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Background: Disulfidptosis is a new type of cellular death triggered in response to disulfide stress and 
is strongly linked to the progression of malignancies. Hepatocellular carcinoma (HCC) is a very common 
malignancy. Some reports have suggested a link between disulfidptosis-related genes (DRGs) and cancer; 
however, further research needs to be conducted.
Methods: In this study, HCC data from the Cancer Genome Atlas–Liver Hepatocellular Carcinoma and 
Gene Expression Omnibus data sets were collected and analyzed. A univariate Cox regression analysis, 
least absolute shrinkage and selection operator, and multivariate Cox regression analysis were conducted 
to identify the hub DRGs signature for prognosis. The HCC patients were allocated to high- and low-risk 
groups based on their disulfidptosis risk scores. The model was validated with a high degree of precision 
using both internal and external validation data sets. “ESTIMATE” and “CIBERSORT” packages were 
employed to assess the immunological landscapes and immune cell infiltration. The IMvigor210 cohort was 
chosen to validate the immunotherapy results. A drug sensitivity analysis was conducted to identify targeted 
medications. The expression of the hub DRGs in the HCC cells was confirmed using cytological techniques.
Results: The bioinformatic analysis revealed that 16 genes showed differential expression. A prognostic 
model was developed based on four genes: RPN1, SLC2A1, SLC2A4, and SLC7A11. A notable difference in 
prognosis was observed between the two risk groups. Based on the results of the immune microenvironment, 
tumor mutation burden, immunotherapy, and drug screening analyses, the DRGs signature can be employed 
in HCC immunotherapy decision making. Further, the expression levels of the hub DRGs were significantly 
upregulated in the HCC cells.
Conclusions: Our four-DRGs signature could be used to predict HCC prognosis. Further, this study 
showed that the hub DRGs could serve as biomarkers for immunotherapy prediction and could potentially 
guide targeted therapies.

Keywords: Disulfidptosis; immune microenvironment; immune checkpoints; drug sensitivity

396

	
^ ORCID: Yuyang Wang, 0000-0003-2058-1183; Qiliang Lu, 0000-0001-8252-2563.

https://crossmark.crossref.org/dialog/?doi=10.21037/jgo-23-949


Wang et al. DRGs and immune features in HCC378

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2024;15(1):377-396 | https://dx.doi.org/10.21037/jgo-23-949

Introduction

Hepatocellular carcinoma (HCC) is  the 6th most 
common cancer and the 3rd leading cause of cancer-
related death worldwide (1). Despite the availability of a 
variety of treatment options, including surgery, targeted 
therapy, and immunotherapy, the 5-year overall survival 
(OS) of HCC patients remains poor, due to continued 
high rates of cancer recurrence and metastasis (2,3). The 
immune microenvironment is closely involved in the 
occurrence and progression of HCC, and different immune 
characteristics based on etiology have been identified 
(4,5). Immunotherapy has significant efficacy in treating 
HCC patients; however, biomarkers need to be identified 
to determine which patients will gain the greatest benefit. 
Rapid advances in bioinformatics have resulted in the 
development of significant techniques and platforms for 
screening cancer patients’ prognostic biomarkers.

Disulfidptosis is a rapid form of cell death due to 
disulfide stress induced by an excessive ac of cystine in 
glucose-deprived cells (6). The upregulation of solute 

carrier family 7 member 11 (SLC7A11) in kidney cancer 
cells enhances nicotinamide adenine dinucleotide phosphate 
(NADPH) depletion in the cytoplasm during glucose 
deprivation. This results in the accumulation of unreducible 
disulfides, which leads to disulfide stress and the subsequent 
development of disulfidptosis (6,7). Consequently, disulfide 
bond formation occurs between actin cytoskeleton proteins, 
causing the collapse of the actin filament network and 
ultimately resulting in disulfide ptosis. Independent of the 
existing cell death modes, such as apoptosis, ferroptosis, 
necroptosis, and cuproptosis, disulfidptosis is a novel 
therapeutic target in metabolic cancer and closely related to 
cancer. Disulfidptosis is of vital importance in the regulation 
of tumor development, treatment sensitivity and survival in 
bladder cancer (8). In addition, the metabolism of disulfides 
in cancer cells has been linked to a number of different 
biological phenomena, including drug resistance, the spread 
of cancer, and the ability of cancer to evade the immune 
system (9). Programmed cell death is closely related to 
immunity (10). Nevertheless, the function of disulfidptosis 
in tumor immune response, immune infiltration, and 
immunotherapy is not yet known. Activating disulfidptosis 
pathways could overcome patients’ resistance to current 
chemotherapeutics and pave the way for new cancer 
treatments. The interrelationship between disulfidptosis-
associated genes and the clinical outcomes of HCC patients 
must be thoroughly investigated. Thus, we conducted 
this study to examine the effects of disulfidptosis on HCC 
prognosis and immunization.

