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cuproptosis-related gene signature for the prediction of liver 
cancer prognosis 

Cunbing Xia1,2#, Yang Chen3#, Yongkang Zhu1,2, Dexuan Chen1,2, Haijian Sun1,2, Tong Shen1,2,  
Vishal G. Shelat4, Vasileios K. Mavroeidis5,6, Giovanni Battista Levi Sandri7, Zhan Wang8, Hong Zhu1,2

1Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, 

Nanjing, China; 2National Famous TCM expert ZHU Yongkang’s Inherited Treatment Room, Nanjing, China; 3Department of Pharmacy, Nanjing 

University of Chinese Medicine, Nanjing, China; 4Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore; 5Department 

of HPB Surgery, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol Royal Infirmary, Bristol, UK; 6Department of Transplant 

Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol, UK; 7Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino 

Gemelli IRCCS, Rome, Italy; 8Department of General Surgery, Zibo Municipal Hospital, Zibo, China

Contributions: (I) Conception and design: Z Wang, H Zhu, C Xia; (II) Administrative support: Z Wang, H Zhu; (III) Provision of study materials 

or patients: Y Chen; (IV) Collection and assembly of data: Y Zhu, T Shen; (V) Data analysis and interpretation: D Chen, H Sun; (VI) Manuscript 

writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Zhan Wang, PhD. Department of General Surgery, Zibo Municipal Hospital, No. 137-139, Huan Highway, Linzi District, Zibo 

255400, China. Email: 510436341@qq.com; Hong Zhu, MD. Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese 

Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; National Famous TCM expert ZHU Yongkang’s Inherited Treatment 

Room, No. 155 Hanzhong Road, Qinhuai District, Nanjing 210029, China. Email: njtcm1998@163.com.

Background: The prognosis for liver cancer (LC) is dismal. Researchers recently discovered cuproptosis, 
a novel form of controlled cell death whose expression in LC and prognosis are unclear. This study reveals a 
gene signature to predict LC prognosis.
Methods: RNA and clinical data for 371 LC patients were obtained from The Cancer Genome Atlas 
(TCGA). Differentially expressed genes (DEGs) were identified by comparing cancerous and normal 
samples. Genes linked to overall survival (OS) were found using univariate Cox regression and least absolute 
shrinkage and selection operator (LASSO). The gene signature was validated across all patients. Gene 
expression and clinical traits were analyzed, and Kaplan-Meier (KM) curves were generated for high- and 
low-risk groups. DEGs were used for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), immune infiltration, and drug prediction analyses. DLAT’s functions were assessed using real-time 
polymerase chain reaction (RT-PCR), transwell invasion, Cell Counting Kit-8 (CCK-8), colony formation, 
and drug resistance assays.
Results: A total of 12 cuproptosis regulators were discovered in LC and normal liver tissues. A 3-gene 
signature based on LASSO Cox regression was utilized to categorize TCGA LC patients into low- and high-
risk categories. Low-risk patients exhibited better survival than high-risk patients (P<0.05). Tumor grade, 
stage, and T stage differed between high- and low-risk groups. Long-term prognosis was well predicted by 
male subgroup survival studies. We predicted LC patient survival using sex, tumor grade, tumor stage, and 
risk score. Functional enrichment showed that extracellular matrix (ECM) architecture, channel function, 
and tumor-associated pathways were enriched in LC, suggesting that cancer related functions were collected. 
Immune microenvironment inhibition was found in the high-risk group suggesting that immunosuppression 
was closely related. We also discovered five small molecules that could be potentially useful for LC 
treatment. DLAT was discovered to promote the migration and proliferation of LC cells and is connected to 
drug resistance as a prognostic marker.
Conclusions: Cuproptosis-related genes contribute to tumor development and can aid the prediction of 
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Introduction

Liver cancer (LC), particularly primary LC, poses a 
significant global health challenge. Its incidence is 
increasing, and it has a high mortality rate, making it the 
fourth leading cause of cancer-related deaths worldwide (1).  
The highest rates of LC incidence and mortality are 
observed in Africa and East Asia, with notable increases also 
occurring in parts of Europe and the United States (2). LC 
has been an important cause of cancer-related mortality in 
the United States since the early 2000s, with a fast increase, 
according to the Surveillance, Epidemiology, and End 
Results (SEER) (3). LC, especially primary LC, develops 
in people with a significantly higher incidence of cirrhosis, 
which may limit the patient’s treatment options due to their 
general health status and liver dysfunction. For early-stage 
LC, curative treatments such as surgical resection or local 
ablation methods like radiofrequency ablation (RFA) or 
microwave ablation (MWA) are preferred. In intermediate 
stages, transarterial chemoembolization (TACE) or 
radiation therapy is employed to manage tumor progression 
and improve survival rates. For advanced stages, systemic 
treatments, including targeted and immunotherapy, are 
utilized to relieve symptoms and enhance life quality. 

These stage-specific recommendations reflect the latest 
advancements in LC management, aiming to optimize 
patient outcomes (4,5). Despite significant advancements 
in hepatocellular carcinoma (HCC) treatment over the 
past decade, patient prognosis remains poor (6). This is 
partly due to the fact that most HCC cases are diagnosed 
at an advanced stage, making surgical or locoregional 
interventions impractical (7). Therefore, there is an urgent 
need for new therapeutic targets to improve the clinical 
outcome of the disease. The creation of precise prognostic 
models is essential to enable the use of targeted therapies.

Cuproptosis, a unique type of regulated cell death 
that is different from other oxidative stress-related cell 
death mechanisms, such as apoptosis, ferroptosis, and 
necroptosis, was first reported by Tsvetkov et al. (8). In 
cuproptosis, cell death is triggered by elevated copper levels 
within cells. Cells reliant on mitochondrial respiration are 
particularly vulnerable to copper-induced death, suggesting 
a connection to the tricarboxylic acid (TCA) cycle. Genes 
responsible for cell death due to copper exposure have been 
identified, including FDX1 and six others encoding enzymes 
related to the lipoic acid pathway, such as lipoyltransferase 1  
(LIPT1), lipoyl synthase (LIAS), and dihydrolipoamide 
dehydrogenase (DLD). Protein targets of lipoylation, like 
the pyruvate dehydrogenase (PDH) complex, were also 
discovered. FDX1 regulates DLAT lipoylation. Additionally, 
copper induces DLAT oligomerization, increasing insoluble 
DLAT levels, which leads to proteotoxic stress and 
ultimately cell death. 

