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Background: Colorectal cancer is one of the top five malignant tumors in the world in terms of morbidity 
and mortality. Numerous long non-coding RNAs (lncRNAs) are specifically expressed in tumours and can 
affect various types of human cancer by participating in competitive endogenous RNA (ceRNA) regulatory 
networks. However, the specific mechanisms and complex networks of ceRNA regulatory patterns in colon 
adenocarcinoma (COAD) remain unclear. 
Methods: Using The Cancer Genome Atlas (TCGA) database, we identified the differentially expressed 
lncRNA, microRNA (miRNA), and messenger RNA (mRNA) between colon cancer and normal tissues, as 
well as between groups with high and low CEACAM5 expression. Then, we constructed CEACAM5-related 
ceRNA networks, established the key lncRNA-miRNA-mRNA regulatory axis, and explored the biological 
mechanisms of this axis and its clinical significance in colon cancer from multiomic aspects.
Results: We constructed a ceRNA network of 18 lncRNAs, 177 miRNAs, and 25 mRNAs associated 
with CEACAM5 and finally established the key LCMT1-AS2/miR-454-3p/ribosomal protein S6 kinase A5 
(RPS6KA5) axis associated with overall survival. Subsequent investigations have indicated that this regulatory 
axis could potentially participate in the progression of COAD and exert influence on the therapeutic 
outcomes of chemotherapy and immunotherapy. It may be involved in the PI3K-Akt signaling pathway and 
may modify the tumor immune microenvironment and influence the course of COAD. Additionally, it may 
be related to ferroptosis, N6-methyladenosine (m6A) methylation, and tumor stemness and interfere with 
the sensitivity of tumor cells to 5-fluorouracil and immunotherapy. 
Conclusions: The LCMT1-AS2/RPS6KA5 axis may be instrumental in tumor progression, potentially 
acting as a prognostic biomarker and therapeutic target.
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Introduction

According to the Global Cancer Statistics 2020, the 
morbidity of colorectal cancer (CRC) ranks as the third 
highest worldwide, while its mortality rate is the second 
leading cause of oncological fatalities globally (1). 
CEACAM5 encodes a cell surface glycoprotein, which 
represents the founding member of the carcinoembryonic 
antigen (CEA) protein family. CEA is synthesized in the 
cytoplasm and then secreted through the cell membrane 
into the extracellular space, entering the surrounding body 
fluids. CEA levels in normal adult colonic tissues and sera 
are usually low, but inflammatory responses and multiple 
solid tumors can lead to elevated serum CEA level (2,3). 
Serum CEA has been utilized as a broad-spectrum tumor 
marker and therapeutic target for various solid tumors, 
including CRC (4,5). Furthermore, CEACAM5 plays a 
role in promoting the development of colon cancer as a 
homophilic or specific adhesion molecule (6) and indirectly 
influences colon cancer development through unique 
characteristics recognized by the immune system (7). 
Mutated CEACAM5 can promote CRC carcinogenesis by 
modifying the gut microbiota (8).

Long non-coding RNAs ( lncRNAs) have no or 
limited protein-coding capacity. Numerous lncRNAs are 

dysregulated in various types of cancer and are associated 
with cell proliferation, migration, apoptosis, angiogenesis, 
drug resistance, and poor prognosis (9). However, 
the functions of most lncRNAs remain unclear. The 
competitive endogenous RNA (ceRNA) hypothesis, which 
reveals a new pattern of gene expression regulation (10), 
provides a pathway for predicting the noncoding function of 
any uncharacterized RNA transcript (11). Certain lncRNAs 
can function as ceRNAs, harboring the same microRNA 
(miRNA) response elements as messenger RNAs (mRNAs). 
Consequently, they establish a competitive interaction 
for the same type of miRNAs. In this manner, lncRNAs 
indirectly modulate the expression levels of mRNAs, 
thereby orchestrating cellular functions (12). For instance, 
the pseudogene PTENP1 functions as a miRNA sponge 
to modulate the expression of PTEN, which plays a role in 
many cancer pathways (13). 

Elucidating the molecular mechanisms of the development 
and progression of colon cancer and identifying promising 
biomarkers are critical to the identification of novel 
therapeutic targets and improvement of patient outcomes (14). 
Considering the critical role of CEACAM5, we endeavor 
to construct a CEACAM5-associated ceRNA network 
utilizing bioinformatics techniques, with the objective of 
identifying potential promising biomarkers or therapeutic 
targets. First, the clinical and gene-expression data of colon 
adenocarcinoma (COAD) in The Cancer Genome Atlas 
(TCGA) were used in identifying differential genes for 
colon cancer and normal tissue s and for CEACAM5 high- 
and low-expression groups. Then, a database software was 
used in predicting lncRNA-miRNA and miRNA-mRNA 
binding pairs, and lncRNA-miRNA-mRNA triple regulatory 
networks were constructed. Prognostic and correlation 
analyses were then performed on clinical pathological factors 
in the ceRNA regulatory networks, and the key LCMT1-
AS2/ribosomal protein S6 kinase A5 (RPS6KA5) regulatory 
axis was determined. Finally, the biological mechanism of 
the LCMT1-AS2/RPS6KA5 axis and its possible clinical 
significance in colon cancer were explored from a multiomic 
perspective (Figure 1). We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jgo.amegroups.com/article/view/10.21037/jgo-24-43/rc).

