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Background: The tumor microenvironment (TME) could be critical in carcinogenesis, immune evasion, 
and treatment response. TME-related genes are limited in their ability to predict gastric cancer (GC) 
outcomes. We utilized data from The Cancer Genome Atlas (TCGA) to investigate the functional roles of 
TME-related genes in GC.
Methods: We acquired single-cell data, bulk sequencing data, and clinical characteristics of GC patients 
from the TCGA database. The CD8T cell genes associated with the TME were selected for bioinformatic 
analysis in GC. Tumor classification of GC was established through consistent cluster analysis. We then 
evaluated the prognosis and immune cell infiltration in connection with a CD8T cell-related model for GC.
Results: The single-cell messenger RNA (mRNA) sequencing (scRNA-Seq) dataset of GSE134520 was 
utilized to investigate the pathogenesis and disease-specific cell types in GC. Interestingly, compared to 
healthy tissue, the proportions of CD8Tex cells, malignant cells, and gland mucous increased in GC, whereas 
the proportion of pit mucous decreased in GC. Since CD8Tex cells may play a vital role in pancreatic 
adenocarcinoma (PAAD), based on the 612 differentially expressed genes (DEGs) involved in CD8Tex 
cells, TCGA-GC patients were stratified into low- and high-risk groups. The downregulated DEGs in the 
low-risk G1 group were associated with proteoglycans in cancer, the cGMP-PKG signaling pathway, focal 
adhesion, and cell adhesion molecules (CAMs), whereas the upregulated DEGs were associated with viral 
protein interaction with cytokine and cytokine receptors, the tumor necrosis factor (TNF) signaling pathway, 
the interleukin (IL)-17 signaling pathway, and the chemokine signaling pathway. Combined with univariate 
Cox analysis, we ultimately identified 23 CD8T cell-related prognostic genes: TCIM, AADAC, SLC2A3, 
ZNF331, TSC22D3, CMTM3, ZFP36, VIM, CLDND1, GABARAPL1, SOCS3, RGS1, TCEAL9, RGS2, 
CD59, SPRY1, EMP3, ZEB2, PDE4B, GLIPR1, ERRFI1, and LBH. Using the Cox regression model to 
prioritize the 23 CD8T cell-related genes, we finally selected 7 genes: CXCR4, AADAC, SLC2A3, CMTM3, 
RGS2, CD59, and ZEB2.
Conclusions: CD8T cell-related genes have a strong association with tumor classification and immune 
response in GC patients. A CD8T cell-related signature demonstrated robust prognostic predictive 
performance for GC. Our findings may reveal novel insights into the diagnosis and treatment of GC.
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Introduction

Patients with gastric cancer (GC) usually have a poor 
prognosis because it is often diagnosed at an advanced  
stage (1). GC is characterized by considerable heterogeneity, 
making gastroscopy an imperfect tool for early detection. 
Around 784,000 people worldwide died from GC in 
2018, according to the World Health Organization 
(2,3). Furthermore, it ranks as the fifth most prevalent 
malignancy, with over 1 million new cases reported 
annually (2,3). Despite substantial progress in cancer 
biology, including the identification of risk factors and 
the development of new treatments for GC in the past 
decade, there has been minimal improvement in early 
diagnosis, therapy, prevention, and prognosis prediction (3). 
Therefore, it is crucial to discover new markers for GC.

Recent studies have attracted increased attention 
to the potential role of the tumor microenvironment 
(TME) in carcinogenesis, immune evasion, and treatment 
response (4,5). The TME consists primarily of immune 
cells, stromal cells, endothelial cells, extracellular matrix 
(ECM) molecules, and various cytokines and chemokines 
(4,5). Immune cells and stromal cells have been found to 
be of significant value for the diagnosis and prognosis of 
cancers (4,5). Furthermore, tumor immune cells exhibit 
heterogeneity, functional plasticity, and phenotypic 
plasticity, and can have both pro- and anti-tumorigenic 
effects (6). The precise spatial relationship between different 
subgroups of immune cells and cancer cells is critical 
for predicting tumor behavior (7,8). Many researchers 

acknowledge that the composition of the TME can affect 
treatment responses, including T cells, B cells, neutrophils, 
and macrophages (9-11). Prior research has shown that 
the deletion of cyclic GMP-AMP synthase-stimulator of 
interferon genes (cGAS-STING) causes tumor-associated 
macrophages (TAMs) to shift toward a pro-inflammatory 
subtype and induces apoptosis in GC cells, emphasizing 
the negative effect of STING in TAMs (12). Therefore, 
enhancing our comprehension of the spatial relationships 
between individual cellular and acellular components in 
the TME and uncovering the underlying mechanism will 
enhance the diagnosis and treatment of GC.

