI disease. However 
further investigation is still required to maximize its efficacy 
in the clinical setting. 

In this regard, there is growing evidence to suggest 
the immunomodulatory function of RT, and its potential 
to work synergistically with immunotherapy through a 
phenomenon known as the abscopal effect. In this review we 
provide an overview of current evidence, recent advances, 
and future directions for the potential combinatory role 
of immunotherapy with low-dose radiation therapy in GI 
malignancies.

Rationale for combining radiotherapy and 
immunotherapy in GI malignancies

Radiation therapy has systemic immunomodulatory effects 
that impact tumor growth

The focus of RT has traditionally been on the direct 
cytotoxic effects of ionizing radiation on cancer cells 
through its ability to irreparably damage DNA and generate 
reactive oxygen species (ROS) (4). Its clinical role has 
therefore been primarily to achieve local tumor control. 
However, there is growing evidence to suggest that RT 
can also induce a series of systemic immunomodulatory 
effects both within and outside of the irradiated field (5,6). 
The best known clinical example of this was first reported 
in 1953 by Mole when he made the observation that local 
radiation could induce spontaneous tumor regression at 
distant non-irradiated sites, a phenomenon he termed 
the “abscopal effect” (7,8). At the same time, a number of 
early studies have also demonstrated that the efficacy of 
radiotherapy and abscopal effect is at least partly dependent 
on the immunocompetence of its recipient (9-13). 

Since then, an abundance of preclinical studies have 
uncovered the biological basis for how radiotherapy 
may enhance antitumor immunity (Figure 1). Radiation 
induced tumor cell death results in an increased release of 
tumor antigens and damage associated molecular patterns 
(DAMPs). In essence, radiotherapy can function as a 
personalized in situ tumor vaccine by enhancing tumor 
antigen cross- presentation on dendritic cells (DCs) 
and subsequently promoting the priming and activation 

of cytotoxic CD8+ T cells (14,15). This is process is 
additionally mediated by the increased translocation of 
calreticulin and other ligands that help promote DC 
phagocytosis, as well as upregulated expression of MHC 
Class I (16,17). There is further evidence to suggest that 
radiation therapy may help to expand and diversify the 
tumor-directed TCR repertoire, thereby increasing the 
likelihood of tumor-antigen recognition (18,19).

Low to moderate doses of radiation have also been shown 
to modulate the inflammatory milieu through the release 
of proinflammatory cytokines, such as tumor necrosis 
factor-α (TNF-α), interferon-α (IFN-α), IFN-β, and IFN-γ, 
from irradiated cancer cells (20-22). The accumulation of 
cytosolic DNA by RT and subsequent activation of cytosolic 
nucleic acid sensor pathways such as cyclic GMP-AMP 
synthase (cGAS)-stimulator of interferon genes (STING) 
has notably been cited as an important mechanism driving 
type I IFN expression (23-25). A multitude of other 
alterations to the tumor microenvironment (TME) also 
occur with radiation exposure and may influence anti-
tumor immunity (6,26,27). The release of pro-inflammatory 
cytokines as previously discussed, as well as the chemokines 
CCL5, CXCL16 and CXCL10 have been shown to 
promote infiltration of effector T cells and antigen 
presenting cells to the TME (21,25,28,29). 

Finally, there is some evidence to suggest that RT may 
also lead to the upregulated expression of PD-L1 in tumor 
cells and that this may portend a worse prognosis in certain 
solid malignancies (30). Nevertheless, the expression of PD-
L1 on tumor cells has been shown to be a useful biomarker 
for predicting response to ICB therapy (31). This provides 
additional rationale for combining PD-1/PD-L1 inhibitors 
with radiotherapy.

Immunotherapy may enhance the abscopal effect

While the occurrence of the abscopal effect observed in 
clinical practice is relatively rare, an increasing number of 
anecdotal cases have been reported in a variety of metastatic 
solid tumors (32). In 2012, Postow and colleagues were 
notably the first to describe this phenomenon in a 
melanoma patient who developed a systemic response after 
stereotactic body radiation therapy (SBRT) combined with 
ipilimumab, an anti-CTLA-5 antibody (33). These findings 
have since garnered growing interest in combining RT with 
immunotherapies to boost the occurrence of the abscopal 
effect for the purpose of enhancing anti-tumor immunity.

Prospective trials investigating the efficacy of combining 
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immunotherapy and RT have recently gained momentum 
over the last decade. An initial proof-of-principle clinical trial 
(NCT02474186) first showed that RT (35 Gy in 10 daily 
fractions) combined with granulocyte-macrophage colony-
stimulating factor (GM-CSF) could boost the incidence of the 
abscopal effect in patients with metastatic solid tumors (34). 
Results from the KEYNOTE-001 trial further demonstrated 
that patients with advanced non-small lung cancer (NSCLC) 
who previously received RT had longer progression-free 
survival (PFS) and overall survival (OS) with pembrolizumab, 
an anti-PD1 inhibitor, than those who did not receive 
previous radiotherapy (35,36). Similar findings have also been 

observed when ipilimumab, an anti CTLA-4 inhibitor, was 
combined with RT in metastatic NSCLC (18). Since then, 
the combination of radiotherapy and immunotherapy has 
demonstrated success in several solid malignancies including 
NSCLC, gliomas, and melanoma (37-43). Recent data in 
NSCLC, notably showed that stereotactic body radiotherapy 
(SBRT) on a single tumor site preceding pembrolizumab 
could double out-of-field anti-tumor responses when 
compared to treatment with pembrolizumab alone (44). 
While these early clinical results have been promising, the 
application of RT with immunotherapy for treatment of 
gastroesophageal malignancies remains ongoing.