Methods

Data preparation and management

We downloaded the sequencing data of patients with 
COAD and clinical data from TCGA (https://portal.gdc.
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cancer.gov/) database. We obtained data from the University 
of California Santa Cruz (UCSC) Xena browser (http://
xena.ucsc.edu) and compared them with healthy tissues. 
The somatic mutations of TCGA-COAD were downloaded 
and visualized using the maftools R package (15). The gene 
expression profiles of GSE10950 were extracted from the 
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) for the verification of the analysis results. 
The Cancer Cell Line Encyclopedia (CCLE; https://
portals.broadinstitute.org/ccle) and the Human Protein 
Atlas (HPA; http://www.proteinatlas.org/) databases were 
used in verifying gene expression in tumor cell lines at the 
protein level. The genomic features were studied using 
the cBioPortal database (http://www.cbioportal.org/). The 
study was conducted in accordance with the Declaration of 

Helsinki (as revised in 2013).

Identification of differential genes

Differentially expressed genes (DEGs) were identified 
using the DESeq2 (version 1.26.0) R package (16). Volcano 
plots and heatmaps were plotted using ggplot2 (version 
3.3.3) and ComplexHeatmap R (version 2.2.0) packages, 
respectively. All survival analyses were conducted using the 
Cox proportional hazard model with R survival package 
(version 3.2.10).

Establishment of CEACAM5-associated ceRNA networks

According to the ceRNA hypothesis, lncRNAs in the 
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Figure 1 Flowchart of ceRNA construction and analysis. COAD, colorectal adenocarcinoma; TCGA, The Cancer Genome Atlas; OS, 
overall survival; lncRNAs, long non-coding RNAs; mRNA, messenger RNA; DE, differentially expressed; miRNA, microRNA; ceRNA, 
competitive endogenous RNA; m6A, N6-methyladenosine.
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cytoplasm can serve as natural sponges to adsorb miRNAs, 
thereby indirectly regulating mRNA abundance and 
affecting protein levels (12). First, we predicted the target-
gene miRNAs (threshold =0.7) of lncRNAs by using 
LncBase Predicted v.2 (http://www.microrna.gr/LncBase/) 
and then predicted the intersection of the resulting miRNAs 
with differentially expressed miRNAs (DEmiRNAs). 
Second, the target gene mRNAs of miRNAs were predicted 
using miRWalk V3 version (17), which was required to 
satisfy miRDB (18,19) and miRTarBase (20). Similarly, 
the predictions were intersected with differentially 
expressed mRNAs (DEmRNAs) and overall survival (OS)-
related mRNAs. Finally, the resulting miRNA-mRNA 
and lncRNA-miRNA pairs were integrated for ceRNA 
network construction, and the networks were plotted using 
Cytoscape software (https://cytoscape.org/).

Functional mechanism study

Taking the median expression of RPS6KA5  as the 
cutoff, we divided TCGA-COAD patients into high- 
and low-expression groups. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis [threshold: P<0.05 or false 
discovery rate (FDR) <0.05] was performed using the 
R clusterProfiler package (version 3.18.0) (21). Further 
functional mechanism studies were performed. Ferroptosis 
and ferroptosis-related genes (FRGs) can exert oncogene 
and tumor suppressor effects on various cancer types (22), 
and most FRGs are abnormally expressed in multiple cancer 
types (23). In our study, 24 FRG expression differences 
were compared between COAD tissues and normal colon 
tissues, and between subgroups with different expression 
levels of RPS6KA5 in COAD patients. Furthermore, we 
evaluated the expression of m6A writers, erasers, and readers 
in the subgroup with the lowest RPS6KA5 expression 
levels and the subgroup with the highest expression levels. 
Malta et al. calculated DNA methylation-based stemness 
index (mDNAsi) and mRNA expression-based stemness 
index (mRNAsi) by using a logistic regression machine 
learning algorithm to reflect the tumor stemness, and the 
two stemness indexes exhibited excellent consistency in 
most tumors (24). We calculated mRNAsi and compared 
the tumor stemness of the two groups. The Genomics of 
Drug Sensitivity in Cancer database (GDSC; https://www.
cancerrxgene.org/) was used for susceptibility analysis. We 
then calculated the half-maximal inhibitory concentration 
(IC50) values of 5-fluorouracil (5-FU) for each sample (all 

parameters were kept as default) through ridge regression 
by using the pRRophetic R package (25) and compared the 
two groups.

Immune infiltration and immune scores

The ESTIMATE R package (version 1.0.13) (26) was 
used in estimating the Immune, Stromal and ESTIMATE 
scores of the tumor microenvironment for each tumor 
sample, and then their correlation with gene expression 
levels was analyzed using Pearson correlation. Using the 
Tumor IMmune Estimation Resource (TIMER; http://
timer.cistrome.org/) database, we analyzed the relationships 
between levels of immune cells infiltration and gene copy 
numbers in the ‘SCNA’ module between several immune 
cells and gene expression in the ‘Gene’ module and between 
immune cells infiltration level and COAD prognosis.