The development of single-cell messenger RNA (mRNA) 
sequencing (scRNA-seq) has revolutionized our capability 
to characterize the transcriptional states of thousands of 
individual cells, enabling us to conduct impartial analysis 
of cellular lineages within tissues (13). This technology has 
successfully identified cell types and described complex 
subpopulations within organ tissues such as the pancreas, 
lungs, and various cancers, including melanoma and 
colorectal cancer (13).

In this study, we initially identified the key prognostic 
genes related to CD8T cell in TME using GC scRNA-
seq data and GC tissue transcriptome data. Cluster analysis 
was conducted on GC patients to identify distinct subtypes 
of CD8T cells related to the TME. We also analyzed the 
clinical characteristics, immune infiltration, and differences 
in CD8T cells related to the TME among these subtypes. 
Furthermore, we then developed a risk model to predict 
prognosis and response to immunotherapy and finally 
screened seven genes, which could potentially serve as 
markers and targets for the detection and treatment of GC. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-24-603/rc).

Methods

Single-cell sequencing analysis of GC

To characterize GC TMEs at single-cell resolution, we 
employed the tumor immune single-cell hub2 (TISCH2) 
pipeline (http://tisch.comp-genomics.org/). To annotate 
cell types, we searched the Gene Expression Omnibus 
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(GEO) database for data from the GSE134520 database. 
In TISCH2, each dataset is provided with the results of 
gene set enrichment analysis (GSEA). The GSEA tab uses 
the MAESTRO workflow to perform hallmark pathway 
analysis on genes that are up- or down-regulated between 
clusters (InferCNV method). Each clusters’ differential 
gene expression will be displayed as a heatmap to show the 
pathways that are up- or down-regulated. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Data acquisition from TCGA-GC cohort

A total of 375 mRNA transcriptome profiles, as well as clinical 
data of TCGA-GC patients, were downloaded from the 
TCGA database (https://portal.gdc.cancer.gov/repository).

Identification of CD8T cell-related tumor subtypes in GC

This study was conducted to investigate the relationship 
between CD8T cell-related genes and GC subtypes. We 
conducted consensus cluster analysis using the consensus 
clusterplus package (version 1.54.0) on the TCGA-GC 
cohort. The number of clusters (k), which represents the 
different groupings in the analysis, was set to range from 2 
to 6. We generated heatmaps using the “Pheatmap” package 
(version 1.0.12). We compared survival times among the 
subgroups using Kaplan-Meier analysis.

Identification of differentially expressed genes (DEGs) in 
two GC subtypes 

We detected DEGs among GC clusters using the “DEseq2” 
package in R. We set the cutoff criteria at a P value of 
0.05 and a log2 fold change greater than 1.00. We also 
visualized the DEGs using the “ggplot2” R package. We 
used the “pheatmap” R package (version 1.0.12) to create a 
DEG heatmap. We then performed Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses using the “clusterProfiler” package.

The immune activity of two CD8T cell-related clusters  
in GC

The “immunoeconomics” was employed to investigate 
the immune functionality of two clusters of CD8T cells 

in GC. This approach facilitated a detailed analysis of 
the immune activity associated with these CD8T cell 
clusters. Furthermore, an evaluation of eight immune 
checkpoint genes—namely CD274, PDCD1, PDCD1LG2, 
CTLA4, LAG3, HAVCR2, TIGIT, and SIGLEC15—was 
performed to compare the immune activity across the 
two clusters. Visualization of the data was accomplished 
through the creation of a heatmap and a box plot, utilizing 
the R packages “pheatmap” and “ggplot2”. To assess the 
infiltration of immune cells and the activation of immune 
pathways between the two groups, the Wilcoxon test 
was applied. A P value of less than 0.05 was considered 
indicative of statistical significance.