leveraging the abscopal effect to enhance 
immunotherapy in GI malignancies

Tumor-antigen 
specific T-cell 
activation and 
proliferationRelease of 

proinflammatory 
cytokines and 

DAMPs

Increased T cell 
trafficking to tumor 
microenvironment

DNA damage & activation 
of cGAS-STING pathway

Enhanced tumor antigen 
cross-presentation

Release of tumor 
associated antigens

Upregulation of 
calreticulin Migration to 

lymph node

Abscopal effect: shrinkage of tumor 
at distant non-irradiated site

Increased PD-L1 
expression on 
cancer cells

Immunotherapy Radiotherapy

Irradiated primary tumor

Dying cancer cell

Cancer-cell

Cancer-cell

Immune 
checkpoint 
inhibitor

Cytotoxic T-cell

Dendritic cell

Lymph node

TNF-α
IFN-γ
IFN-β
IFN-α

Figure 1 Schematic overview illustrating the mechanisms of synergy between radiotherapy and immunotherapy. Radiation therapy induces 
immunomodulatory effects that can boost anti-tumor immunity in several ways. Damage and death of cancer cells by radiation causes the 
release of tumor associated antigens, increased calreticulin, DAMPS which activate dendritic cells which prime CD8+ cytotoxic T cells. The 
activation of the cGAS-STING Pathway further leads to increase in pro-inflammatory cytokines, especially type I interferons which help 
to recruit active immune cells to the tumor microenvironment. The addition of immune checkpoint inhibitors such as anti-CTLA4 and 
anti-PD1/PD-L1 based therapies work synergistically with radiation therapy to promote an effective anti-tumor response. An anti-tumor 
immune response seen at a distant non-irradiated site through the abscopal effect may be one such benefit of combining immunotherapy 
with radiation (Elements of diagram created with Biorender.com). GI, gastrointestinal; DAMPs, damage associated molecular patterns; 
cGAS-STING, cyclic GMP-AMP synthase-stimulator of interferon genes; CTLA4, cytotoxic T lymphocyte-associated antigen 4; PD-1, 
programmed cell death 1; PD-L1, programmed cell death ligand 1.
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Current status and ongoing efforts for 
immunotherapy in gastrointestinal cancers

Esophagogastric cancers

Esophageal cancers make up one of the most aggressive GI 
malignancies and contribute significantly to cancer-related 
deaths worldwide (45). While early stage or locally advanced 
esophageal cancers can often be cured with endoscopic 
resection or esophagectomy, more advanced stage disease 
requires additional systemic chemotherapy with or without 
RT for suppression of local tumor growth and alleviation 
of dysphagia (46,47). More recently, immune checkpoint 
inhibitors have been incorporated into the management of 
patients with upper GI cancers (48). 

In regards to the treatment of early-stage disease, the 
phase III CheckMate 577 was the first trial to demonstrate 
that nivolumab, an anti-PD1 inhibitor, significantly 
improves disease-free survival for resected (R0) stage II/
III esophageal or gastroesophageal junction (GEJ) cancer 
who received neoadjuvant chemoradiation and had residual 
pathologic disease. The median disease-free survival had 
doubled with adjuvant nivolumab compared with placebo 
(22.4 vs. 11 months; HR 0.69; 96.4% CI: 0.56–0.86; 
P=0.0003) (49). Based on these results, the FDA approved 
the use nivolumab for stage II/III esophageal or GEJ cancer 
with residual pathologic disease after complete resection 
and neoadjuvant chemoradiotherapy. There are now 
multiple ongoing trials to investigate the use of combining 
immune checkpoint inhibitors with RT for early stage 
disease (Table 1). 

For advanced esophageal cancer, a series of landmark 
trials have also demonstrated the efficacy of utilizing 
immunotherapy for first-line treatment. The results from 
the phase III CheckMate 649 trial showed that for untreated, 
advanced, HER2 negative gastric, GEJ, or esophageal 
adenocarcinoma with a PD-L1 combined positive score 
(CPS) ≥5%, use of Nivolumab plus chemotherapy prolonged 
OS [hazard ratio (HR) 0.71 (98.4% CI: 0.59–0.86);  
P<0.0001] and progression-free survival (HR 0.68; 98% 
CI 0.56–0.81; P<0.0001) vs. chemotherapy alone (50). This 
led to FDA approval of nivolumab plus chemotherapy as 
first-line setting for all patients with esophageal cancer, 
however, NCCN has recommended that nivolumab should 
be reserved for patients with PD-L1 CPS ≥5%. The 
results from the phase III KEYNOTE 590 trial, similarly 
demonstrated significant improvement in OS and PFS in 
patients treated with pembrolizumab plus chemotherapy 
vs. chemotherapy alone (51). The CheckMate 648 trial 

also showed improved overall survival with the addition 
of nivolumab vs. standard-of-care chemotherapy alone for 
advanced esophageal squamous-cell carcinoma (52). While 
a majority of studies combining chemotherapy and radiation 
therapy remain ongoing (Table 1), the results of a phase  
2 trial combining pembrolizumab with palliative radiation 
therapy for metastatic gastroesophageal cancer demonstrated 
promising durable responses, however, the study was unable 
to distinguish abscopal biologic changes (53).