Statistics analysis

All survival analyses were performed using log-rank test and 
Cox regression analysis with R survival package (version 
3.2.10). Wilcoxon rank sum test was used in comparing 
two groups, and Kruskal-Wallis test was performed in 
comparing more than two groups. All statistical analyses 
were conducted in R (R version 3.6.3). All hypothesis tests 
were bilateral, and the difference was considered to be 
statistically significant when P<0.05.

Results

Expression and prognostic value of CEACAM5 in colon 
cancer

CEACAM5 expression level was significantly increased in 
CRC and significantly higher in other solid tumors, such 
as lung adenocarcinoma, lung squamous-cell carcinoma, 
pancreatic cancer, and gastric cancer, than that in normal 
tissues (Figure 2A). Immunohistochemical images obtained 
from the HPA database also confirmed elevated CEACAM5 
expression in colon cancer tissue (Figure 2B). To determine 
whether the gene was associated with prognosis, Cox 
regression was used in analyzing the correlation between 
genes and OS, disease-specific survival (DSS), and 
progression-free interval (PFI). The results suggested that 
the CEACAM5 high-expression group had better OS, DSS, 
and PFI (Figure 2C) than the low-expression group, contrary 
to the prognostic predictive effect of serum CEACAM5 on 

http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2/index-predicted
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://timer.cistrome.org/)
http://timer.cistrome.org/)
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colon cancer (27,28).
To understand the mechanisms underlying the 

abnormally high expression of CEACAM5 in colon cancer 
tissues, we analyzed the genetic mutations and copy 
numbers of CEACAM5 in the TCGA-COAD dataset (594 
patients) on cBioPortal (Figure S1). The copy number 
value of CEACAM5 was positively correlated with mRNA 

expression (Spearman r=0.18; P<0.05). Increased gene copy 
number may be one of the main mechanisms causing the 
upregulation of CEACAM5 in CRC.

Identification of DEGs

Given the important role of CEACAM5 in colon cancer, 
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the next steps were to construct a lncRNA-miRNA-
mRNA triple regulatory network and to explore its possible 
clinical value. DEGs were identified in the high- and low-
expression groups of CEACAM5 and between the COAD 
and para-tumor tissue samples from the datasets in TCGA. 
The threshold for lncRNA was set at |log2[fold change 
(FC)]| >1.5 and adjusted P value (P.adj) <0.05; miRNA 
threshold was set at |log2(FC)| >1 and P.adj <0.05; miRNA 
threshold was set at |log2(FC)| >0.7 and P.adj <0.05.

Samples with high CEACAM5 expression were 
compared with samples with low CEACAM5 expression. 
We identified 1,845 differentially expressed lncRNAs 
(DElncRNAs; 1 upregulated and 1,844 downregulated), 
225 DEmiRNAs (0 upregulated and 225 downregulated), 
and 2,531 DEmRNAs (108 upregulated and 2,423 
downregulated; Figure S2A-S2C). Paired differential 
analysis comparing COAD and matching normal colon 
tissues identified 2,774 DElncRNAs (2,289 upregulated 
and 485 downregulated), 148 DEmiRNAs (132 upregulated 
and 16 downregulated), and 7,561 DEmRNAs (3,980 
upregulated and 3,581 downregulated; Figure S2D-S2F).

Construction of CEACAM5-associated ceRNA network

Univariate analysis of clinical and RNA-sequencing 
(RNAseq) data from the TCGA-COAD cohort (29) was 
performed using a Cox proportional risk regression model. 
With P<0.05 as the threshold, 464 lncRNAs and 1,479 
mRNAs were identified as related to OS. Subsequently, 
464 lncRNAs were intersected with the 1,845 DElncRNAs 
and 2,774 DElncRNAs determined from the previous 
analysis for production of 20 lncRNAs, which were entered 
into the LncBase database. MiRNAs bound to them were 
predicted (threshold =0.7). The resulting 212 miRNAs 
were intersected with 225 DEmiRNAs for the production 
of 177 miRNAs. Then, miRWalk was used in predicting 
miRNA target genes. The prediction results of miRDB and 
miRTarBase were used simultaneously, and 1,140 mRNAs 
were obtained. These mRNAs were then intersected with 
7,561 DEmRNAs and 1,479 OS-associated mRNAs for the 
production of 25 mRNAs. Afterwards, the ceRNA networks 
of 18 lncRNAs, 177 miRNAs, and 25 mRNAs were 
visualized using Cytoscape (Figure S3).

The lncRNA LCMT1-AS2 might bind to abundant 
miRNAs as a ceRNA, and thus we constructed LCMT1-
AS2-162miRNA-20mRNA networks  (Figure  3A ) . 
Correlation analyses between LCMT1-AS2 and each mRNA 
revealed that LCMT1-AS2 was significantly associated with 

RPS6KA5, ABCB5, PRRT2, and BAHD1 (Pearson r>0.4, 
Figure 3B).