Identification of prognostic CD8T cell-related genes in GC

Using univariate Cox analysis, we identified genes with 
prognostic values less than 0.05 in patients with GC. Using 
the R package “venn” (v. 1.11; The R Foundation for 
Statistical Computing, Vienna, Austria), a Venn diagram 
was generated. R package “pheatmap” (v. 1.0.12) was used 
to construct the expression heatmap. To identify signaling 
pathways of prognostic genes in GC, we performed KEGG 
pathway enrichment analyses with the clusterProfiler 
package in R.

The development of a prognostic model based on CD8T 
cell-related genes 

The λ condition was established for variables with nonzero 
coefficients, based on the minimum criteria. Using the 
following formula, the risk score was calculated: risk score 
= sum (expression level × corresponding coefficient). The 
median risk scores of TCGA-GC patients were used to 
divide them into low- and high-risk groups. The overall 
survival (OS) times of the different subgroups were 
compared using the R package “survival”. Based on Cox 
proportional hazards, we calculated hazard ratios (HRs) and 
95% confidence intervals (CIs).

Statistical analysis

Survival analysis was conducted to identify prognostic genes 
for GC, with a significance level set at P<0.05. Bilateral 
P values <0.05 were deemed statistically significant for 
multiple testing.

https://portal.gdc.cancer.gov/repository
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Results

Cell types and distributions of GC

The scRNA-Seq dataset from GSE134520 was used in 
this study. Unsupervised hierarchical clustering analysis of 
the scRNA-seq data revealed 22 distinct cell subtypes of 
GC, which differentiated between patients with GC and 
healthy individuals (Figure 1A). Cell clusters in GC, such 
as CD8T cells, dendritic cells (DC), fibroblasts cells, gland 
mucous, malignant cells, mast cells, myofibroblasts cells, pit 
mucous, and plasma cells, were identified using known cell-
type markers (Figure 1B). Furthermore, the distribution of 
cell types was analyzed in both healthy individuals and GC 

patients. The distribution of cell types in pancreatic tissue 
of GC patients compared to healthy individuals included 
varying percentages of CD8Tex cells (6.42% vs. 0.61%), 
DC (0.36% vs. 1.48%), fibroblast cells (3.37% vs. 1.31%), 
malignant cells (2.96% vs. 0.72%), gland mucous (22.62% vs. 
11.19%), mast cells (1.41% vs. 0.23%), myofibroblast cells 
(0.79% vs. 0.11%), pit mucous (57.44% vs. 80.74%), and 
plasma cells (4.63% vs. 3.61%), as shown in Figure 1C,1D. 
Interestingly, the ratio of CD8Tex, malignant cells, and gland 
mucous was higher, consistent with the characteristic feature 
of cancers with an excessive TME containing malignant cells 
and infiltrated immune cells, compared to healthy tissue, 
whereas the ratio of pit mucous decreased in GC.
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GC subtypes based on the CD8T cell-related genes

Despite the close association of CD8T cells with tumor 
development (4-7), the specific role of CD8T cell-related 
genes in GC has yet to be thoroughly investigated. A total 
of 612 DEGs were identified in CD8T cells compared to 
other cell types. Through consensus clustering analysis, 
we classified TCGA-GC patients into different subtypes 
based on the expression of these 612 DEGs (Figure 2A-2C).  
Consistency clustering and principal component analysis 
(PCA) revealed that TCGA-GC patients were effectively 
stratified into 2 clusters when the clustering variable (k) 
was 2 (Figure 2A-2D). A heatmap of TCGA-GC patients 
demonstrated clear separation between the 2 groups 
(Figure 2E). The OS of patients in the low-risk group 1 was 

significantly longer than that of those in the high-risk group 2  
(HR: 0.663, 95% CI: 0.465–0.945; P=0.02; Figure 2F).

Identification of underlying mechanisms between the two 
GC groups 

We identified 1,285 DEGs between the G1 and G2 groups 
using a volcano plot (P value <0.05; |log2 fold change| >1). 
In comparison to G2 group, 34 genes were upregulated and 
1,251 were downregulated in the G1 group. The biological 
roles of the 1,285 DEGs were clarified using KEGG and 
GO enrichment analyses. According to the KEGG analysis, 
34 upregulated genes are mainly involved in viral protein 
interaction with cytokine and cytokine receptor, tumor 
necrosis factor (TNF) signaling pathway, interleukin (IL)-
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17 signaling pathway, and chemokine signaling pathway 
(Figure 3A), whereas 1,251 downregulated genes are 
mainly involved in the cGMP-PKG signaling pathway, 
proteoglycans in cancer, focal adhesion, ECM-receptor 
interaction, and cell adhesion molecules (CAMs) (Figure 3B). 
The GO analysis of the biological process results revealed 
that the upregulated genes were mainly associated with 
monocyte chemotaxis, mononuclear cell migration, positive 
regulation of T cell migration, and humoral immune 
response (Figure 3C), whereas the downregulated genes 
were linked to ECM organization, extracellular structure 
organization, cell-substrate adhesion, and cell–matrix 