Colorectal and anal cancer

The introduction of immune checkpoint inhibitor therapies 
have transformed the treatment landscape for patients 
with mismatch repair deficient (MMR-D)/microsatellite 
instability-high (MSI-H) metastatic colorectal cancer 
(mCRC) (54,55). Based on the results of several seminal 
studies, the FDA first approved the use of the PD-1 
inhibitor, pembrolizumab, in 2017 for any unresectable or 
metastatic MSI-H/dMMR solid tumors that had failed prior 
treatment and without alternative treatment options (56). 
This was the first time the agency had approved a cancer 
treatment based on a tumor biomarker rather than the site 
of origin.

Since then, several trials have been underway to expand 
the use of ICB therapy in MSI-H/dMMR CRC. Notably, 
results from the open label, phase III KEYNOTE-177 
trial demonstrated that treatment with pembrolizumab 
resulted in longer PFS (16.5 vs. 8.2 months) compared 
to standard of care chemotherapy in untreated MSI-H/
dMMR mCRC (57). The initial trial results led to the 
approval of pembrolizumab as single-agent, first-line 
therapy in MSI-H/dMMR mCRC. However, final post-hoc 
analysis showed that while pembrolizumab continued to 
show durable activity with fewer treatment-related adverse 
events compared to chemotherapy, pembrolizumab failed 
to demonstrate statistically significant improvement in 
overall survival compared to chemotherapy (58). An open 
label, non-randomized phase II trial (NCT04165772), 
similarly showed promising treatment response in dMMR 
locally advanced rectal cancer using dostarlimab, an anti-
PD1 inhibitor (59). Findings from the phase II CheckMate 
142 trial, further demonstrated durable clinical benefit of 
combined nivolumab and low-dose ipilimumab for first-line 
treatment of MSI-H/dMMR mCRC (60). These findings 
justify the necessity to validate the efficacy of dual ICB 
therapy in future randomized clinical trials.

Despite these advances, both single or dual ICB therapy 
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Table 1 Ongoing clinical trials involving immunotherapy combined with radiotherapy for GI malignancies 

Trial ID Phase Tumor type and histology Immunotherapy Radiation Study design

Esophagogastric cancers

NCT02735239 I/II Metastatic/locally advanced esophageal cancer (N=73) Durvalumab ± tremelimumab Unspecified EBRT Non-randomized, open label trial evaluating the safety of Durvalumab ± tremelimumab in combination with oxaliplatin/capecitabine chemotherapy and standard RT 

NCT02642809 I Metastatic esophageal cancer Pembrolizumab Brachytherapy (16 Gy in 2 fractions of 

8 Gy per fraction, separated by 7–10 

days between fractions

Open label trial evaluating tolerability of localized brachytherapy combined with pembrolizumab as measured by treatment related adverse events

NCT03377400 II Inoperable ESCC Durvalumab and tremelimumab Unspecified Open label, single-arm study evaluating progression-free survival with combination of chemotherapy (5FU/CDDP) and Durvalumab + Tremelimumab with concurrent RT

NCT03437200 II Inoperable, early stage and locally advanced ESCC or EAC Nivolumab ± ipilimumab 50 Gy in 25 fractions Randomized, open label study evaluating safety of nivolumab ± Ipilimumab in combination with standard RT and FOLFOX

NCT03792347 I Stage II/III ESCC Pembrolizumab 41.4 Gy in 23 fractions Open label, single arm study evaluating the safety of preoperative pembrolizumab with standard carboplatin, paclitaxel, and RT

NCT02844075 II Stage II/III ESCC Pembrolizumab 41.4 Gy in 23 fractions Open-label, single arm study evaluating pathologic response rate of patients receiving preoperative chemoradiotherapy with paclitaxel, carboplatin and pembrolizumab

NCT02520453 II ESCC (N=86) Durvalumab Unspecified Randomized, double blind study evaluating treatment response of adjuvant Durvalumab or placebo for completely resected esophageal squamous cell carcinoma previously 

treated with neoadjuvant concurrent chemoradiotherapy

NCT02830594 II ESCC, EAC, GEJ, GAC (N=14) Pembrolizumab Unspecified EBRT Open-label, single arm study evaluating pathologic response rate of pembrolizumab and palliative EBRT

NCT03087864 II Stage II EAC or GEJ (N=40) Atezolizumab 23 x1.8 Gy Open-label, single arm study evaluating the feasibility of preoperative treatment with atezolizumab combined with preoperative carboplatin, paclitaxel and radiation

NCT03278626 I/II Locally advanced ESCC (N=12) Nivolumab 50.4 Gy (1.8 Gy/fraction x28 fractions) Open-label single arm study evaluating the safety and efficacy treatment with Nivolumab in combination with paclitaxel, carboplatin, RT

NCT03544736 I/II ESCC or EAC or GEJ (N=30) Nivolumab 20-50 Gy in 25 fractions vs. 50.4 Gy in 