We analyzed the functions of genes associated with 
disulfidptosis using RNA-sequencing (RNA-seq) and single 
cell RNA sequencing (scRNA-seq) data from The Cancer 
Genome Atlas–Liver Hepatocellular Carcinoma (TCGA-
LIHC), GSE76427, and GSE98638 data sets. Four gene 
regulators associated with disulfidptosis were selected to 
evaluate HCC. Based on these findings, a risk model and 
nomogram were developed that could provide significant 
clinical benefits for HCC patients. Additionally, two risk 
categories were identified, and significant associations were 
observed between these categories, immune cell infiltration, 
and prospective medication selection. In conclusion, a 
deeper understanding of disulfidptosis processes will 
facilitate the evolution of new molecular therapies and 
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inform the future immunotherapy strategies for HCC. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-23-949/rc).

Methods

Data acquisition

The RNA-seq and clinical and mutation data of HCC 
patients were extracted from TCGA database (https://
portal.gdc.cancer.gov/). We used a data set comprising 
374 HCC and 50 normal liver samples for the differential 
analysis, excluding samples without clinical data or with 
an OS less than 30 days. As an external validation data 
set, 115 HCC samples were obtained from GSE76427 
from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo). To investigate the 
expression of disulfidptosis-related genes (DRGs) in the 
tumor microenvironment (TME) at the single-cell level, 
we employed the Tumor Immune Single Cell Center 
(TISCH) (11). Previous studies have identified 24 DRGs 
(6,12,13). The flow chart for the data processing is shown in 
Figure 1. This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Construction and analysis of DRGs signature

TCGA database was used to filter the differentially 
expressed genes (DEGs) associated with disulfidptosis 
between the tumor and normal samples using the “DESeq2” 
package (Michael, 2014) utility [threshold: false discovery 
rate (FDR) >0.05, |log2(fold change)| >1]. The tumor 
samples were randomly divided into training and testing 
cohorts at a 7:3 ratio using the “caret” package (Kuhn, 
2008). A univariate analysis, least absolute shrinkage and 
selection operator (LASSO) analysis, and multivariate 
logistic regression analysis were performed using the 
“glmnet” (Friedman, 2010) and “survival” packages 
(Therneau, 2022) in R. A P value <0.5 was set as the 
significance threshold for genes in the univariate logistic 
regression. Using the following formula, we calculated a risk 
score for each LIHC sample based on these gene expression 
levels: Risk score = β1 × gene1 + β2 × gene2 + β3×gene3 + ... 
+ βn × geneN. Based on the median risk score, the patients 
in the training set were divided into high- and low-risk 
groups. Kaplan-Meier survival curves were generated using 
the “survival” package (Therneau, 2022) to calculate the OS 

of each cohort. Using time-dependent receiver operating 
characteristic (ROC) curve profiles at 1, 3, and 5 years, the 
model’s accuracy was evaluated. Comparisons were made 
between the two risk groups in relation to the distribution 
of risk score, patient survival, and gene expression. Further, 
the model was validated using the testing cohort, total 
cohort, and an external validation set. A nomogram was 
established that incorporated the risk score, age, gender, 
and pathological stage as prognostic factors. Calibration and 
ROC curves were generated to appraise the accuracy of the 
nomogram. A stratified analysis was conducted to assess the 
prognostic significance of the risk score. The validation set 
was treated the same as the test set in terms of its settings, 
inclusion criteria, outcomes, and predictors.