There is growing evidence that copper ions and 
genes associated with copper ions have a vital role in 
the progression of LC (9). The risk of developing LC 
is strongly associated with the high level of copper ions 
(8,10). Hepatitis and liver cirrhosis are partly triggered by 
copper ions, and LC is caused by reactive oxygen species 
(ROS) (11). Moreover, the cuproptosis-related gene FDX1 
has a strong association with the occurrence of LC (11). A 
study has further explored the molecular classification and 
gene signature of HCC related to cuproptosis, providing 
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experimental verification and highlighting the prognostic 
value of cuproptosis-related genes in LC (12).

The goal of this study is to identify a novel cuproptosis-
related gene signature and evaluate its prognostic value 
in LC, with a particular focus on DLAT as a potential 
therapeutic target. We performed an extensive analysis 
to compare the expression levels of cuproptosis-related 
genes in normal liver and LC tissues. This study aimed to 
evaluate their prognostic significance and investigate the 
connections between cuproptosis and the tumor immune 
microenvironment. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jgo.amegroups.com/article/view/10.21037/jgo-24-609/rc).

Methods

Datasets

We obtained RNA-seq data and clinical characteristics 
for LC (primary LC) patients from The Cancer Genome 
Atlas (TCGA) database up to 13 May 2022 (https://portal.
gdc.cancer.gov/). The gene expression profiles were 
standardized using the scaling technique in the “limma” R 
package. 

Identification of differentially expressed cuproptosis-related 
genes

We obtained 13 cuproptosis-related genes from a previous 
article (8), which are shown in Table S1. The expression 
data were normalized to fragments per kilobase per million 
(FPKM) values before comparison. The “limma” program 
was utilized to identify differentially expressed genes 
(DEGs) with a P value below 0.05. DEGs were annotated 
as * for P<0.05, ** for P<0.01, and *** for P<0.001. A 
protein-protein interaction (PPI) network for these DEGs 
was constructed using the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING), version 11.0 
(https://string-db.org/).

Development and validation of the prognostic model for 
cuproptosis-related genes

The predictive efficacy of cuproptosis-related genes was 
assessed using Cox regression analysis to explore the 
relationships between each gene and survival status in 
the TCGA cohort. With a cut-off P value of 0.01, three 

survival-related genes (DLAT, LIPT1, and ATP7A) were 
selected for further investigation. The least absolute 
shrinkage and selection operator (LASSO) Cox regression 
model (R package “glmnet”) was employed to filter 
potential genes and develop the prognostic model. The 
three genes and their coefficients were retained, and the 
penalty parameter (λ) was determined using the minimum 
criteria. The risk score formula was as follows: P = Σ7

i Xi * Yi 
(X: coefficients, Y: gene expression level). The LC patients 
were divided into low- and high-risk subgroups based on 
the median risk score, and the OS time was compared using 
Kaplan-Meier (KM) analysis. Principal component analysis 
(PCA) based on a 3-gene signature was computed using 
the “prcomp” function in the “stats” R package. Survival 
curves for the two groups were generated and compared. 
R packages “survival”, “survminer”, and “time ROC” 
were used to generate a comparable receiver operating 
characteristic (ROC) curve to evaluate the accuracy of this 
model for predicting survival in LC. The area under the 
curve (AUC) was calculated using a time-dependent ROC 
curve for 1-, 2-, and 3-year OS. In addition, AUC of the 
three genes (DLAT, LIPT1, and ATP7A) were calculated 
separately. We randomly selected 70% of LC patients to 
validate the model.

Independent prognostic analysis of the risk score

We collected clinical data, including age and grade, from 
patients in the TCGA cohort. These variables were 
analyzed alongside the risk score using our regression 
model. Both univariate and multivariable Cox regression 
models were employed in the study.

Functional enrichment analysis of the DEGs between the 
low- and high-risk groups

The LC patients in the TCGA cohort were separated into 
two subgroups based on the median risk score. We used 
specific criteria [|log2FC| ≥1 and false discovery rate (FDR) 
<0.05] to filter DEGs across the low- and high-risk groups. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses based on these DEGs were 
performed using the “clusterProfiler” program. The “gsva” 
program was utilized to perform single sample gene set 
enrichment analysis (ssGSEA), which calculated the scores 
of infiltrating immune cells and assessed the activity of 
immune-related pathways.

https://jgo.amegroups.com/article/view/10.21037/jgo-24-609/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-24-609/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://cdn.amegroups.cn/static/public/JGO-24-609-Supplementary.pdf
https://string-db.org/
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Establishment of a nomogram based on risk score and 
clinical variables

We explored the association between clinical variables and 
the DEG-based signature. Univariate and multivariate Cox 
regression analyses were performed to determine if risk 
scores independently predicted prognosis in LC patients 
when combined with other clinical factors. A nomogram 
was constructed using clinical variables and the DEG-based 
risk score to predict 1-, 3-, and 5-year overall survival (OS) 
probabilities for LC patients. The predictive utility of the 
nomogram was assessed using the C-index and calibration 
curve.

RNA extraction and quantitative real-time polymerase 
chain reaction 

According to the manufacturer’s procedure, total RNA 
from tissues and cells was isolated using Trizol reagent 
(Invitrogen, Carlsbad, CA, USA). HiScript II (Vazyme, 
Nanjing, China) was used to synthesize complementary 
DNA (cDNA), and quantitative real-time polymerase chain 
reaction (qRT-PCR) for messenger RNA (mRNA) and 
microRNA (miRNA) was performed on a StepOne Plus 
Real-Time PCR machine (Applied Biosystems, Waltham, 
MA, USA) or a LightCycler 480 (Roche, Indianapolis, 
IN, USA). Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) was the internal standard control for mRNA 
detection. The data were analyzed by comparing Ct values 
after each sample was replicated three times. All PCR 
primers and short hairpin RNA (shRNA) of DLAT were 
provided by GeneCopoeia (Guangzhou, China), which are 
shown in Table S2.