adhesion (Figure 3D). Previous studies have demonstrated 
that proteoglycans involved in cancer, focal adhesion, 
ECM-receptor interaction, and CAMs serve as tumor 
markers (14,15). Based on the aforementioned findings, G2 
GC subtypes may exhibit higher migratory and proliferative 
capabilities compared to G1 GC subtypes.

The immune activity of two groups in GC

A comparative analysis of the immune profiles between 
two distinct cohorts of GC patients was conducted, 
revealing significant disparities in immune cell populations. 
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Specifically, the G1 cohort exhibited a reduced presence of 
B cells, CD4+ T cells, endothelial cells, and macrophages 
when contrasted with the G2 cohort (refer to Figure 4A). 
Additionally, the box plots illustrated that the expression 
levels of three genes associated with immune checkpoint 
inhibitors (ICIs), namely HAVCR2, PDCD1LG2, and 
TIGIT, were notably diminished in the G1 GC samples 
compared to those from the G2 cohort (see Figure 4B).

Identification of key CD8T cell-related genes in GC

TCGA-GC patients were analyzed using multivariate Cox 
regression to identify genes associated with poor prognosis 
and clarify their role in CD8T cell function. According 
to this analysis, 842 prognostic genes were identified for 
GC; Figure 5A shows the top 20 prognostic genes. A Venn 

diagram was used to further screen out prognostic genes 
associated with CD8Tex cells (Figure 5B). We eventually 
identified 23 CD8T cell-related prognostic genes: TCIM, 
AADAC, SLC2A3, ZNF331, TSC22D3, CMTM3, ZFP36, 
VIM, CLDND1, GABARAPL1, SOCS3, RGS1, TCEAL9, 
RGS2, CD59, SPRY1, EMP3, ZEB2, PDE4B, GLIPR1, 
ERRFI1, and LBH (Figure 5B). 

The KEGG enrichment of these genes indicated that 
they may play a crucial role in GC via Janus kinase-signal 
transducers and activators oftranscription (JAK-STAT) 
signaling pathway, microRNAs (miRNAs) in cancer, and 
autophagy (Figure 5C). According to the GO analysis of the 
biological process results, most of the upregulated genes 
were involved in regulation of metabolic process, regulation 
of transferase activity, and regulation of cellular protein 
metabolic process (Figure 5D).
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Figure 5 Identification of key CD8Tex cell-related genes in GC. (A) Univariate Cox analysis was used in GC to identify the prognostic 
genes. (B) A Venn diagram was used to screen out the genes associated with CD8Tex cell prognosis. (C) The KEGG enrichment pathways 
of 23 key CD8Tex cell-related genes in GC. (D) The biological process of 23 key CD8Tex cell-related genes in GC. CI, confidence interval; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; JAK-STAT, Janus kinase-signal transducers and activators oftranscription; GC, gastric 
cancer. 
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The development of a prognostic model based on key CD8T 
cell-related genes

Through Cox regression analysis, 23 prognostic genes for 
CD8T cells in GC were selected (Figure 6A). A signature 
consisting of seven genes was developed based on the 
optimal λ value (Figure 6A). The risk score was calculated 
as follows: risk score = CXCR4 expression × (0.1621) + 
AADAC expression × (0.1237) +SLC2A3 expression × 0.1306 
+ CMTM3 expression × 0.2336 + RGS2 expression × 0.2292 
+ CD59 expression × 0.1995 + ZEB2 expression × (−0.4868). 
Based on this gene signature, TCGA-GC patients were 
divided into low- and high-risk groups (Figure 6A). There was 
a higher OS rate for patients with a low-risk score compared 
to those with a high-risk score (HR: 2.299, 95% CI: 1.626–
3.251; P<0.001; Figure 6B). The area under the receiver 
operating characteristic (ROC) curve (AUC) was used to test 
prognostic models. The AUCs were 0.62, 0.708, and 0.707, 
respectively, for 1 year, 3 years, and 5 years (Figure 6C),  
indicating good prognostication with this model.