28 fractions vs. 41.4 Gy in 23 fractions

Open-label, multi-arm, non-randomized study evaluating the safety and feasibility of treatment of advanced/inoperable vs. operable EC with Nivolumab in combination with 

paclitaxel, carboplatin, RT

NCT03257163 II Stage II/III dMMR or EBV+ GAC (N=40) Pembrolizumab Conventional Fractionation Open-label, single arm study evaluating RFS with treatment with pembrolizumab in combination with capecitabine and RT

NCT03064490 II Stage II/III GAC or EAC (N=38) Pembrolizumab 41.4 Gy in 23 fractions Open-label, non-randomized, single arm study evaluating pathologic complete response of neoadjuvant pembrolizumab in combination with carboplatin and paclitaxel and RT

NCT02730546 I/II Stage II/III GC or GEJC (N=31) Pembrolizumab 41.4 Gy in 23 fractions Open-label, single arm study evaluating the safety and efficacy of pembrolizumab in combination with concurrent chemoradiotherapy, carboplatin, and paclitaxel

NCT03044613 I Stage II/III EAC, OSCC or GEJC (N=32) Nivolumab or Relatlimab 41.4 Gy in 23 fractions Open-label, non-randomized study evaluating treatment with nivolumab or Relatlimab in combination with carboplatin and paclitaxel in the pre-operative setting

NCT03776487 I/II Stage II/III GC or GEJC (N=30) Nivolumab and ipilimumab 50 Gy in 25 fractions Open label study evaluating the safety and toxicity profile of nivolumab in combination with ipilimumab after standard chemotherapy and followed by nivolumab in combination 

with fluoropyrimidine and RT

NCT02962063 II Stage II/III GEJC and GC (N=78) Durvalumab and tremelimumab 50 Gy in 28 fractions Open label study evaluating the safety of treatment with durvalumab and tremelimumab in combination with carboplatin, paclitaxel and RT

NCT04159974 II Stage II/III EAC or GEJC (n=56) Durvalumab and tremelimumab 41.4 Gy in 23 fractions Open label, randomized study evaluating the safety and efficacy of adding Durvalumab to standard neoadjuvant radichemotherapy and of Durvalumab +/- Tremelimumab

NCT02639065 II Stage II/III EAC or GEJC with residual disease (N=39) Durvalumab 41.4 Gy in 23 fractions Open label, single arm study evaluating the safety and efficacy of durvalumab following multi-modality therapy

NCT03490292 I/II Stage II/III ESCC or EAC (N=22) Avelumab 41.4 Gy in 23 fractions Open label, Non-randomized study evaluating the safety tolerability and efficacy of avelumab in combination with carboplatin, paclitaxel, and RT

NCT03604991 II/III Stage II-IV EAC, GEJC (N=514) Ipilimumab and nivolumab Unspecified Open label, randomized trial evaluating the peri-operative use of Nivolumab and Ipilimumab in addition to standard of care chemotherapy and RT

Colorectal and anal cancers

NCT03104439 II MSI-high colorectal and pancreatic cancer (N=80) Nivolumab and ipilimumab 24 Gy in 3 fractions Open label study evaluating the safety and efficacy of Nivolumab and ipilimumab in combination with RT

NCT04663763 II Locally advanced rectal cancer (N=40) Sintilimab 25 Gy over 5 fractions Open label, single arm study evaluating Sintilimab in combination with Capecitabine, Oxaliplatin, and RT

NCT04518280 II Locally advanced rectal cancer (N=130) Toripalimab (Anti-PD-1) 25 Gy over 5 fractions Open label, randomized trial evaluating combination of Toripalimab and neoadjuvant short-course RT

NCT04558684 I/II Non-metastatic rectal cancer (N=30) Camrelizumab 25 Gy over 5 fractions Open label trial evaluating preoperative treatment with camrelizumab, neoadjuvant chemotherapy, and RT

NCT04621370 II Locally advanced rectal adenocarcinoma (N=48) Durvalumab 25 Gy over 5 fractions or  

50 Gy over 25 fractions

Open label, randomized trial evaluating Durvalumab in combination with FOLFOX and RT

NCT04109755 II Untreated, localized rectal adenocarcinoma (N=25) Pembrolizumab 25 Gy over 5 fractions Open label study evaluating the safety and efficacy of neoadjuvant Pembrolizumab and RT

NCT03503630 II Locally-advanced rectal adenocarcinoma (N=44) COMPOUND 2055269 (Anti-PD-L1) 25 Gy in 5 fractions Open Label study evaluating the pCR rate following short course RT then mFOLFOX-6 in combination with COMPOUND 2055269

NCT04503694 II Stage II-III rectal adenocarcinoma (N=60) Nivolumab 25 Gy in 5 fractions Multicenter, single-arm, open label trial evaluating the efficacy of Nivolumab in combination with Regorafenib when administered before and after standard, pre-operative short 

course RT

NCT04636008 I/II MSI-H/dMMR non-metastatic rectal cancer (N=20) Sintilimab (anti PD-1) 25 Gy in 5 fractions Open label, single arm study evaluating the safety and efficacy of Sintilimab combined with hypofractionated RT