Immune cell infiltration analysis

Given that previous research indicated immune infiltration 
in tumor cells is involved in cancer progression and 
correlates with prognosis, we analyzed the infiltration levels 
of immune cells in low-risk and high-risk groups using 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP-
counter, XCELL, TIMER, and EPIC algorithms. We also 
examined the expression of various immune checkpoints 
(Table S3) to predict the efficacy of immune checkpoint 
blockade therapy. Additionally, the TIMER database 
(https://cistrome.shinyapps.io/timer/) was utilized to 
identify the relationship between immune cells and DEGs, 
enhancing our understanding of the role of DEGs in LC.

Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (http://
www.cancerrxgene.org/downloads) database was used to 
determine the correlation between DLAT and the sensitivity 
of various antitumor drugs in cancer cell lines. Additionally, 
drug sensitivity was represented by half maximal inhibitory 
concentration (IC50), which is the concentration of a drug 
needed to inhibit 50% of cancer cells.

Clinical specimens 

LC tissues and adjacent normal tissues were collected from 
patients who underwent surgery in the Affiliated Hospital of 
Nanjing University of Chinese Medicine/Jiangsu Province 
Hospital of Chinese Medicine and were diagnosed with 
LC between January 2021 and May 2022. The tissues were 
stored in liquid nitrogen immediately after collection. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by ethics committee of Affiliated Hospital of Nanjing 
University of Chinese Medicine (No. 2021-SRFA-329) and 
informed consent was taken from all the patients.

Cell culture 

LC cell lines, including QSG7701, Huh-7, JHH-2, HepG2, 
Hep3B, SNU-423, and Huh-1, were obtained from the 
Cell Bank/Stem Cell Bank, Chinese Academy of Sciences. 
Cells were cultured in Dulbecco’s modified Eagle medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS), 
100 U/mL penicillin, and 100 µg/mL streptomycin (NEST 
Biotechnology, Wuxi, China). Cells were plated in plastic 
or glass cell culture dishes and maintained at 37 ℃ in a 
humidified atmosphere containing 5% CO2. The medium 
was changed every 2–3 days, and cells were passaged using 
0.25% trypsin-EDTA (Gibco, Grand Island, NY, USA) 
when they reached approximately 80–90% confluence. 
For experimental assays, cells were seeded at appropriate 
densities in culture plates or dishes and allowed to adhere 
overnight before treatment or further analysis. 

Immunohistochemistry (IHC)

IHC was performed to assess protein expression in paraffin-
embedded LC tissues. Tissue sections (4 µm thick) were 
deparaffinized in xylene and rehydrated through a graded 
series of ethanol concentrations. Antigen retrieval was 

https://cdn.amegroups.cn/static/public/JGO-24-609-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-609-Supplementary.pdf
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carried out by heating the sections in citrate buffer (pH 6.0) 
at 95 ℃ for 20 minutes. After cooling to room temperature, 
the sections were blocked with 5% bovine serum albumin 
(BSA) for 30 minutes to prevent nonspecific binding. 
The sections were then incubated overnight at 4 ℃ with 
primary antibodies specific to the target proteins. After 
washing with phosphate-buffered saline (PBS), the sections 
were incubated with biotinylated secondary antibodies for 
30 minutes at room temperature, followed by incubation 
with avidin-biotin-peroxidase complex (ABC) for another 
30 minutes. The immunoreactivity was visualized using 
3,3’-diaminobenzidine (DAB) as the chromogen, and the 
sections were counterstained with hematoxylin. Images 
were captured using an upright microscope system (Nikon, 
Tokyo, Japan). The integrated optical density (IOD) of 
the stained sections was measured using Image J software 
(National Institutes of Health, Bethesda, MD, USA), and 
the average optical density (AOD) was calculated as AOD = 
IOD/area.

Transwell migration assay

The Transwell migration assay was conducted to evaluate 
the migratory ability of LC cells. Briefly, 8-µm pore size 
Transwell inserts (Corning, NY, USA) were used. For the 
invasion assay, the inserts were coated with 30 µg of Matrigel 
[Becton Dickinson (BD) Biosciences, Franklin Lakes, NJ, 
USA] and allowed to solidify at 37 ℃ for 30 minutes. LC cells 
were serum-starved overnight in DMEM without FBS and 
then seeded into the upper chamber of the Transwell inserts 
at a density of 1×105 cells per well in 200 µL of serum-
free DMEM. The lower chamber was filled with 600 µL of 
DMEM containing 10% FBS as a chemoattractant. After  
24 hours of incubation at 37 ℃ in a 5% CO2 atmosphere, 
the non-migrated cells on the upper surface of the 
membrane were gently removed with a cotton swab. The 
migrated cells on the lower surface of the membrane were 
fixed with 4% paraformaldehyde for 15 minutes, stained 
with 0.1% crystal violet for 20 minutes, and washed with 
PBS. The number of migrated cells was counted under an 
inverted microscope (OLYMPUS IX73, Olympus, Tokyo, 
Japan) in five randomly selected fields.

Cell viability and colony formation assays

Cell viability assay
Cell viability was assessed using the Cell Counting Kit-
8 (CCK-8, Dojindo, Kumamoto, Japan). LC cells were 

seeded into 96-well plates at a density of 2×103 cells per 
well in 100 µL of DMEM containing 10% FBS. After 
various incubation periods (24, 48, 72, and 96 hours), 10 µL 
of CCK-8 solution was added to each well, and the plates 
were incubated for an additional 2 hours at 37 ℃. The 
absorbance at 450 nm was measured using a microplate 
reader (Bio-Rad, Hercules, CA, USA) to determine cell 
viability.

Colony formation assay
For the colony formation assay, LC cells were seeded into 
6-well plates at a density of 1,000 cells per well and cultured 
in DMEM with 10% FBS. The medium was changed 
every 3–4 days. After 10–14 days, when visible colonies had 
formed, the cells were fixed with 4% paraformaldehyde 
for 15 minutes and stained with 0.1% crystal violet for  
20 minutes. The plates were washed with PBS, and the 
number of colonies containing at least 50 cells was counted 
under a microscope.

Statistical analysis

We utilized single-factor analysis of variance to compare 
gene expression levels between normal liver and LC tissues. 
For categorical variables, the Pearson chi-square test was 
employed. The KM method with a 2-sided log-rank test 
was employed to compare patient OS among subgroups. 
We analyzed the independent prognostic efficacy of the 
risk model using univariate and multivariate Cox regression 
models. The Mann-Whitney test was conducted to 
compare immune cell infiltration and immune pathway 
activation between the two groups. All statistical analyses 
were performed using R software (v4.0.2; R Foundation for 
Statistical Computing, Vienna, Austria).