We obtained four LCMT1-AS2 regulator axes, namely, 
miR-4306/PRRT2, miR-4446-5p or miR-454-3p/RPS6KA5, 
miR-4676-5p/ABCB5 and miR-506-3p/BAHD1. Given that 
the cell localization of lncRNAs determined the underlying 
mechanisms, the subcellular localization of LCMT1-
AS2 was analyzed using LNCipedia (https://lncipedia.
org/) and lncLocator (http://www.csbio.sjtu.edu.cn/bioinf/
lncLocator/). LCMT1-AS2 had five transcripts primarily 
located in the cytoplasm and cytosol (Table 1).

Clinical significance of the LCMT1-AS2 regulatory axis in 
COAD

To clarify the clinical significance of the ten genes obtained 
from the above analysis in COAD, we adopted multi-omics 
methods to explore them in subsequent studies. First, we 
evaluated the expression of the genes in the tumor tissues 
of patients with COAD. MiR-4676-5p was significantly 
downregulated in the COAD tissues compared with 
adjacent tissues, whereas miR-4446-5p expression did 
not change significantly. MiR-454-3p, miR-506-3p, and 
miR-4306 exhibited extremely low levels of expression 
in eight adjacent non-cancerous tissues, but were present 
in higher levels in colon cancer tissues. LCMT1-AS2, 
RPS6KA5, PRRT2, ABCB5, and BAHD1 were significantly 
underexpressed in the COAD tissues in contrast to their 
expression in normal colon tissues (Figure 4A). 

Cox regression analysis then revealed that patients 
with COAD in the high LCMT1-AS2, ABCB5, PRRT2, 
or BAHD1 group had poorer OS than those in the low-
expression groups, whereas the RPS6KA5 low-expression 
group had poorer OS and miR-454-3p and miR-4676-
5p expression levels were independent of OS (Figure 4B). 
Owing to the extremely low expression of more than half of 
the specimens, the correlations of miR-506-3p, miR-4306, 
and miR-4446-5p with OS was not analyzed. 

Correlation analysis between gene expression levels and 
clinicopathological parameters was subsequently performed. 
Wilcoxon rank-sum test analysis showed that miR-454-
3p expression was significantly associated with lymphatic 
invasion and perineural invasion and independent of 
gender, T stage, N stage, distant metastasis, pathological 
stage, and serum CEA expression level. MiR-4676-5p was 
associated with distant metastasis and lymphatic invasion 
and was not associated with other clinical factors. RPS6KA5 
expression was related to tumor-node-metastasis (TNM) 

https://cdn.amegroups.cn/static/public/JGO-24-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-43-Supplementary.pdf
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
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stage, pathological stage, and lymphatic invasion. PRRT2 
expression was significantly associated with N staging and 
pathological grading (Figure S4). LCMT1-AS2, ABCB5, 
or BAHD1 expression level was not correlated with clinical 
pathological factors.

A significant positive correlation between LCMT1-AS2 
and RPS6KA5 was found (Figure 3B; Spearman r=0.58, 
P<0.05), and both were correlated with the OS of patients 
with COAD. Alternatively, we detected significantly 
high expression of miR-454-3p and low expression of 
RPS6KA5 in COAD tissues, and both were related to 

clinicopathological factors. Therefore, the LCMT1-AS2/
miR-454-3p/RPS6KA5 axis was finally established. To 
understand the mechanism of action of this regulatory 
axis in colon cancer, we performed a detailed analysis of 
RPS6KA5.

Expression validation of RPS6KA5 and enrichment 
analysis

Independent cohort data (GSE10950: 24 pairs of COAD 
samples and paracancerous samples) presented within 
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mRNAs within the ceRNA networks. (A) LCMT1-AS2-162miRNA-20mRNA regulatory networks. (B) Correlation analysis of LCMT1-AS2 
with 20 mRNAs. FPKM, fragments per kilobase of exon per million fragments mapped; ceRNA, competitive endogenous RNA; miRNA, 
microRNA; mRNA, messenger RNA.

Table 1 Cell localization of five transcripts of LCMT1-AS2

Subcellular locations (score) LCMT1-AS2:1 LCMT1-AS2:2 LCMT1-AS2:3 LCMT1-AS2:4 LCMT1-AS2:5

Cytoplasm 0.234449659 0.265325317 0.762889736 0.492690767 0.234449659

Nucleus 0.087777402 0.098903241 0.176458993 0.383300021 0.087777402

Ribosome 0.238028817 0.241641621 0.010304191 0.02009132 0.238028817

Cytosol 0.417439425 0.370390729 0.044421524 0.080425189 0.417439425

Exosome 0.022304697 0.023739093 0.005925556 0.023492704 0.022304697

https://cdn.amegroups.cn/static/public/JGO-24-43-Supplementary.pdf
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10950
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Figure 4 Expression level and prognostic value of ten hub genes. (A) Differential expression of ten genes in COAD and normal colonic 
tissues in the LCMT1-AS2 regulatory axis. (B) Kaplan-Meier survival curve. COAD, colorectal adenocarcinoma; HR, hazard ratio.