Analysis of biological characteristics between the distinct 
risk groups

Gene Ontology (GO) is commonly used to interpret gene 
lists in enrichment analyses (14). The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) is a comprehensive pathway-
oriented knowledge base that includes 15 databases covering 
3,982 organisms (15). We used the “clusterProfiler” package 
(T, 2021) in R to analyze GO and KEGG to gain a better 
understanding of the potential mechanisms of the DEGs in 
HCC. A filtering criterion of an FDR <0.05 was established. 
A gene set enrichment analysis (GSEA) was conducted 
to identify the significantly different biological processes 
between the clusters. A GSEA is commonly used to evaluate 
the statistical significance of differences between two 
biological processes. The GSEA was performed using “c2.
cp.kegg.v7.4.symbols.gmt” and “c5.go.v7.2.symbols.gmt” 
obtained from the Molecular Signature Database (MSigDB).

Somatic mutation analysis

R’s “maftools” package (Mayakonda, 2018) was used to 
visualize the mutation data from LIHC. Fisher’s exact 
test was employed to evaluate the co-mutation of genes. 
The tumor mutation burden (TMB) was estimated by 
considering non-synonymous and code-shifting indels, with 
a detection limit below 5%. The TMB represents the count 
of somatic, coding, base substitution, and insert-deletion 
variants per megabase of the genome.

Immune landscapes related to the DRGs

Using the “ESTIMATE” package (Yoshihara, 2016), 

https://jgo.amegroups.com/article/view/10.21037/jgo-23-949/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-23-949/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Figure 1 Flow chart. The flow chart was adapted from BioRender.com [2023] and permission for publication has been obtained. TCGA-
LIHC, The Cancer Genome Atlas–Liver Hepatocellular Carcinoma; GEO, Gene Expression Omnibus; LASSO, least absolute shrinkage 
and selection operator; PCA, principal component analysis; scRNA-seq, small conditional-sequencing; RT-qPCR, real-time quantitative 
polymerase chain reaction; MET, Methionine; PHE, Phenylalanine; GLY, Glycine.
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stromal scores and immune scores were calculated for each 
TCGA-LIHC sample to estimate tumor purity. Based 
on the absolute abundance of immune cells and stromal 
cells, a “CIBERSORT” package (Aaron, 2015) analysis 
was conducted to estimate the percentages of 22 human 
immune cell categories. A Spearman analysis was performed 
to determine the correlation coefficient between the 
infiltrating immune cells and the risk score, and the results 
were visualized on a scatter diagram. The expression of 
genes involved in the immune checkpoints were correlated 
with the response to immune checkpoint inhibitors (ICIs), 
and immune checkpoint gene expression was compared 
between the two risk groups. Additionally, the Spearman 
correlation analysis identified the DRGs that were most 
strongly associated with the immune checkpoints. The 
IMvigor210 cohort was chosen to validate the immune 
checkpoint blockade treatment.

Drug sensitivity analysis

The “oncoPredict” package (Maeser, 2021) was used 
to identify targeted medications and assess whether 
they were significantly correlated with the risk score 
to investigate potential therapeutic strategies. Semi-
inhibitory concentrations [e.g., a half-maximal inhibitory 
concentration (IC50)] were determined and compared using 
the Wilcoxon signed-rank test.

Real-time quantitative PCR (RT-qPCR)

The total RNA from the experimental and control groups 
was extracted using the RNA rapid purification reagent (ES 
Science) following the manufacturer’s instructions. RNA 
concentration and purity were detected using the Nano-Drop 
One instrument (Thermo Fisher Scientific, Waltham, MA, 
USA). The reverse transcription of complementary DNA 
was carried out using s1000 (Bio-Rad Laboratories, Hercules, 

CA, USA). qRT-PCR was conducted with SYBR Green 
(Yeasen Biotech Co, Shanghai, China). The sequences of the 
RT-qPCR primers are set out in Table 1. Gene expression was 
determined using the 2−ΔΔCt method. β-actin messenger RNA 
served as the internal normal reference.