NCT04411537 II MSS locally advanced rectal adenocarcinoma (N=50) PD-1 antibody (unspecified) 50 Gy in 25 fractions Open label, single arm study evaluating pathologic complete response rate for treatment of Anti-PD1 therapy in combination with neoadjuvant capecitabine, irinotecan, and RT

NCT04411524 II MSI-H locally advanced rectal adenocarcinoma (N=50) PD-1 antibody (unspecified) 50 Gy in 25 fractions Open label, single arm study evaluating pathologic complete response rate for treatment of Anti-PD1 therapy in combination with neoadjuvant capecitabine, irinotecan, and RT

NCT03854799 II Locally advanced, resectable rectal adenocarcinoma (N=101) Avelumab 50.4 Gy in 28 fractions Open label, single arm study evaluating pCR of preoperative Avelumab in combination with Capecitabine and RT

NCT04357587 I MSI-H/dMMR stage II-III rectal adenocarcinoma, or 

oligometastatic locally advanced stage IV that are candidates 

for curative surgery (N=10)

Pembrolizumab Daily fractions of 200 cGy,  

5 days a week for 5 weeks

Open label, single arm study evaluating the safety, tolerability, and feasibility of Pembrolizumab in combination with Capecitabine and RT

NCT03921684 II Locally advanced rectal adenocarcinoma (N=29) Nivolumab 50.4 Gy in 28 fractions Open label, single arm study evaluating safety and pCR of Nivolumab in combination with neoadjuvant mFOLFOX6, Capecitabine, and RT

NCT02921256 II Locally advanced rectal adenocarcinoma (N=362) Pembrolizumab Unspecified Open label, randomized trial evaluating the efficacy of Veliparib or pembrolizumab in combination with mFOLFOX6, capecitabine, and RT

Table 1 (continued)
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Table 1 (continued)

Trial ID Phase Tumor type and histology Immunotherapy Radiation Study design

NCT03127007 I/II Untreated, locally advanced rectal adenocarcinoma (N=54) Atezolizumab 45–50 Gy in 25 fractions Open Label, Randomized trial evaluating the safety and efficacy of preoperative Atezolizumab in combination with 5-FU and RT

NCT04443543 II Locally advanced rectal adenocarcinoma (N=222) Tislelizumab 50 Gy in 25 fractions Multicenter, open label, non-randomized trial evaluating CCR rate in patients treated with long course chemoradiation based on their MSI-H/dMMR status. After completion of 

consolidation chemotherapy, patients who reach CCR will receive organ preservation (watch and wait) strategy in place of radical surgery

NCT04017455 II Locally advanced rectal adenocarcinoma (N=38) Atezolizumab and bevacizumab unspecified Open label, single arm trial evaluating the efficacy of neoadjuvant RT followed by Atezolizumab and Bevacizumab

NCT04124601 II Locally advanced rectal adenocarcinoma (N=80) Nivolumab and ipilimumab 50 Gy in 2 Gy fractions Open label, randomized trial to evaluate the safety and tolerability of sequential Nivolumab and Ipilimumab in combination with chemoradiotherapy

NCT04293419 II Untreated locally advanced rectal adenocarcinoma (N=58) Durvalumab 50.4 Gy in 28 fractions Open label, non-randomized, single arm study evaluating the pCR rate of Durvalumab in combination with mFOLFOX6, capecitabine, and RT

NCT03102047 II MSS stage II-IV rectal adenocarcinoma (N=45) Durvalumab Unspecified Open label, single arm study evaluating the efficacy of Durvalumab after chemo-radiotherapy

NCT02948348 I/II Locally advanced, resectable rectal adenocarcinoma (N=90) Nivolumab or ipilimumab 45 Gy in 25 fractions Open-label, single-arm, multicenter study evaluating the safety and efficacy of Nivolumab or ipilimumab as sequential therapy following capecitabine and RT and subsequent 

surgical therapy

NCT03299660 II Locally advanced, resectable rectal adenocarcinoma (N= 37) Avelumab 50.4 Gy in 28 fractions Open label, single-arm study evaluating the pathological response rate of Avelumab following neoadjuvant long course RT with Capecitabine, 5-FU. This will be followed by 

surgical resection

NCT04083365 II Locally advanced rectal adenocarcinoma (N=60) Durvalumab 5040 cGy radiotherapy for 5 days per 

week for 5 weeks

Open-label, single arm study evaluating pCR of Durvalumab in combination with Capecitabine and RT

NCT03300544 I Rectal adenocarcinoma of any stage, excluding patients with 

CNS metastasis (N=3)

Talimogene laherparepvec (oncolytic 

herpes virus)

50.4 Gy in 28 fractions Open label, single-arm study evaluating the safety and feasibility of talimogene laherparepvec in combination with standard neoadjuvant chemotherapy and RT

NCT04130854 II Untreated, locally advanced rectal adenocarcinoma (N=58) APX005M (Anti-CD40) 25 Gy in 5 fractions Open-label, Randomized study evaluating pCR of APX005M in combination with mFOLFOX and RT

NCT03916510 I Locally advanced rectal adenocarcinoma (N=30) Enadenotucirev (Oncolytic virus) 50 Gy in 25 fractions Open-label, single arm study evaluating the safety and efficacy of Enadenotucirev in combination with Capecitabine and RT