GEO database provided evidence of the downregulation of 
RPS6KA5 expression in cancer tissues (Figure 5A). Similarly, 
the representative images of immunohistochemical staining 
from the HPA database suggested that RPS6KA5 had low 
expression level in the colon cancer tissues (Figure 5B). 
Moreover, the expression levels of RPS6KA5 in various 
malignant tumor cell lines (Figure S5) and CRC cell lines 
were queried in CCLE database (Figure S6).

Figure 5C shows the somatic mutation landscape in 
TCGA-COAD cohort, with a mutation rate of about 2% 
in RPS6KA5 and a higher frequency of somatic mutations 
in the RPS6KA5 high-expression group. The mutation 
types, structural variation, and copy number alterations 
(CNAs) of RPS6KA5 for 594 CRC patient samples from 
TCGA database were queried in the cBioPortal database  
(Figure 5D,5E). A significant positive association was found 
between the copy number value of RPS6KA5 and mRNA 
expression (Spearman r=0.37; P<0.05).

Differential expression analysis was performed on the 
RPS6KA5 high-expression and low-expression groups 

[|log(FC)| >1.5; Figure 6A,6B]. Subsequently, 170 
upregulated genes and 29 downregulated genes were 
subjected to enrichment analysis (Figure 6C). The two 
gene sets were mostly enriched in the PI3K-Akt signaling 
pathway. 

Analysis of functional mechanism related to RPS6KA5

Patients with COAD were evenly divided into four 
groups according to their RPS6KA5 expression levels 
(Figure 7A). The top 25% group (RPS6KA5high25%) had 
the longest median OS (7.1 years), and the bottom 25% 
group (RPS6KA5 low25%) had the shortest median OS  
(5 years; Figure 7B). The areas under the receiver operating 
characteristic (ROC) curve (AUCs) for predicting 1-, 3- and 
5-year survival probability were 0.542, 0.584, and 0.644, 
respectively (Figure 7C).

Ferroptosis 
Ferroptosis is an iron-mediated regulatory cell death and 

https://cdn.amegroups.cn/static/public/JGO-24-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-43-Supplementary.pdfc/public/JGO-23-43-Supplementary.pdf
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has the dual role of promoting and inhibiting tumors during 
tumorigenesis. It affects the efficacy of chemotherapy, 
radiotherapy, and immunotherapy (30). We compared the 
expression levels of 24 FRGs in the RPS6KA5high25% and 
RPS6KA5low25% groups to determine whether RPS6KA5 is 
associated with ferroptosis. Wilcoxon test suggested that 
the expression of 16 FRGs differed significantly between 

the two groups (Figure 8A), indicating that RPS6KA5 is 
involved in regulating ferroptosis in colon cancer.

M6A methylation 
M6A methylation is one of the most common epigenetic 
modifications in mRNA. Enzymes involved in m6A 
modification can cause various diseases, including 

Figure 5 The aberrant expression and genetic alteration of RPS6KA5 in COAD. (A) GEO: the GSE10950 cohort verified that RPS6KA5 
expression was downregulated in colon cancer tissues (red represents upregulated genes, blue represents downregulated genes, and 
grey represents non-significant genes). (B) Immunohistochemical staining images in the HPA database suggested that RPS6KA5 was 
underexpressed in COAD tissues (1 and 2 are normal colon tissues, https://www.proteinatlas.org/ENSG00000100784-RPS6KA5/tissue/
colon#img; 3 and 4 are COAD tissues, https://www.proteinatlas.org/ENSG00000100784-RPS6KA5/pathology/colorectal+cancer#img). (C) 
Oncoplot shows the somatic landscape of TCGA-COAD cohort. Genes are arranged according to their mutation frequency, while samples 
are sorted by disease histology, as denoted in the annotation bar (at the bottom). Side bar graph displays the −log10-transformed q-values, 
as estimated using MutSigCV. Waterfall plot displays the mutation information of each gene in each sample, where various mutation types 
are represented by different colors at the bottom with specific annotations. The barplot above the legend displays the number of mutation 
burdens. (D) Relationship between RPS6KA5 genomic alterations and mRNA expression in the TCGA-COAD cohort of the cBioPortal 
database. (E) RPS6KA5 copy number was positively correlated with mRNA expression. P.adj, adjusted P value; RPS6KA5, ribosomal protein 
S6 kinase A5; VUS, variant of uncertain significance; mRNA, messenger RNA; COAD, colorectal adenocarcinoma; GEO, Gene Expression 
Omnibus; HPA, Human Protein Atlas; TCGA, The Cancer Genome Atlas; MutSigCV, Mutation Significance in Cancer Version. 
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Figure 6 Differential expression analysis and enrichment analysis. (A,B) Differential gene heat map (A) and volcano map (B) of RPS6KA5 
high- and low-expression groups. (C) KEGG and GO enrichment analysis of differentially up-regulated (top two figures)/down-regulated 
(bottom two figures) genes between RPS6KA5 high/low group. In the enrichment result, P<0.05 or FDR <0.05 is considered to be a 
meaningful pathway. G1, high expression group of RPS6KA5; G2, low expression group of RPS6KA5; RPS6KA5, ribosomal protein S6 
kinase A5; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; FDR, false discovery rate.
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Figure 7 Association between expression of RPS6KA5 and prognosis in COAD. (A) From top to bottom: gene expression curves, survival 
status plots, and gene expression heat maps for different groups. (B) Survival curves of different subgroups. (C) RPS6KA5 time-dependent 
ROC plots predicting 1-, 3-, and 5-year total survival. RPS6KA5, ribosomal protein S6 kinase A5; AUC, area under the curve; CI, confidence 
interval; COAD, colon adenocarcinoma; ROC, receiver operating characteristic. 