Statistical analysis

The statistical analyses were conducted using R (version 
4.2.2, ucrt). Each in vitro experiment was conducted a 
minimum of three times. GraphPad Prism (version 8.0, 
San Diego, CA, USA) was used to conduct the statistical 
analyses. Student’s t-tests were used for the continuous 
variables with a normal distribution and Wilcoxon rank-sum 
tests were used for those with a non-normal distribution. 
The Chi-square or Fisher’s exact test was used for the 
categorical variables as applicable. A Pearson analysis was 
carried out to assess the correlations. Two-tailed P values 
were calculated, and statistical significance was defined as a 
P value <0.05.

Results

Identification of differentially expressed DRG signature

Both the training cohort and the internal validation cohort 
comprised tumor samples from the TCGA-LIHC data set. 
For external validation, the GSE76427 data set from the 
GEO database, which comprised 115 tumor samples, was 
used. Previous research identified 24 DRGs (6,12,13). A 
volcano plot shows the expression changes of all the DRGs in 
the HCC samples (Figure 2A). By cross-referencing the three 
data sets, we identified 16 differentially expressed DRGs that 
were highly expressed in the tumor tissues (Figure 2B). The 
prognostic analysis showed that five genes were associated 
with a favorable prognosis, while one gene was associated 
with a poor prognosis (Figure 2C). The results of a network 
interaction analysis (Figure 2D) shows the risk factors in 

Table 1 Primer sequences for disulfidptosis-related genes and β-actin

Gene Forward primer (5'-3') Reverse primer (5'-3')

β-actin TCCCTGGAGAAGAGCTACGA AGCACTGTGTTGGCGTACAG

RPN1 GGCCAAGATTTCAGTCATTGTGG CTTCGTTGGATAGGGAGAGTAGA

SLC2A1 GGCCAAGAGTGTGCTAAAGAA ACAGCGTTGATGCCAGACAG

SLC2A4 TGGGCGGCATGATTTCCTC GCCAGGACATTGTTGACCAG

SLC7A11 TCTCCAAAGGAGGTTACCTGC AGACTCCCCTCAGTAAAGTGAC
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Figure 2 DRGs in HCC. (A) The volcano plot illustrates the expression of all the genes induced by disulfidptosis in HCC. Black dots 
indicate genes with meaningless changes and red dots indicate genes with meaningful changes. (B) The heatmap shows the differential 
expression of 16 DRGs in HCC patients. Blue indicates normal tissue, while red indicates tumor tissue. The Wilcoxon test was used 
to compare variations in gene expression. (C) Forest plot of the 6 DRGs associated with OS. (D) The network diagram illustrates the 
interactions among the six genes. (E) Coefficient distribution charts were generated for the logarithmic sequence of lambda values to 
determine the optimal parameter. (F) LASSO coefficient profiles of the 6 DRGs associated with OS. DRGs, disulfidptosis-related genes; 
HCC, hepatocellular carcinoma; FDR, false discovery rate; FC, fold change; OS, overall survival.
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purple and favorable prognostic factors in green. To better 
understand the role of the DRGs in HCC, the TCGA-
LIHC data set was divided into a training and validation set 
at a ratio of 7:3. Six prognostic genes were identified through 
the univariate Cox regression analysis. A LASSO regression 
analysis was then conducted to confirm that the genes were 
significantly correlated with OS in HCC (Figure 2E). The 
selected genes underwent model cross-validation (Figure 2F).  
The prognostic DRGs were then identified using a 
multivariate Cox regression analysis. Among the DRGs in 
the training set, RPN1, SLC2A1, SLC2A4, and SLC7A11 
were found to be prognostic genes associated with OS. These 
genes were used to identify predictive characteristics for 
patients in the LIHC training set.

Establishment of a prognostic model

The HCC patients in the training, testing, entire, and 
external validation set were stratified into high- and low-
risk groups according to the median value of the predictive 
risk score. The principal component analysis results showed 
that the four DRGs could effectively differentiate between 
the high- and low-risk categories across multiple data sets 
(Figure 3A). Figure 3B illustrates the distribution of the 
prognostic signature, while Figure 3C shows the survival 
outcomes of patients in different categories. Figure 3D  
illustrates the expression profiles of the four DRGs. 
Figure 3E shows that compared with the high-risk group, 
the survival of HCC patients in the low-risk group was 
significantly longer (P<0.05). To determine the predictive 
ability of the model, we depicted the ROC curve to validate 
the Kaplan-Meier results, and a higher area under the curve 
(AUC) indicated better performance. These genes exhibited 
excellent performance in our predictive model (Figure 3F). 
These findings indicate that prognostic features can be used 
to differentiate between high- and low-risk groups.