NCT04304209 II Stage II or III CRC (N=195) Sintilimab 50 Gy in 25 fractions Open label, randomized study evaluating the efficacy of Sintilimab in combination with standard chemoradiation therapy according to their MMR/MSI status

NCT03233711 III High risk stage II-IIIB anal squamous cell carcinoma (N=344) Nivolumab Must have received at least 54 Gy of 

radiation to the primary and 45 Gy to 

elective nodal region prior to start of 

trial

Randomized, open label study evaluating whether Nivolumab vs. observation alone improves disease-free survival in patients who have previously received combined modality 

therapy (including RT)

Hepatobiliary cancers

NCT03203304 I Unresectable HCC (N=14) Nivolumab or ipiliomumab 40 Gy in 5 fractions Open label, randomized study evaluating the safety and efficacy of SBRT followed by Nivolumab or Ipilimumab with Nivolumab 

NCT03812562 I Resectable HCC (N=2) Nivolumab Yttrium-90 radioembolization Open label, non-randomized study evaluating the safety and recurrence rate of standard of care yttrium Y glass microspheres followed by Nivolumab

NCT05063565 II Unresectable HCC (N=150) Durvalumab, tremelimumab ThereaSphere Y-90 glass microsphere 

therapy

Multi-center, open label, randomized study evaluating the efficacy of TheraSphere Y-90 microsphere therapy in combination with Durvalumab and Tremelimumab

NCT03817736 II Unresectable HCC (N=33) Immune checkpoint inhibitor 

(unspecified)

SBRT (unspecified) Open label, single arm study evaluating the efficacy and safety of sequential administration of TACE and SBRT with an immune checkpoint inhibitor

NCT04988945 II Unresectable HCC (N=33) Durvalumab, tremelimumab SBRT (unspecified) Open label, single arm study evaluating efficacy of downstaging HCC for hepatectomy with sequential TACE, SBRT and Durvalumab + Tremelimumab

NCT04167293 II/III HCC with portal vein invasion after TACE or hepatic arterial 

infusion chemotherapy (n=116)

Sintilimab 30–54 Gy in 3–6 fractions Open label, randomized study evaluating the efficacy of SBRT followed by Sintilimab

NCT03753659 II HCC (N=30) Pembrolizumab RFA/MWA/Brachytheraopy Multicenter, single arm, open-label study evaluating the clinical activity of pembrolizumab in combination with RFA/MWA/brachytherapy

NCT05286320 I/II Unresectable HCC (N=27) Pembrolizumab SBRT (Unspecified) Open label, single arm study evaluating the safety and efficacy of Pembrolizumab+ lenvatinib with SBRT combinations

NCT03898895 II Unresectable biliary tract cancer (N=36) Camrelizumab 45 Gy total Open label, single-arm study evaluating the efficacy and safety of Camrelizumab combined with RT

Pancreatic cancer

NCT02305186 I/II Borderline resectable PDAC (N=68) Pembrolizumab 50.4 Gy in 28 Fractions Open label, randomized study evaluating the safety and efficacy of Pembrolizumab in combination with neoadjuvant chemoradiation

NCT03161379 II Borderline resectable PDAC (N=30) Nivolumab, GVAX pancreas vaccine 6.6 Gy in 5 fractions Open label, randomized study evaluating the safety and clinical activity of FOLFIRINOX along with a whole cell vaccine with immune modulating doses of cyclophsophamide and 

nivolumab combined with SBRT

NCT01595321 N/A Surgically resected PDAC (N=19) GVAX 6.6 Gy in 5 fractions Open label, non-randomized study evaluating the safety of pancreatic tumor cell vaccine (GVAX) with immune modulating doses of cycophosphamide followed by SBRT and 

FOLFIRINOX after surgery

NCT03104439 II MSS and MSI high CRC and pancreatic cancer (N=80) Nivolumab, ipilimumab Unspecified Open label, single arm study evaluating efficacy of combination Nivolumab, Ipilimumab, and RT

NCT02648282 II Locally advanced PDAC (N=58) GVAX, pembrolizumab 6.6 Gy in 5 fractions Open label, single arm study evaluating distant metastasis free survival of GVAX combined with cyclophosphamide, pembrolizumab and RT

NCT03563248 II Localized pancreatic cancer (N=168) Nivolumab Unspecified Open label, randomized study evaluating the safety and efficacy of Losartand and nivolumab in combination with FOLFIRINOX and SBRT 

NCT02311361 I/II Unresectable PDAC (N=65) Tremelimumab and/or durvalumab 8 Gy in 1 fraction or 5 Gy in 5 fractions Open label, multi-arm, non-randomized study evaluating the safety and efficacy of Durvalumab and/or tremelimumab with SBRT

NCT03104439 II MSI-High colorectal and pancreatic cancer (N=80) Nivolumab and ipilimumab 24 Gy in 3 fractions Open label study evaluating the safety and efficacy of Nivolumab and ipilimumab in combination with RT

GI, gastrointestinal; EBRT, external beam radiation therapy; ESCC, esophageal squamous cell carcinoma; GAC, gastric cancer; dMMR, DNA mismatch repair deficiency; EBV, Epstein-Barr Virus; EAC, Esophageal adenocarcinoma; GEJC, gastroesophageal junction adenocarcinoma; FOLFOX, oxaliplatin, leucovorin, fluorouracil; RT, radiation therapy; 