Results

Detection of DEGs in LC and normal tissues

We examined the expression of 13 genes associated with 
cuproptosis in 374 LC samples and 50 normal tissues 
using TCGA data. We found that 12 genes had significant 
differential expression (all P<0.05). Among them, 4 genes 
(DBT, SLC31A1, GCSH, and FDX1) were downregulated, 
whereas 8 genes (DLST, DLD, PDHB, PDHA1, LIAS, 
LIPT1, DLAT, and ATP7A) were upregulated in the tumor 
group. Figure 1A presents heatmaps showing RNA levels of 
these genes, with green indicating low expression and red 



Journal of Gastrointestinal Oncology, Vol 15, No 5 October 2024 2235

© AME Publishing Company.   J Gastrointest Oncol 2024;15(5):2230-2251 | https://dx.doi.org/10.21037/jgo-24-609

Figure 1 Expressions and interactions of the 13 cuproptosis-related genes. (A) Heatmap (green: low expression level; red: high expression 
level) of the cuproptosis-related genes in normal (N, brilliant blue) and tumor tissues (T, red). (B) PPI network displaying cuproptosis-
related gene connections (interaction score =0.9). (C) The cuproptosis-related genes’ association network (red line: positive correlation; blue 
line: negative correlation). The strength of the relevance is shown in the color depth. PPI, protein-protein interaction. 
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indicating high expression. To further explore interactions 
among these cuproptosis-related genes, we conducted a 
PPI analysis, as shown in Figure 1B. We identified LIAS, 
DLST, GCSH, DLAT, LIPT1, DLD, PDHB, PDHA1, 
DBT, SLC31A1, ATP7A, and ATP7B as hub genes, using 
a minimum interaction score of 0.9 (highest confidence) 
for the PPI analysis. Figure 1C displays a correlation 
network of all the genes related to cuproptosis, with red 

indicating positive correlations and blue indicating negative 
correlations.

A prognostic gene model was developed using the TCGA 
cohort

We paired 374 LC samples with samples of patients who 
had complete survival information. First, we used univariate 
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Cox regression analysis to identify the genes related to 
survival. Then, we selected three genes (DLAT, LIPT1, 
and ATP7A) that had a P value of less than 0.01 for further 
investigation. All of these genes also had a high risk with 
hazard ratios (HRs) greater than 1 (Figure 2A). The ROC 
curve of each gene is shown in Figure S1. We created a 
3-gene signature based on the LASSO Cox regression 
analysis (Figure 2B,2C). ATP7A had an AUC of 0.66 at 
1-year, 0.561 at 2-year, and 0.563 at 3-year. DLAT had an 
AUC of 0.695 at 1-year, 0.627 at 2-year, and 0.609 at 3-year. 
LIPT1 had an AUC of 0.638 at 1-year, 0.558 at 2-year, and 
0.588 at 3-year. Among them, DLAT had the best prognostic 
value for 1, 2, and 3 years. Risk score computational formula 
= (0.3005 × LIPT1 exp.) + (0.06026 × DLAT exp.) + (0.21313 
× ATP7A exp). We divided the 374 patients into low- and 
high-risk groups based on the median score obtained from 
the risk score method (Figure 2D). We used PCA to separate 
the patients with different risks into two clusters (Figure 2E). 
Patients in the high-risk group (n=158) had more deaths and 
shorter survival than those in the low-risk group (n=158, 
Figure 2F, on the right side of the dotted line). The survival 
time showed a significant difference between the low- and 
high-risk groups (P<0.05, Figure 2G). In the ROC analysis 
that considered time dependency, the AUC values were 
0.72 for 1-year, 0.60 for 2-year, and 0.62 for 3-year survival 
(Figure 2H). To ascertain the predictive validity of our 3-gene 
prognostic model, we employed a simple random sampling 
(SRS) method to select a subset comprising 70% of the 
TCGA cohort. This approach ensures that each sample 
unit has an equal probability of being chosen, thereby 
maintaining the representativeness and independence of the 
sample. The characteristic feature of SRS is the complete 
independence of the selection of each unit, with no fixed 
pattern or exclusion, ensuring the randomness and fairness 
of the sample selection. Upon applying the SRS method, 
we conducted the same statistical analysis on the randomly 
selected subset. The results demonstrated that this 70% 
sample maintained consistent AUC values in the time-
dependent ROC analysis, with 0.769 and 0.778 for 1-year 
survival, 0.626 for 2-year survival, and 0.602 for 3-year 
survival, corroborating the robust predictive capability of 
our gene signature as reflected in the entire TCGA cohort 
(Figure S2). 

The three genes’ expression and alterations are being 
validated

We validated the mRNA expression levels (2−ΔΔct) of ATP7A, 

DLAT, and LIPT1 in 6 LC cell lines (JHH-2, SNU-423, 
Huh-1, HepG2, Huh-7, and Hep3B) and 1 normal liver cell 
line (QSG7701) by using PCR (Figure 3A). The expression of 
the 3 genes was higher in the LC cell lines than in the normal 
liver cell line. We confirmed the same result in the patient 
tissues by using IHC (Figure 3B,3C).

The independent predictive value of the risk model

We conducted both univariate and multivariable Cox 
regression analyses to determine whether the risk score 
derived from the gene signature model could independently 
serve as a prognostic factor. In the TCGA cohorts, the risk 
score was a significant and independent predictor of poor 
survival, according to the univariate Cox regression analysis 
[HR =1.5142, 95% confidence interval (CI): 1.0581–2.1670, 
Figure 4A]. The multivariable analysis confirmed that the 
risk score was a prognostic indicator for LC patients (HR 
=1.4936, 95% CI: 1.0418–2.1411, Figure 4B). We also 
generated a heatmap of the clinical characteristics for the 
TCGA cohort (Figure 4C).

Prognostic signature’s impact on LC progression and 
subgroup predictive value

We utilized the chi-square test to investigate whether the 
prognostic signature influenced LC progression and growth. 
The results (Figure 5) indicated significant differences 
between high- and low-risk groups in tumor grade 
(P=0.012), TNM stage (P=0.003), and T stage (P=0.006). 
Additionally, we conducted stratification analysis to assess 
the signature’s predictive value across various subgroups. 
Our findings demonstrated that the DEG-derived model 
accurately predicted outcomes in males (P=0.007) and the 
high-risk group (P=0.047). However, its predictive accuracy 
was limited in other groups (P>0.05) (Figure 6).