Establishment and evaluation of a clinical nomogram

The multivariate Cox regression analysis showed that 
risk score and tumor stage were independent risk factors 
in HCC (Figure 4A). Additionally, we constructed a 
nomogram to calculate the individual survival probabilities 
of patients at 1, 3, and 5 years (Figure 4B). A calibration 
plot of the nomogram was used to assess the accuracy and 
sensitivity of the prediction results, and a good correlation 
was found between the actual and predicted survival rates 
at 1, 3, and 5 years (Figure 4C). The ROC curve indicated 

that the nomogram achieved a 1-year AUC of 0.794, 
surpassing other clinical parameters (risk, AUC =0.782; age, 
AUC =0.634; gender, AUC =0.500; stage, AUC =0.500;  
Figure 4D-4F). Based on the results, the nomogram 
effectively predicted the OS of HCC patients.

Functional enrichment analysis

Given the favorable prognostic performance of the 
DRGs signature in the HCC patients, we then sought 
to investigate the underlying mechanism. Initially, a 
differential expression analysis between the two risk groups 
was performed (|log2 fold change| ≥0.5, adjusted P value 
<0.05). The DEGs were subsequently analyzed using 
GO and KEGG methods. The analysis of the biological 
processes revealed an overrepresentation of DEGs in the 
cellular cycle, DNA replication, and metabolic pathways 
(Figure 5A,5B). Additionally, a GSEA was used to investigate 
the substantially enriched functional terms between patients 
at high risk and those at low risk. DNA repair, cell division, 
and cancer pathways were significantly enriched in the 
high-risk group (Figure 5C,5D). The above findings suggest 
that metabolic activity and drug metabolism may be the 
underlying mechanisms behind the predictive ability of our 
DRGs-based signature for HCC patient prognosis.

DRGs association with TMB

The high-risk group had significantly higher frequencies of 
somatic mutations than the low-risk group, particularly in 
TP53 (41% vs. 17%), CSMD3 (13% vs. 4%), and ZNF831 
(6% vs. 1%) (Figure 6A,6B). The high-risk patients had 
higher TMB levels than the low-risk patients (Figure 6C). 
Following the integration of the TMB scores, the HCC 
patients from TCGA were categorized into four groups. 
The survival analysis demonstrated that patients with a low 
TMB and a low risk had a significant survival advantage, 
followed by patients with a high TMB and a low risk, while 
patients with a high TMB and a high risk had the worst 
survival prospects. The group with a low TMB and a low 
risk had a significant survival disadvantage (Figure 6D). The 
disparity in the TMB between the two groups could provide 
insights for future treatment strategies.

Assessment of TME and forecasting immunotherapy

Tumor growth, response to therapy, and clinical outcomes 
are all significantly affected by stromal cells and immune 
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Figure 3 Construction and validation of a risk score model related to the effectiveness of the DRGs. (A) A PCA was used to analyze TCGA 
training set, TCGA testing set, entire TCGA set, and external validation set; (B) distribution of risk scores within the cohort; (C) distribution 
of patients’ survival time in the different data sets; (D) heatmap displaying the expression of RPN1, SLC2A1, SLC2A4, and SLC7A11 between 
the high- and low-risk groups; (E) Kaplan-Meier curves for OS in HCC patients stratified by risk score were generated for the training, 
testing, entire, and validation cohort; (F) a time-dependent ROC analysis was performed to predict OS at 1, 3, and 5 years in the different data 
sets. DRGs, disulfidptosis-related genes; PCA, principal component analysis; OS, overall survival; HCC, hepatocellular carcinoma.
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Figure 5 A gene function enrichment analysis was conducted in the HCC subtypes using the GSEA and GSVA methods. (A) The heatmap 
illustrates the activation state of the GO pathways in different risk groups after GSVA processing. (B) The heatmap displays the activation 
state of the KEGG pathways in the risk groups after GSVA processing. Red nodes indicate upregulation, while blue nodes indicate 
downregulation (P<0.05). (C) The GSEA predicted the enriched GO pathways associated with the DEGs in the risk groups. (D) The GSEA 
predicted the enriched KEGG pathways associated with the DEGs in the risk categories (P<0.05). HCC, hepatocellular carcinoma; GSEA, 
gene set enrichment analysis; GSVA, gene set variation analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
DEGs, differentially expressed genes.
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Figure 6 Tumor mutation characteristics were analyzed in different subgroups based on the DRGs. (A,B) The top 20 mutated genes were 
identified in the different risk groups based on the DRGs; (C) the differences in the TMB between the low- and high-risk groups; (D) the 
effects of combining the DRGs risk groups with the TMB on OS was assessed. DRGs, disulfidptosis-related genes; TMB, tumor mutational 
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cells inside the TME (16,17). The violin plot depicts the 
stromal score and immune activity of each sample. We 
observed a relatively higher abundance of stromal cells in 
the high-risk group of DRGs (Figure 7A). Additionally, the 
immune scores of the high-risk group of DRGs were higher 
than those of the low-risk group (Figure 7A). To conduct a 
comprehensive analysis of the immune microenvironment, 
we calculated the infiltration levels of 22 immune cell types 
using “CIBERSORT” package (Aaron, 2015). Figure 7B 