tumors (31). Herein, we found that compared with the 
RPS6KA5 low25% group, the RPS6KA5high25% group had  
16 genes correlated with the three types of regulatory 
enzymes (m6A writers, readers, and erasers) with high 
expression levels. Only RBM15B, YTHDF1, IGF2BP1, and 
IGF2BP2 were not expressed differently between the two 
groups (Figure 8B).

Tumor stemness 
Cancer progression is accompanied by the gradual loss of 
tumor cell differentiation phenotype and the acquisition 
of stem cell-like characteristics (24), and the stemness of 
cancer cells is closely related to tumor proliferation and 
metastasis and drug resistance (31). Based on the one-class 

logistic regression (OCLR) algorithm (24), the degree of 
stemness of cancer samples can be assessed by calculating 
their stemness index. We found that the mRNAsi of 
COAD tissues was markedly increased compared with 
that of normal colon tissues, and the mRNAsi of the 
RPS6KA5high25% group was significantly higher than that of 
the RPS6KA5low25% group (Figure 8C).

Chemotherapy 
5-FU is one of the most commonly used chemotherapy 
drugs for colon cancer. Using the GDSC database, we 
determined whether RPS6KA5 expression levels affected the 
response of patients with colon cancer to drug therapy with 
5-FU. The IC50 of 5-FU in each sample was calculated, 
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Figure 8 Analysis of functional mechanism related to RPS6KA5. (A) Box diagram showing the expression differences in the RPS6KA5high25% 
and RPS6KA5low25% group of FRGs. (B) m6A methylation regulatory enzyme-related genes. (C) mRNAsi dryness index. (D) 5-FU IC50 
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and the IC50 value distributions of the RPS6KA5high25% and 
RPS6KA5low25% groups were compared. We found that the 
RPS6KA5low25% group had significantly higher IC50 values 
that the RPS6KA5high25% group (Figure 8D). This result 
indicated that the RPS6KA5low25% group responded more 
poorly to 5-FU treatment.

Immune infiltration analysis

Based on the TIMER database, ‘Gene’ module analysis 
suggested that RPS6KA5 expression was negatively 
correlated with tumor purity. After purity correction, 
RPS6KA5 expression was found to be positively correlated 
with the infiltration abundance of B cells, CD8+ T cells, 
CD4+ T cells, macrophages, neutrophils, and dendritic cells 
in COAD (Figure 9A). ‘sCNA’ module analysis showed the 
difference in the immune cell infiltration ESTIMATE level 
among tumors with different CNA status of RPS6KA5 in 
COAD. As shown in Figure 9B, the arm-level deletion of 
RPS6KA5 was largely responsible for the infiltration levels 

of various immune cells types. The stromal, immune, and 
ESTIMATE scores of tumor samples were calculated. 
Correlation analysis showed that all three were positively 
correlated with the expression levels of RPS6KA5 (Figure 9C),  
suggesting that the higher proportion of non-tumor cells 
increased with the expression level of RPS6KA5. This effect 
lowered tumor purity in COAD tissues. 

Relationship between immunotherapy and RPS6KA5 
expression

Immune checkpoint inhibitor (ICI) therapy has emerged 
as an important therapeutic method for patients with 
colon cancer. Currently, programmed cell death protein 
1/programmed death ligand 1 (PD-1/PD-L1) expression 
status, tumor mutational burden (TMB), and microsatellite 
instability (MSI) as effective predictive markers for ICI 
treatment have been extensively studied. We investigated 
whether RPS6KA5 expression affected the efficacy of 
immunotherapy in patients with COAD from multiple 
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Figure 9 Analysis of immune infiltration and prediction of immunotherapy efficacy. (A) RPS6KA5 expression was positively correlated 
with infiltration abundance of several immune cells. (B) Relationship between RPS6KA5 copy number and tumor immune infiltration 
abundance. (C) Evaluation of colon-cancer immune infiltration based on the ESTIMATE algorithm: the stromal score, immune score, and 
comprehensive score were positively correlated with RPS6KA5 expression. (D) No correlation existed between RPS6KA5 expression and 
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aspects. First, our analysis revealed that RPS6KA5 
expression had no correlation with TMB (Figure 9D) 
and MSI (Figure 9E). Second, given that the mechanism 
of immune checkpoint molecules expressed on immune 
cells facilitate tumor cell immune escape by inhibiting the 
function of immune cells (32), we performed corresponding 
analysis. The study revealed that the expression levels of 
the immune checkpoint molecules of CD274 (PD-L1), 
CTLA4, HAVCR2 (Tim-3), PDCD1LG2 (PD-L2), and 
TIGIT were significantly increased in the RPS6KA5high25% 
group, whereas SIGLEC15 expression in RPS6KA5low25% had 
a higher increase rate and the expression levels of LAG3 
(CD223) and PDCD1 (PD-1) had no difference between 
the two groups (Figure 9F). Finally, the tumor immune 
dysfunction and exclusion (TIDE) calculation method (33)  
was used in assessing the likelihood of tumor immune 
escape and predicting response to ICI treatment. Compared 
with the RPS6KA5low25% group, the RPS6KA5high25% group 
had significantly higher TIDE scores (P=0.0045; Figure 9G),  
indicating that the RPS6KA5high25% group had a higher 
possibility of immune escape and a poorer response to ICI 
treatment. 