Construction of a nomogram

The nomogram is designed to be a practical tool in 
the clinical setting, allowing physicians to estimate an 
individual patient’s prognosis by considering various 
personalized factors. Its straightforward visual format 
aids in clear communication with patients regarding 
their survival probabilities. The reproducibility of this 
nomogram across different clinical settings is promising, 
given its incorporation of widely recognized prognostic 
factors. We used the nomogram to visually assess the 
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Figure 2 TCGA cohort risk signature construction. (A) For each cuproptosis-related gene, a univariate cox regression analysis of OS was 
performed, and three genes with P<0.01 were found. (B) LASSO regression of the three genes linked to OS (red: DLAT, black: ATP7A, 
green: LIPT1). (C) In the LASSO regression, cross-validation is used to fine-tune the parameter selection. (D) Patients are assigned to 
groups depending on their risk scores. Based on the risk score, patients were divided into low-risk group (blue) and red-risk group (red). 
(E) PCA plot for LCs; (F) Each patient’s chance of survival (low-risk population: on the left side of the dotted line; high-risk population: on 
the right side of the dotted line). (G) Kaplan-Meier curves for the OS of high-risk and low-risk individuals. (H) The risk score’s prediction 
efficiency was proved by ROC curves. CI, confidence interval; PCA, principal component analysis; AUC, area under the curve; TCGA, 
The Cancer Genome Atlas; OS, overall survival; LASSO, least absolute shrinkage and selection operator; LC, liver cancer; ROC, receiver 
operating characteristic.

survival probability of an individual by combining different 
prognostic factors. We developed a nomogram that included 
gender, tumor grade, tumor stage, and risk score to further 
predict the survival of LC patients. The nomogram showed 
the estimated survival rates for LC patients at 1, 3, and  
5 years (Figure 7A). The calibration plot showed that the 
actual survival rate matched the estimated value (Figure 7B).  

The nomogram had an acceptable predictive ability, with a 
C-index of 0.636.

Differential gene expression and pathway analysis in risk 
model subgroups

We used the R package ‘limma’ to obtain DEGs and further 

0.30

0.25

0.20

0.15

0.10

0.05

0.00

−5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5
Logλ Logλ

C
oe

ffi
ci

en
ts

3  3  3B
12.0

11.9

11.8

11.7

11.6

11.5

11.4

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  2  2  2  0
C

7

6

5

4

3

2

1

0	 100	 200	 300
Patients (increasing risk score)

Risk score (P=0.02)

R
is

k 
sc

or
e

D E
4

2

0

−2

−4	 −2	 0	 2	 4	 6
PCA

P
C

A
2

High risk
Low risk

High risk
Low risk

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
1–SpecificityYears

S
en

si
tiv

ity

S
ur

vi
va

l r
at

e

AUC of 1-year survival: 0.72 
AUC of 2-year survival: 0.60 
AUC of 3-year survival: 0.62

HG
10

8

6

4

2

0

0	 100	 200	 300
Patients (increasing risk score)

S
ur

vi
va

l t
im

e,
 y

ea
rs

Dead
Alive

F

Adjusted P Hazard ratio (95% CI)

DLAT 

LIPT1 

ATP7A

<0.001

<0.001

0.002

1.0688 (1.0384–1.1002) 

1.4390 (1.1846–1.7479) 

1.5587 (1.1721–2.0728)

A

1.0	 1.41	 2.0
Hazard ratio (95% CI)

0 2 4 6 8 10

3

1

2



Xia et al. DLAT: key gene in LC prognosis & therapy 2238

© AME Publishing Company.   J Gastrointest Oncol 2024;15(5):2230-2251 | https://dx.doi.org/10.21037/jgo-24-609

analyzed them to explore changes in gene functions and 
pathways among the risk model subgroups, based on the 
criteria of FDR <0.05 and |log2FC| ≥1. In the TCGA 
cohort, we identified 365 DEGs between the low- and high-
risk groups. There were 183 genes that were upregulated 
and 182 genes that were downregulated in the high-risk 
group. Then, we performed an analysis of GO enrichment 
and pathway analysis using the KEGG with the DEGs. 
The results showed that the DEGs were mainly related to 

the ECM structure, channel activity, and tumor-related 
pathways (Figure 8A,8B).

Comparing immunological activation in different 
subgroups

We used ssGSEA to calculate the enrichment scores of 16 
immune cell types and the activity of 13 immune-related 
pathways in the TCGA cohorts, based on functional 

Figure 3 Expression of and alterations in the three DEGs. (A) Relative mRNA expression level of ATP7A, DLAT, and LIPT1 in JHH-
2, SNU-423, Huh-1, HepG2, Huh-7, Hep3B and QSG7701 by PCR (2−ΔΔct). (B) The protein expression analysis by IHC. (C) Expression 
level of three genes in liver cancer and normal tissues by IHC. *, P<0.05; **, P<0.01; ***, P<0.001, ns, not significant; AOD, average optical 
density; DEGs, differentially expressed genes; IHC, immunohistochemistry.
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Figure 4 Univariate and multivariate Cox regression analyses for the risk score. (A) For the TCGA cohort, a univariate analysis (grade: 
the degree of tumor differentiation, G1 to G4). (B) The TCGA cohort’s multivariate analysis. (C) Connections between clinicopathologic 
characteristics and risk groups (P<0.05) heatmap (green: low expression; red: high expression). TCGA, The Cancer Genome Atlas.
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analyses. We compared the low- and high-risk groups. In 
Figure 9A, we saw that mast cells and natural killer (NK) 
cells were lower in the high-risk group than in the low-
risk group. In the TCGA cohort, we found that the high-
risk group had higher APC co-stimulation and MHC 
class I pathway activity than the low-risk group, except for 
cytolytic activity (Figure 9B). In general, immune cells were 
lower in high-risk group, which indicated a suppressed 

immune microenvironment and suggested that cuproptosis 
might have a close relationship with tumor immunity.