illustrates the immune landscape of the TCGA-LIHC 
samples. Follicular helper T cells, regulatory T (Treg) cells, 
M0 macrophages, M2 macrophages, and quiescent mast 
cells exhibited significant increases in the high-risk DRG 
group, as evidenced by the comparison of immune cell 
profiles. Conversely, memory cluster of differentiation CD4 
T cells, and mast cells were more abundant in the low-risk 
group (Figure 7B). We also investigated the relationship 
between immunocytography and DRGs scores. We found 
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Figure 7 The immune status was compared between different groups. (A) The stromal scores, immune scores, and tumor purity were 
compared between the high- and low-risk groups; (B) a comparative analysis of immune cell infiltration was conducted between the two risk 
categories; (C) the relationship between the risk score and the number of immune cells. *, P<0.05; **, P<0.01; ***, P<0.001.
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that the DRGs score was positively correlated with activated 
M0 macrophages, memory CD4 T cells, and other immune 
cells (Figure 7C). In TCGA cohort, the expression levels of 
multiple immune checkpoints were significantly elevated 
in the high-risk group (Figure 8A), implying that high-
risk patients might benefit more from ICI therapy. The 
heatmap showed that the DRGs were closely related to 
immune checkpoints (Figure 8B). Lastly, IMvigor210 was 
used to validate the prognostic and immunotherapeutic 
efficacy of the risk score (Figure 8C). The effectiveness of 
immunotherapy was enhanced in individuals with low-risk 
scores.

Potential drug screening

The “Oncopredict” package (Maeser, 2021) was used to 
assess the IC50 values of commonly used pharmaceuticals. 
The high-risk group exhibited decreased IC50 values for 
sorafenib, zoledronate, vorinostat, nilotinib, carmustine, 
ruxolitinib, and cyclophosphamide (Figure 9A-9C). We 
further investigated the association between DRGs and 
IC50 using scatterplots (Figure 9B-9D). A lower IC50 value 
indicated greater drug sensitivity and therapeutic efficacy.

ScRNA-Seq analysis

TISCH was employed to evaluate the expression levels of 
DRGs in the tumor immune cells and to investigate the role 
of DRGs in these cells. Figure 10A displays the cells divided 
into 16 clusters, while Figure 10B provides annotations for 
the immune cell types. Both the pie chart and bar chart 
showed that CD4 T conventional cells had the highest 
proportion, followed by CD8 T cells (Figure 10C,10D). 
CD4 T conventional cells , CD8 T cells, CD8 T exhaustion 
cell, T proliferation cell , and Treg cells exhibited high 
expression levels of RPN1 and SLC2A1. Moreover, SLC2A1 
was specifically expressed in Treg cells, while CD8 T 
exhaustion cell, T proliferation cell, and Treg cells showed 
characteristic expression of SLC7A11 (Figure 10E,10F).