Discussion

CEACAM5 encodes CEA, a clinical biomarker for CRC, 
and contributes to tumorigenesis as a cell adhesion molecule 
(5,6). Our research identified a significant elevation in 
CEACAM5 expression within CRC tissues, which was found 
to be correlated with the prognostic outcomes of CRC. 
Increasing experimental evidence supports that the ceRNA 
regulatory network plays a role in diverse cancer types 
(34,35). However, the specific mechanisms and complex 
networks of the ceRNA regulatory pattern in COAD remain 
unclear. Given the pivotal role of CEACAM5 in COAD, we 
proceeded to construct the lncRNA-miRNA-mRNA triple 
networks correlated with CEACAM5 and establish a novel 
regulatory axis associated with prognosis in patients with 
COAD. Then, we explored the mechanisms and functions 
of this regulatory axis from a multi-omics perspective and 
attempted to corroborate the ceRNA regulatory pattern of 
lncRNA involvement in COAD.

We set up a ceRNA network of 18 lncRNAs, 177 
miRNAs, and 25 mRNAs associated with CEACAM5 
was constructed. LCMT1-AS2 is located primarily in the 
cytoplasm, thereby meeting the prerequisites for lncRNA-
miRNA interactions. In the prediction results, the ceRNA 
network regulated by LCMT1-AS2 was largest and 

most complex. LCMT1-AS2 was significantly positively 
correlated with RPS6KA5, and the key LCMT1-AS2/miR-
454-3p/RPS6KA5 regulatory axis was finally established 
after further correlation analysis of clinicopathological 
factors and survival analysis. In accordance with the 
ceRNA hypothesis, we speculated that LCMT1-AS2 may 
competitively bind miR-454-3p to miRNA response 
elements, thereby affecting RPS6KA5 expression. In our 
study, the functions and mechanisms of RPS6KA5 were 
analyzed using the bioinformatic method, which indirectly 
reflected the mechanism of action of the regulatory axis of 
LCMT1-AS2/RPS6KA5.

By searching these three genes in PubMed, we found 
that the roles of miR-454-3p and RPS6KA5 in cancer have 
been studied, whereas the mechanism of action of LCMT1-
AS2 is unknown and has not been explored by relevant 
research. MiR-454-3p can play a role as an oncogene in 
cervical cancer, glioma, stomach cancer, pancreatic cancer, 
malignant melanoma, and other solid tumors (36-40). 
Existing research RPS6KA5, also known as MSK1, MSPK1, 
or RLPK, plays a role in CRC. Bile acid upregulates MUC2 
transcription and contributes to carcinogenesis within 
colorectal tissues by activating the EGFR/PKC/Ras/Raf-
1/MEK1/ERK/CREB, PI3/Akt/IkappaB/NF-kappaB, and 
p38/MSK1/CREB pathways (41). Vitamin D receptor acts 
as a transcription factor and a nongenomic activator of 
p38MAPK-MSK1 and RhoA-ROCK, assisting 1,25(OH)2D3 
in inhibiting proliferation and promoting the differentiation 
of colon cancer cells (42). Our study found that RPS6KA5 
expression was downregulated in COAD tissues. Its copy 
number was significantly positively correlated with gene 
expression level, and low expression predicted poor OS. 
The abnormal expression of RPS6KA5 may play a role in 
colon cancer through the PI3K-Akt signaling pathway. 
Additionally, we found that most FRGs were highly 
expressed in the RPS6KA5high25% group, and this result 
indicated that the downregulation of RPS6KA5 affects 
ferroptosis and inhibits the progression of colon cancer. 
This result is in line with the observations presented by 
Xie et al. that ferroptosis suppresses the growth of colon 
cancer (43). Several studies have shown that the abnormal 
methylation levels of m6A are associated with stem cell 
differentiation (44), immune response (45), immune cell 
infiltration (46), tumorigenesis, and tumor cell proliferation 
and metastasis (47,48). The present study demonstrated 
that a significant decrease in RPS6KA5 expression may 
lead to a decrease in the m6A methylation modification 
and demodification/modification levels. It has been proven 