RFS, recurrence free survival; OSCC, oral squamous cell carcinoma; PDAC, pancreatic ductal adenocarcinoma; CRC, colorectal cancer; HCC, hepatocellular carcinoma; SBRT, stereotactic body radiation therapy; MSS, microsatellite stable; MSI, microsatellite instability; CNS, central nervous system; RT, radiation therapy; pCR, pathologic complete 

response; TACE, trans-arterial chemoembolization; RFA, radiofrequency ablation; MWA, microwave ablation.
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have been largely ineffective for patients with microsatellite 
stable (MSS) mCRC (61). The dramatic difference in 
ICB treatment response has been hypothesized to be 
due to lower tumor mutational burden and neoantigen 
generation (54). More recently, comprehensive single-cell 
and spatial analysis of both MMRd and MSS colorectal 
tumors have identified differences in spatially organized 
immune networks within the intestinal microenvironment 
that may contribute to ICB responsiveness (62). While 
tumor-infiltrating lymphocytes (TILs) are generally highly 
enriched in MSI-H CRC, they are relatively uncommon in 
MSS CRC (63).

The development of strategies, including use of 
combined RT, to overcome the intrinsic resistance to 
ICB in MSS CRC are currently underway. Results from 
a phase II, single-arm trial (NCT04231552; N=30) 
evaluating the efficacy of preoperative short course RT 
(5×5 Gy) with subsequent CAPOX (capecitabine and 
oxaliplatin) and camrelizumab in locally advanced rectal 
cancer demonstrated a pathologic complete response 
(pCR) rate of 48.1% (43). By comparison, previous 
studies utilizing preoperative chemoradiation therapy 
without immunotherapy showed a pCR rate of 15-30% 
in rectal cancer (64-68). More importantly, the trial 
had demonstrated a pCR rate of 46.2% in patients with 
proficient mismatch repair (pMMR)/MSS (43). 

Comparatively, a recent single-arm, non-randomized, 
phase 2 trial (NCT03104439) evaluated the efficacy 
and safety of combined PD-1 (nivolumab) and CTLA4 
(ipilimumab) inhibitors with RT in an effort to improve 
ICB therapy response in MSS CRC and pancreatic 
adenocarcinoma (PDAC) (69). In patients with MSS CRC, 
the disease control rate (DCR) by intention to treat was 
25% (n=10/40 pts, 95% CI: 13–41%) and in those who 
received RT per protocol, the DCR was 37% (N=10/27 pts, 
95% CI: 10–56%). While modest, these preliminary results 
demonstrate that the addition of RT may help to improve 
therapeutic response in MSS CRC and PDAC tumors that 
have historically had limited response to immunotherapy.

Pancreatic cancer 

Pancreatic ductal adenocarcinoma (PDAC), which 
accounts for greater than 90% of pancreatic malignancies, 
is associated with a dismal prognosis with an estimated 
5-year survival rate of 11% (1). Given the lack of specific 
early presenting symptoms or screening tools, a majority 

of patients with PDAC have locally advanced or metastatic 
disease at the time diagnosis. To date, surgical resection 
remains the only potentially curative treatment option for 
locally advanced disease. Traditional FOLFIRINOX or 
gemcitabine-based chemotherapies with or without radiation 
remain standard of care in unresectable disease (70).

Compared to other solid malignancies, PDAC have 
proven largely refractory to immunotherapy (71). Clinical 
trials utilizing either mono or dual ICB therapy have not 
demonstrated significant improvement in PFS or OS  
(72-76). Most recently, results from a phase 2 clinical trial 
(NCT02558894) investigating the efficacy of combining 
durvalumab (anti-PD-1) with tremelimumab (anti-
CTLA-4) for patients with refractory metastatic PDAC 
demonstrated an overall-response rate (ORR) of 3.1% 
(95% CI: 0.08–16.22), while patients receiving durvalumab 
monotherapy had an ORR of 0% (95% CI: 0.00–10.58) (72). 
Furthermore, while pembrolizumab is approved for use 
in all metastatic solid tumors with MSI, the prevalence of 
MSI/dMMR in pancreatic cancer is very low (around 1–2%) 
(54,77). Although the intrinsic mechanisms of resistance 
to immunotherapy in PDAC are not fully understood, the 
immunosuppressive tumor microenvironment in PDAC 
is believed to be an important contributor in shielding 
tumors from effective cytotoxic immune responses (78). 
Nevertheless, other immunotherapeutic strategies, such 
as cancer vaccines, adoptive cell therapies, and novel 
checkpoint blockade targets are also presently under 
investigation (71). 

There is some evidence to suggest that radiation therapy 
may help to boost the immune responsiveness of pancreatic 
cancer to immunotherapy. Preclinical PDAC murine 
models have demonstrated that cGAS-STING agonism can 
promote cytotoxic T-cell responses and Treg populations 
in the TME (79). More recently, a preclinical study using 
a syngeneic pancreatic orthotopic tumor demonstrated 
that combination of RT with anti-PD-1 treatment could 
induce systemic IFN-γ responses in the host (80). The 
potential efficacy of combined RT and immunotherapy 
in pancreatic cancer has also been demonstrated in at 
least one case report. A patient with refractory metastatic 
pancreatic cancer who received palliative radiotherapy 
(45 Gy in 15 fractions) combined with GM-CSF achieved 
rapid reduction in both primary and metastatic tumors (81). 
As previously discussed, the combination of nivolumab 
and ipilimumab with radiation therapy has demonstrated 
promising efficacy in MSS CRC and PDAC (69). For 
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PDAC, the DCR in the per protocol analysis was 29% 
(N=5/17 pts, 95% CI: 10–56%), while the ORR was 18% 
(N=3/17; 95% CI: 4–43%).