Validation of the four DRGs

To experimentally validate our findings, we performed a 
RT-qPCR analysis and observed the differential expression 
of four DRGs between the normal liver cell line (MIHA) 
and HCC cell lines (Hep3B, Huh7, MHCC97H, and 
SNU387). The expression levels of RPN1, SLC2A1, 
SLC2A4, and SLC7A11 were significantly upregulated in 

the HCC cells compared to MIHA cells (Figure 11A-11D).

Discussion

Despite encouraging progress being achieved in the 
detection, treatment, and prevention of HCC, it remains 
a prevalent and malignant disease with a high mortality 
rate and a poor prognosis, resulting in over 500,000 
deaths annually (18,19). HCC represents 90% of all kind 
of liver cancers, and its 5-year survival rate is only 18% 
(1,20). Typically, patients diagnosed with early-stage 
HCC receive standard treatments, including surgical 
resection, radiofrequency ablation, and transarterial 
chemoembolization (21). Chemotherapy resistance is 
widely acknowledged as a leading cause of mortality in 
cancer patients (22,23). Recent diagnostic and therapeutic 
improvements have not improved the prognosis of patients 
with HCC. Thus, innovative medicines and reliable 
biomarkers need to be quickly identified to address this 
issue.

Due to the drug-resistance of tumor cells, researchers 
have focused on programmed cell death mechanisms. 
Disulfidptosis, a novel form of cell death that occurs when 
disulfide are increased in cancer cells, and thus may offer a 
potential therapeutic strategy for cancer (24). Nevertheless, 
the use of immunotherapy as a primary treatment 
approach has challenged the position of sorafenib (25). We 
investigated the influence of disulfidptosis on the immune 
response in HCC. We identified the prognostic features 
of DRGs using TCGA-LIHC data set. Subsequently, we 
corroborated discrepancies in tumor-infiltrating immune 
cells and immune checkpoints using a newly developed 
prognostic signature.

In the study, we confirmed the significance of DRGs in 
HCC through a bioinformatics analysis of RNA-seq and 
scRNA-seq. For the investigation of prognostic indicators 
related to disulfidptosis, we extracted six DRGs from 
TCGA data set. TCGA data set validated the predictive 
value of six DRGs, and four of these genes were used to 
build prognostic signatures to predict the OS of HCC 
patients. Among the six genes, four were identified (i.e., 
RPN1, SLC2A1, SLC2A4, and SLC7A11).

A study has shown that the knockdown of RPN1 in vitro  
inhibits breast cancer cells proliferation, as well as induces 
cell apoptosis via endoplasmic reticulum stress (26).  
SLC2A1 promotes glycolysis, proliferation and migration 
of colorectal cancer (27). The SLC2A4 level is significantly 
correlated with to the prognosis of breast cancer patients (28).  

https://www.sciencedirect.com/topics/immunology-and-microbiology/t-cell-proliferation
https://www.sciencedirect.com/topics/immunology-and-microbiology/t-cell-proliferation
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Figure 9 A drug sensitivity analysis in the high- and low-risk groups was conducted. (A,C) Drug sensitivity was compared between the high- 
and low-risk categories; (B,D) the relationship between risk scores and the responsiveness to drugs was examined.

SOCS2 acts as a bridge, facilitating the transfer of 
ubiquitin to SLC7A11, thereby promoting K48-linked 
polyubiquitination and the subsequent degradation of 
SLC7A11, and this process triggers the onset of ferroptosis 
and enhances radiosensitivity in HCC (29). Nevertheless, 
there is a lack of published studies investigating the 
correlat ion between these four DRGs and HCC. 

Our research may provide valuable insights for future 
experimental investigations.

The four selected genes were used to develop a 
prognostic signature. Patients were allocated to high- and 
low-risk groups based on the median score. The high-
risk group exhibited worse clinical outcomes than the low-
risk group. The DRGs prognostic signature was identified 
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as an independent risk factor for HCC prognosis in the 
multivariate Cox regression analysis. The ROC analysis 
indicated that the signature surpassed conventional clinical 
characteristics in predicting HCC patient survival. Further, 
a nomogram was developed to examine the optimal 
consistency of the 1-, 3-, and 5-year prediction rates. 
The DRGs signature is reliable, accurate, and capable of 
identifying novel biomarkers for future research.