https://baike.baidu.com/item/%E5%BA%94%E7%AD%94%E5%85%83%E4%BB%B6/3836468
https://baike.baidu.com/item/%E5%BA%94%E7%AD%94%E5%85%83%E4%BB%B6/3836468
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that the increased expression of YTHDF2, RBMX, and 
RBM15 was correlated with the activation of the PI3K/
Akt/mTOR signaling pathways (49). Combined with the 
results of our KEGG enrichment analysis, the relationship 
between RPS6KA5 expression dysregulation and the PI3K-
Akt signaling pathway was further confirmed. Moreover, 
the mRNAsi index of colon cancer tissues was significantly 
increased compared with that of normal colon tissues and 
was higher in the RPS6KA5high25% group than that in the 
RPS6KA5low25% group. The RPS6KA5low25% group responded 
more poorly to 5-FU therapy possibly because of enhanced 
resistance to 5-FU caused by significantly decreased 
RPS6KA5 expression.

RPS6KA5  may affect the immune infiltration of 
COAD. The downregulation of RPS6KA5 expression was 
accompanied by a significant decline in the infiltrating 
abundance of B cells, CD8+ T cells, CD4+ T cells, 
macrophages, neutrophils, and dendritic cells, decrease in 
the proportion of non-tumor cells, and increase in tumor 
purity in the colon cancer tissues. RPS6KA5 expression 
was not correlated with TMB and MSI. However, 
correlation analysis on immune checkpoint molecules 
and TIDE algorithm showed similar results. That is, the 
RPS6KA5high25% group had a higher likelihood of immune 
evasion and benefit less from ICI treatment.

PD-L1 and PD-1 expression levels weakly predict the 
responses of CRC patients to ICI treatment and are not 
commonly used as clinical predictors; meanwhile, patients 
with high microsatellite instability (MSI-H)/deficient 
mismatch repair (dMMR) CRC are sensitive to ICI 
treatment (50). In summary, significantly decreased RPS6KA5 
expression leads to decreased immune-cell infiltration 
abundance and weakened immune evasion. However, 
whether this change affects colon cancer progression and 
response to ICI treatment requires further study.

Conclusions

An LCMT1-AS2/miR-454-3p/RPS6KA5 axis associated 
with COAD prognosis was established, which may be an 
important prognostic factor predicting the clinical outcome 
of COAD and may contribute to our understanding of 
lncRNA-miRNA-mRNA interactions. There are several 
limitations of this study that are worth discussing. First, 
our study is based on bioinformatics analysis, so the 
binding affinity of lncRNA-miRNA and miRNA-mRNA 
pairs obtained from the database should be verified 
experimentally. Second, more experimental studies on the 

mechanisms and functions of the LCMT1-AS2/miR-454-
3p/RPS6KA5 axis in COAD are imperative. Generally, our 
findings suggest that the LCMT1-AS2/RPS6KA5 axis is a 
promising new candidate for potential prognostic biomarker 
and therapeutic target for COAD, which can be applied to 
facilitate individualized treatment strategies.
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Figure S1 The genetic mutations and copy numbers of CEACAM5 in the TCGA-COAD dataset. (A) CEACAM5 genomic alteration 
of TCGA-COAD in the cBioPortal database. (B) Relationship between CEACAM5 genomic alteration and mRNA expression. (C) 
Relationship between CEACAM5 copy number and mRNA expression. RSEM, RNA-Seq by Expectation-Maximization; VUS, variant of 
uncertain significance; TCGA-COAD, The Cancer Genome Atlas colorectal adenocarcinoma; mRNA, messenger RNA.
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Figure S2 Volcano plots of differential analysis. (A-C) Volcano plots of differential genes between the high- and low-expression groups of 
CEACAM5. (D-F) Volcano plots of differential genes between colon cancer and paracancerous tissues (red represents upregulated genes, 
blue represents downregulated genes, and grey represents non-significant genes). P.adj, adjusted P value; DE, differentially expressed; 
lncRNA, long non-coding RNAs; miRNA, microRNA; mRNA, messenger RNA.
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Figure S3 ceRNA networks diagram of 18 lncRNA-177 miRNAs-25 mRNAs. ceRNA, competitive endogenous RNA; lncRNA, long non-
coding RNA; miRNA, microRNA; mRNA, messenger RNA.
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Figure S4 Correlation analysis between gene expression levels and clinical pathological factors.
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Figure S5 The RPS6KA5 expression level of different cancer cell lines in the CCLE database (the x-axis represents different sample 
groups; the y-axis represents the distribution of gene expression). RPS6KA5, ribosomal protein S6 kinase A5; CCLE, Cancer Cell Line 
Encyclopedia.
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Figure S6 The distribution of RPS6KA5 expression in different colorectal cancer cell lines in the CCLE database (the x-axis represents 
the status of gene expression, the y-axis represents different cell lines, the size of the dots in the figure indicates the level of expression, and 
different colors also signify the level of expression). RPS6KA5, ribosomal protein S6 kinase A5; CCLE, Cancer Cell Line Encyclopedia.