Analysis of the level of immune infiltration using the 
signature based on DEGs

The heatmap showed the correlation between the signature 
and immune infiltration by using TIMER, CIBERSORT, 
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CIBERSORT-ABS, XCELL, QUANTISEQ, EPIC, 
and MCP-counter (Figure S3). We also explored the 
relationship between risk score and important immune 
checkpoints (Table S3), considering the importance of 
checkpoint inhibitor immunotherapies. We observed a 
significant high expression (P<0.05) of VTCN1, TNFSF18, 
TNFSF15, TNFSF9, TNFSF4, TNFRSF9, TNFRSF4, 
NRP1, LGALS9, LAIR1, ICOS, HHLA2, HACVR2, 
CTLA4, CD276, CD274, CD200R1, CD200, CD86, CD80, 
and CD44 in the high risk group (Figure 10 and Figure S4).

Identification of small molecule drugs

To find potential small molecular drugs based on DEGs, 
we used the Enrichr database. The top five substances were 
vitinoin, latamoxef, chlorzoxazone, atrazine, and medrysone, 
with a significance level of P<0.05 for each one. These 
compounds based on DEGS analysis have the potential to 
treat LC. Table 1 shows the details of these substances.

Downregulation of DLAT inhibits LC cell migration and 
proliferation

We performed a performance assessment of DLAT based 
on the previous analysis, and found that it had the best 
predictive significance for 1-, 2-, and 3-year outcomes. 
Therefore, we investigated the function of DLAT. We 
checked the expression level of DLAT in TCGA and GTEx 
databases, and found that tumor tissues had higher DLAT 
expression than normal tissues (Figure 11A). Moreover, high 
DLAT expression was linked to poor prognosis (Figure 11B). 
We used qRT-PCR to measure the transfection efficiency of 
the cells, and observed that the relative expression level of 
DLAT was significantly reduced after shRNA transfection 
(Figure 11C). To further explore the role of DLAT in 
invasion, we conducted transwell assays. The results showed 
that the invasion and migration rates of huh-7 and huh-1 
cells with shRNA transfection were significantly lower than 
those of the control-transfected cells (Figure 11D). 
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Figure 5 Correlation between signature and clinical characteristics.
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Figure 6 Kaplan-Meier curves of OS differences stratified by age, sex, risk group, tumor stage and T stage between the high- and low-risk 
groups. OS, overall survival.
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Figure 7 Construction of a nomogram. (A) Nomogram for predicting 1-, 3- or 5-year OS. (B) The calibration plots for predicting 1-, 3-, 
and 5-year OS. OS, overall survival. ***, P<0.001.
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To evaluate the effect of DLAT knockdown on cell 
proliferation, we conducted CCK-8 assays. The results 
showed a significant reduction in cell proliferation after 
DLAT silencing compared to the control group (Figure 11E). 
Additionally, the colony formation assay demonstrated that 
DLAT silencing markedly inhibited cell growth (Figure 11F). 
These findings indicate that DLAT knockdown effectively 
suppresses the proliferative and invasive abilities of huh-7 
and huh-1 cells.

Correlation between DLAT expression and drug resistance

We explored the relationship between the DLAT expression 
level and the drug IC50 values. We found nine pairs that 
showed a correlation between drug resistance and the 

DLAT expression level. These pairs were GSK-2126458 
(correlation =−0.430, P<0.001), apitolisib (correlation 
=−0.387, P=0.002), staurosporine (correlation =−0.380, 
P=0.003), AT-13387 (correlation =0.369, P=0.004), 
everolimus (correlation =−0.364, P=0.004), teglarinad 
(correlation =0.362, P=0.005), CUDC-305 (correlation 
=0.340, P=0.008), belinostat (correlation =0.338, P=0.008), 
and daporinad (correlation =0.336, P=0.009) (Figure 12).

Discussion

The scientific community faces great challenges due to the 
complexity and heterogeneity of tumors. In recent years, 
many research studies have used multi-omics strategies, 
combining information from genomics, transcriptomics, 
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Figure 8 Functional analysis of the DEGs in the TCGA cohort comparing the two risk categories. (A,B) GO and KEGG enrichment 
bubble graph (the bigger bubble means the more genes enriched, and the increasing depth of red means the differences were more obvious). 
BP, biological process; CC, cellular component; MF, molecular function; DEGs, differentially expressed genes; TCGA, The Cancer 
Genome Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PI3K-AKT, Phosphatidylinositol 3-Kinase-
Protein Kinase B; cAMP, cyclic adenosine monophosphate; ECM, extracellular matrix; TNF, tumor necrosis factor; TRP, transient receptor 
potential.
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Figure 10 The relationship between prognostic signature and immune checkpoints. ***, P<0.001. VCTN1, V-set Domain Containing T 
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Table 1 The five small molecular drugs of Enrichr dataset analyses results

Index Name P value Adjusted P value Odds ratio Combined score

1 Vitinoin CTD 00007069 <0.001 <0.001 34.75 563.85 

2 Latamoxef HL60 DOWN <0.001 0.002 16.41 188.25 

3 Chlorzoxazone HL60 DOWN <0.001 0.045 10.43 77.56 

4 Atrazine CTD 00005450 <0.001 0.045 8.05 59.35 

5 Medrysone HL60 DOWN <0.001 0.045 12.72 90.67 

proteomics, metabolomics, and related disciplines, to reveal 
the diverse and intricate nature of cancer. Sometimes, 
various factors can impair or cause the failure of the immune 
system, which is vital for preventing diseases. To improve 
the understanding and treatment of diseases related to the 
immune system, such as cancer, researchers have developed 
new techniques such as immune checkpoint inhibitors, 
liquid biopsy, and artificial intelligence, which can modulate 
or enhance the immune response. These technologies have 
shown promising results in the detection and management 