We identified DEGs between the high- and low-
risk groups to investigate the aberrant changes in the 
downstream pathway. The GO and KEGG enrichment 
analysis results showed that the identified DEGs were 
mainly associated with cell cycle, DNA replication, and 
metabolic processes. Further, the GSEA demonstrated 
the significant enrichment of the DEGs in DNA repair, 

cell division, and cancer-related pathways. All of the 
aforementioned enriched pathways were strongly associated 
with the development of malignancies.

There is  increasing evidence that immune cel l 
infiltration is crucial to the initiation and progression of 
cancer, leading to adverse effects on clinical prognosis 
and treatment efficacy (30,31). This study found a 
strong correlation between disulfidptosis and the extent 
of immune cell infiltration in HCC, which adds to the 
importance of our findings. The expression of DRGs was 
found to be significantly correlated with the abundance of 
follicular helper T cells, Treg cells, M0 macrophages, M2 
macrophages, and resting mast cells.

T helper (Th) cells play a crucial role in immune 
regulation, and the balance between Th1 and Th2 subsets 
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is tightly controlled under physiological conditions (32).  
Imbalances in the Th1/Th2 ratio occur when the 
production of Th2 cytokines is elevated, leading to a 
shift towards a Th2-dominant state (33). Numerous 
malignancies, such as HCC, lung cancer, and gastric cancer, 
exhibit a Th1/Th2 imbalance marked by an abundance of 
Th2 cells, possibly contributing to tumor immune escape 
mechanisms (34). Through immune monitoring and 
immune evasion mechanisms, the human immune system 
plays a vital role in cancer progression (35,36).

The TME is primarily characterized by the presence of 
M2-polarized tumor-associated macrophages that secrete 
immunosuppressive cytokines and facilitate angiogenesis, 
tumor growth, and metastasis (37,38). Consistent with 
previous findings, our study discovered a positive correlation 
between the expression of DRGs and the infiltration of M0 
macrophages and Th cells in HCC. Lastly, a single-cell data 
analysis was carried out to evaluate the expression of DRGs 
in immune cells. The correlation between disulfidptosis and 
immune cell infiltration, along with expression patterns and 
prognostic significance, indicated a potential mechanism 
involving collaborative interactions between Th cells and 
macrophages in the development of HCC.

Our  s tudy  ident i f i ed  d i s t inc t  immunolog i ca l 
characteristics in two risk groups, suggesting the potential 
for individualized immunotherapy and targeted therapy 
based on these characteristics. Further, we assessed drug 
sensitivity based on disulfide-linked genes in HCC patients. 
Accurate predictions could streamline drug discoveries 
and development processes (39), while providing a 
comprehensive understanding of drug mechanisms of  
action (40). We also conducted in vitro studies to confirm 
the levels of DRGs expression in HCC cells.

Despite the fact that our study discovered the possible 
significance and the mechanism of disulfidptosis in HCC 
progression, it is essential to acknowledge its limitations. 
First, the functional evaluation of disulfidptosis was 
performed using a vitro model, which has not been validated 
in vivo; thus, further research is required. Second, the 
expression of disulfidptosis should be validated in cells to 
mitigate potential errors associated with the use of publicly 
available data sets. Third, beyond disulfidptosis, other 
cell death mechanisms, including apoptosis, ferroptosis, 
necroptosis, and cuproptosis, are intricately linked to liver 
cancer and warrant further investigation. Fourth, the model 
we have developed is based on some DRGs genes, but the 
potential of other DRGs in liver cancer research remains to 
be investigated. This study demonstrated that disulfidptosis 

has a regulatory effect on the cell cycle and immunological 
invasion; however, the underlying molecular mechanisms 
have yet to be explored.

Conclusions

In this study, we examined the expression of DRGs in HCC. 
A disulfidptosis model was developed to enhance prognostic 
risk stratification. Further, we conducted a comprehensive 
analysis of the clinical characteristics, risk score, immune 
cell infiltration, immune microenvironment, drug 
sensitivity, and experimental validation of four DRGs to 
assess their effect on HCC. In conclusion, we investigated 
the prognostic value of DRGs and their implications for 
immunotherapy in patients with HCC.
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