Hepatobiliary cancer

Cancers of the hepatobiliary system, which include 
hepatocellular carcinoma (HCC), cholangiocarcinoma 
(CCA) and gallbladder carcinoma (GBC), are aggressive 
malignancies often with poor long-term survival. Surgical 
resection has traditionally been mainstay for treatment 
during early stage disease, however given the high incidence 
of advanced stage disease at the time of diagnosis and high 
rate of recurrence, many patients require systemic therapy.

In the last several years, immune checkpoint inhibitors 
have demonstrated superior efficacy compared to 
traditional systemic therapies in patients with advanced-
stage HCC. Results from the phase III IMbrave 150 
trial demonstrated that atezolizumab (anti-PD-L1) 
combined with bevacizuamab (anti-VEGF-A) resulted 
in significantly improved overall and progression-free 
survival compared to sorafenib in patients with untreated 
advanced unresectable HCC (82). Based on these results, 
combination atezolizumab and bevacizumab was approved 
as first-line therapy for advanced HCC. Furthermore, based 
on early results from KEYNOTE-244 and CHECKMATE 
040 trials, the FDA granted accelerated approval of 
pembrolizumab monotherapy and nivolumab + ipilimumab 
combination therapy for the treatment of patients with 
HCC who had progressed on sorafenib therapy. 

The addition of RT to systemic therapy has likewise 
demonstrated promising efficacy for advanced HCC. 
Recently published results from the randomized phase III 
NRG/RTOG 1112 trial demonstrated improved OS, PFS, 
and time to progression (TTP) for SBRT in combination 
with sorafenib than sorafenib alone for unresectable liver 
cancer (83). Additional clinical trials will be needed to 
see if the addition of radiation therapy continues to show 
improved efficacy in the era of atezolizumab/bevacizumab. 
A single arm phase II clinical study (NCT04193696) 
combining SBRT with camrelizumab demonstrated 
manageable toxicity and promising antitumor activity in 
patients with unresectable HCC (84), providing proof of 
concept. After a median follow-up of 19.7 months, the 
median progression-free and overall survival was 5.8 and 
14.2 months respectively.

Biliary tract cancers are a heterogenous group and 

patients often present with advanced disease and have poor 
prognosis. The global phase 3 TOPAZ-1 trial for advanced 
biliary tract cancer showed an overall and progression-
free survival benefit with the addition of durvalumab 
to chemotherapy which had been standard-of-care for 
over a decade (85). An ongoing single-arm, phase II trial 
(NCT03898895) seeks to investigate both the efficacy 
and safety of radiotherapy followed by camrelizumab in 
unresectable biliary tract cancer patients.

Important considerations for combining and 
optimizing radiotherapy and immunotherapy 

Despite the growing body of evidence supporting the 
combination of radiation and immunotherapy, the optimal 
treatment parameters remain an open question. Post-
hoc analysis of the PACIFIC trial showed that patients 
who received radiation therapy at the same time or 
within 2 weeks after immunotherapy had better outcomes 
than patients who received radiation therapy more than  
2 weeks after immunotherapy, supporting a time-dependent 
component to combined therapy efficacy (86). Preliminary 
studies have also suggested that moderately higher doses 
per fraction may offer better synergy with immunotherapy 
compared to conventional fractionated radiation, but 
additional studies will be required to clarify optimal dose 
fractionation with regards to efficacy (87). 

The efficacy and toxicity to combined therapy in relation 
to patient-related factors and disease-related factors is also 
an area of active investigation. Multiple biomarkers, such as 
PD-L1 expression status, microsatellite instability (MSI), and 
tumor mutational burden (TMB) have been utilized to help 
predict response to immunotherapy (88). However, due to 
rarity of the abscopal effect, no markers have been identified 
to predict which patients have an abscopal response. As we 
have previously discussed, there is accumulating evidence that 
radiation therapy can elicit anti-tumor responses, but also 
increase the expression of PD-L1 on cancer cells, which may 
be one promising predictor for abscopal response. Future 
studies will be necessary to clarify predictive biomarkers, 
which would help to inform patient selection, and allow us to 
optimize future treatment strategies.

Concluding remarks

The development of immunotherapies, especially immune 
checkpoint inhibitors, have ushered in a new era for the 
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treatment of GI malignancies. However, predicting response 
to immunotherapy and its integration with other treatment 
modalities remains an area of active exploration. As we 
have reviewed, there is promising preclinical and clinical 
evidence to suggest that the efficacy of immunotherapy may 
be enhanced when combined with RT through its ability to 
elicit the abscopal effect. Before these combined therapies 
can be successfully implemented, further research will 
be necessary to determine its long-term benefits, toxicity 
profile, as well as optimal timing, dosage, and coordination 
of treatment.
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