of different diseases (13-22).
We identified three key genes (DLAT, LIPT1, and 

ATP7A) involved in cuproptosis and developed a risk 
score model that effectively predicts LC patient survival. 
This model not only provides a novel prognostic tool but 
also offers potential therapeutic targets. Notably, DLAT 
emerged as a significant player in LC cell invasion and 
proliferation, suggesting its potential as a therapeutic 
target. High-risk patients exhibited fewer mast cells, NK 
cells, and cytolytic activity, indicating a suppressed immune 
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Figure 11 Functional experiments of DLAT. (A) Expression level of DLAT in TCGA and GTEx database. (B) Overall survival of DLAT in 
TCGA. (C) Transfection efficiency was verified after transfection of DLAT or negative control shRNA. (D) LC cell viability was evaluated 
with CCK-8 assays at 0, 24, 48, 72, and 96 hours post-transfection. (E) Transwell assays were used to detect LC invasion and migration. 
Representative experiments are shown stained by crystal violet. (F) The number of LC cell colonies was reduced after DLAT knockdown 
stained by crystal violet. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. PAAD, pancreatic adenocarcinoma; T, tumor; N, normal; 
TPM, transcript per million; HR, hazard ratio; NC, negative control; OD, optical density; TCGA, The Cancer Genome Atlas; GTEx, 
genotype tissue expression; shRNA, short hairpin RNA; LC, liver cancer. 
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microenvironment. These findings suggest that cuproptosis 
influences LC progression and prognosis, highlighting 
potential therapeutic targets. The clinical implications of 
these findings are significant, as the risk score model can 
be used to stratify patients based on their risk, allowing 
for more personalized treatment approaches. For instance, 
high-risk patients might benefit from more aggressive 
treatments or closer monitoring, while low-risk patients 
could avoid overtreatment. Different mechanisms induced 

by heavy metals can regulate cell death (10,23,24). Copper 
accumulation inside cells leads to the formation of lipoylated 
protein aggregates in mitochondria and destabilization 
of Fe-S cluster proteins, resulting in cuproptosis (25,26). 
This challenges the assumption that oxidative stress is 
the primary driver of metal toxicity and underscores 
the role of mitochondria in regulating cell death. Our 
pathway analysis revealed upregulation of several cancer-
related pathways, such as the PI3K-AKT, Wnt, and Hippo 
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signaling pathways, in high-risk patients. This suggests that 
cuproptosis is involved in cancer progression through these 
pathways, offering new avenues for targeted therapy (27-29). 
In our study, we examined the expression levels of 13 genes 
related to cuproptosis in both normal liver tissues and LC 
tissues. The role and investigation of these genes in LC 
have not been extensively studied. We observed significant 
differences in tumor grade, tumor stage, and T stage 
between low- and high-risk groups based on the correlation 
analysis between the signature and clinical characteristics. 
The model also showed good performance for predicting 
prognosis in males. Furthermore, we identified five small 
molecules based on DEGs that could be potential drugs for 
LC. We calculated AUC to determine the best prognostic 

value of 1-, 2- and 3-year survival and selected DLAT 
as a candidate for further validation. We confirmed the 
tumorigenic role of DLAT in LC cells and discovered that 
DLAT was significantly associated with drug resistance via 
bioinformatic analysis. Future exploration of the mechanism 
of how DLAT promotes cancer growth is warranted.

The risk score model, incorporating DLAT, LIPT1, 
and ATP7A, demonstrated strong predictive ability for 
LC patient survival in the TCGA cohort. High-risk 
patients had significantly shorter survival times and more 
advanced tumor progression. This model can be used to 
stratify patients based on their risk, allowing for more 
personalized treatment approaches. For instance, high-risk 
patients might benefit from more aggressive treatments 
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or closer monitoring, while low-risk patients could avoid 
overtreatment. Additionally, the model’s ability to correlate 
clinical attributes and immune cell infiltration provides 
valuable insights into the tumor microenvironment, 
suggesting potential immunotherapeutic strategies. Mast 
cells, which are part of the body’s immune system, play a 
dual role in cancer. On one hand, they can promote tumor 
growth by supporting blood vessel formation (angiogenesis) 
and helping the tumor invade surrounding tissues. On the 
other hand, they can also fight against tumors by activating 
a range of immune responses. When mast cells are present 
in the tumor microenvironment, they can release substances 
that attract other immune cells, such as T cells, which 
can attack and destroy cancer cells (30-32). We also noted 
that the high-risk group had lower levels of mast cells and 
NK cells, which are important for the immune response 
against tumors. However, they had higher levels of APC co-
stimulation and MHC class I pathways, suggesting potential 
activation within the tumor microenvironment (33-37). 
However, it is essential to acknowledge the limitations of 
the model’s predictive power, as reflected by the relatively 
modest AUC values. The AUC values, while indicative of 
the model’s ability to discriminate between events and non-
events, are not without their shortcomings. To enhance 
the model’s predictive capacity, in future studies, it is 
proposed a multifaceted approach that involves integrating 
additional features relevant to the target, refining model 
parameters, and exploring alternative modeling techniques. 
This comprehensive strategy is designed to improve the 
discrimination between events and non-events, which 
is crucial for prognostic models in clinical settings. By 
adjusting the probability thresholds used for classifying risk 
categories, we aim to achieve a more nuanced stratification 
that can better reflect the complexity of tumor biology and 
patient heterogeneity. These improvements are expected to 
address the modest AUC values and provide a more robust 
tool for clinicians to predict patient outcomes in LC.

DLAT was identified as the most important gene in 
the risk score model for predicting survival. DLAT is part 
of the PDH complex, which is involved in mitochondrial 
respiration and the TCA cycle. The PDH complex converts 
pyruvate into acetyl-CoA, which enters the TCA cycle 
to produce energy and biosynthetic precursors (8). The 
progression of cancer, the resistance to chemotherapy, 
and the treatment of various malignancies, such as HCC, 
stomach cancer, prostate cancer, lymphocytic leukemia, 
and others, are associated with DLAT. High levels of DLAT 
have been identified as an independent prognostic factor 

for shorter OS in LC patients (38). This suggests that 
DLAT expression levels could be used to stratify patients 
based on their prognosis, with higher levels indicating a 
poorer outcome. DLAT and its related genes are mainly 
involved in several key biological functions. These include 
cell metabolism, where DLAT is a critical component of 
the PDH complex, playing a central role in cellular energy 
production through the TCA cycle, which is essential 
for the generation of ATP and biosynthetic precursors 
necessary for cell growth and proliferation. DLAT has also 
been implicated in promoting tumor cell invasion and 
proliferation, with its role in metabolic reprogramming 
allowing cancer cells to adapt to the high metabolic 
demands of rapid growth and division. Additionally, DLAT 
is significantly associated with the level of immune cell 
infiltration and immune checkpoints in LC, with high 
DLAT expression correlating with a suppressed immune 
microenvironment characterized by reduced cytolytic 
activity and lower levels of immune cells such as NK 
cells and mast cells (38). These findings highlight the 
multifaceted role of DLAT in LC biology and underscore its 
potential as a therapeutic target. By targeting DLAT, it may 
be possible to modulate the tumor microenvironment and 
improve patient outcomes.