Discussion

According to a series of studies, TME plays a significant role 
in carcinogenesis, immune evasion, and treatment response 
(4,5). For example, knockout of cGAS-STING leads to the 
polarization of TAMs towards a pro-inflammatory subtype, 
and triggers apoptosis in GC cells (12). Several studies have 
found that the context of TME affects immunotherapy 
responses and chemotherapy benefits, as well as patient 
prognosis (16,17). According to Guo et al., GC cells 
overexpress T cell-positive regulators, which promote T cell 
proliferation (17). Increasing CD8+ T cells infiltration further 
enhanced anti-tumor efficacy of anti-PD-1 in GC (18). Thus, 
T cells for TME might be important in the development 
of GC. However, the relationship between T cells and GC 
remains largely unexplored. 

The CD8+ T cells-related genes were used to group 
divide TCGA-GC patients into two groups (high- and low-
risk). The expression of CD8+ T cells-related genes had a 
positive correlation with prognosis in patients with GC. 
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The immune activity of the low-risk G1 group was lower 
than that of high-risk G2 group. These results suggest 
that GC tumors can be classified into two subgroups based 
on the CD8+ T cells-related genes. A prognostic model 
consisting of seven CD8+ T cells-related genes (CXCR4, 
AADAC, SLC2A3, CMTM3, RGS2, CD59, and ZEB2) was 
developed for patients with GC.

There was a previous article similar to our research. We 
summarized the differences between the previous article and 
our manuscript. However, the most significant difference 
lies in the methods used for selecting genes. In the research 
conducted by Zhu et al., 174 immune-related genes 
were identified, and a novel risk model was subsequently 
developed (19). However, they did not perform any further 
screening of these genes. In our study, combined with 
univariate Cox analysis, we ultimately identified 23 CD8T 
cell-related prognostic genes: TCIM, AADAC, SLC2A3, 
ZNF331, TSC22D3, CMTM3, ZFP36, VIM, CLDND1, 
GABARAPL1, SOCS3, RGS1, TCEAL9, RGS2, CD59, 
SPRY1, EMP3, ZEB2, PDE4B, GLIPR1, ERRFI1, and LBH. 
Moreover, using the Cox regression model to prioritize the 
23 CD8T cell-related genes, we finally selected 7 genes: 
CXCR4, AADAC, SLC2A3, CMTM3, RGS2, CD59, and 
ZEB2. Our findings have the potential to provide novel 
insights into the diagnosis and treatment of GC.

Knockdown of C-X-C chemokine receptor type 4 
(CXCR4) inhibited the malignant phenotypes of the 
cancer stem cells (CSCs) in vitro and curtailed tumorigenesis 
and liver metastasis in GC (20). Solute carrier family 2, 
facilitated glucose transporter member 3 (SLC2A3) promotes 
macrophage infiltration by glycolysis reprogramming in 
GC (21). Hsa_circ_0043603 promotes the progression 
of esophageal squamous cell carcinoma by regulating 
arylacetamide deacetylase (AADAC) expression (22). 
Moreover, CKLF-like MARVEL transmembrane domain-
containing protein 3 (CMTM3) inhibits cell migration and 
invasion and correlates with favorable prognosis via the 
STAT3/Twist1/EMT signaling pathway in GC (23,24). In 
GC, the deposition of the regulator of G-protein signaling 
2 (RGS2) increased with the increase of clinical stage (25). 
Lipoplex-mediated silencing of membrane regulators (CD46, 
CD55, and CD59) enhances complement-dependent anti-
tumor activity of trastuzumab and pertuzumab (26). Zinc 
finger E-box-binding homeobox 2 (ZEB2) promotes the 
metastasis of GC and modulates epithelial–mesenchymal 
transition of GC cells (27).

This study has some limitations. Further verification 
of these findings needs to be conducted by examining 

these seven genes in vivo and in vitro. It is also important 
to consider the related molecular mechanisms in future 
research.

Conclusions

In conclusion, CD8Tex cells related to TME are closely 
related to tumor classification and immunity in patients 
with GC. As a prognostic predictor of GC, the CD8Tex 
cell-related signature showed good performance. There 
may be new insights into the diagnosis and treatment of GC 
resulting from these findings.
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