Copper-induced cell death (cuproptosis) significantly 
impacts the immune microenvironment, mutation 
landscape, and biological behavior of LC. Cuproptosis 
leads to the accumulation of copper within cells, causing 
mitochondrial dysfunction and the formation of lipoylated 
protein aggregates. This process disrupts the normal 
function of immune cells, leading to a suppressed immune 
microenvironment characterized by reduced mast cells, NK 
cells, and cytolytic activity (39-41). The mutation landscape 
of LC is also affected, as copper accumulation can induce 
genetic instability and mutations. Additionally, cuproptosis 
influences the biological behavior of LC by promoting 
tumor cell invasion and proliferation. DLAT plays a crucial 
role in this process. As a key component of the PDH 
complex, DLAT is involved in mitochondrial respiration 
and energy production. Its elevated expression in LC 
tissues suggests that it may contribute to the metabolic 
reprogramming of cancer cells, enhancing their survival 
and proliferation under stress conditions induced by copper 
accumulation. Furthermore, DLAT’s role in promoting cell 
invasion and drug resistance highlights its potential as a 
therapeutic target. By targeting DLAT, it may be possible 
to modulate the effects of cuproptosis on the immune 
microenvironment and tumor progression, offering new 
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avenues for LC treatment.
DLAT  is  a member of the PDH complex, which 

participates in mitochondrial respiration and the TCA 
cycle. The PDH complex transforms pyruvate into acetyl-
CoA, which joins the TCA cycle to generate energy and 
biosynthetic precursors (42-45). As a gene related to 
cuproptosis, we found that it was elevated in LC tissues. The 
risk model for DLAT also provided us with valuable insights 
into potential targets for prognosis and treatment of LC. 
Lipoic acid is transferred from the H-protein of the glycine 
cleavage pathway to the E2 subunits of 2KDHs by LIPT1, 
which is a lipoyltransferase-1. Mitochondrial disorders 
are also caused by LIPT1 mutations, which disrupt the 
metabolism of lipoic acid (46). The lipoic acid pathway and 
mitochondrial respiration are associated with the enzyme 
LIPT1, indicating a strong connection with the TCA cycle, 
which ultimately leads to cell death caused by copper. A 
copper transporter that moves copper from enterocytes 
to the blood is ATP7A, which relocates to the basolateral 
membrane through a transporter (47,48). The buildup of 
copper in enterocytes is caused by ATP7A mutation. This 
impairment leads to copper deficiency in several connective 
tissues (49). In mice with Menke’s disease, Tsvetkov et al.’s 
study revealed increased accumulation of copper inside 
cells; this copper accumulation causes cell death in vivo (8). 
We have identified three genes (DLAT, LIPT1, and ATP7A) 
that are involved in cuproptosis in the prognostic model. 
The risk model based on these three genes can predict the 
prognosis. However, more research is needed to understand 
how these genes interact in cuproptosis. Cuproptosis, a 
newly discovered form of physiological cell death, requires 
further investigation in the future. For example, Tsvetkov 
et al. showed that DLAT lipoylation was reduced by the 
removal of FDX1, suggesting that the lipoylation of 
proteins is dependent on the cell death caused by copper (8). 

The involvement of FDX1 in the lipoylation process is 
still unclear. Researchers also demonstrated that the binding 
of copper to lipoylated DLAT increased the formation of 
DLAT oligomers through disulfide bonds (8). However, they 
did not explain the link between copper and the formation 
of disulfide bonds. Despite this, the authors presented a new 
perspective on the important connection between copper-
induced death and mitochondrial metabolism in cells. 
We found that the DEGs mainly participated in channel-
related activities by comparing DEGs among different risk 
groups. This is consistent with the nature of cuproptosis. 
In the KEGG pathway analysis, several pathways related to 

cancer, such as the PI3K-AKT signaling pathway, the wnt 
signaling pathway, and the hippo signaling pathway, showed 
upregulation. Therefore, we can reasonably infer that 
cuproptosis is involved in the progression of cancer.

Cancer immunosurveillance, a vital defense against 
cancer, involves the recognition and elimination of 
developing tumor cells by the immune system. However, 
the immune system can also facilitate the development of 
tumors. Cancer immunoediting refers to the role of the 
immune system in both protecting the host and promoting 
the tumor. In the high-risk group, mast cells and NK cells 
were at a relatively lower level, whereas aDCs, iDCs, and 
Treg cells were abundant. This indicates that the immune 
system of the high-risk population was impaired. The 
activation of the tumor microenvironment is indicated by 
the high levels of APC co-stimulation and MHC class I in 
the high-risk group. However, the high-risk group showed 
low cytolytic activity, indicating impaired T cell function, 
which supports tumor growth (50).

The mechanism of cuproptosis, especially in LC, is still 
poorly understood. We identified 12 genes that showed 
differential expression in LC and had the ability to regulate 
cuproptosis. We evaluated the prognostic value of these 
genes related to cuproptosis in the early stages and provided 
theoretical support for future research. However, more 
research is needed to determine whether these regulators, 
which have been reported in other studies, have similar 
roles in cuproptosis pathways in LC.

Conclusions

Our results showed that cuproptosis was closely related to 
LC, as most genes involved in cuproptosis had different 
expression levels in normal and LC tissues. Furthermore, 
the score derived from our risk signature based on three 
genes related to cuproptosis was a reliable predictor of OS 
in the TCGA cohorts. The DEGs between the high-risk 
and low-risk groups were related to tumor immunity. We 
used DEGs to identify small molecules that could treat 
LC. We discovered that DLAT was a good prognostic 
marker for LC. We also confirmed the tumorigenic role 
and drug resistance of DLAT. Our study reveals a novel 
gene signature for prognostic prediction of LC patients 
and provides a basis for future research on the link 
between genes related to cuproptosis and immunology 
in LC. DLAT will also be a potential target for further 
investigation.
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Supplementary

Table S1 Cuproptosis-related genes

ID

FDX1

LIPT1

LIAS

DLD

DBT

GCSH

DLST

DLAT

PDHA1

PDHB

SLC31A1

ATP7A

ATP7B

Table S2 Primers used in this study

Gene
Forward/reverse 
primer

Sequence

ATP7A F CTGTACAGGGCAAAACATCAG

R ACTGTGCTGCCAGGTTTCTT

LIPT1 F GGGGTCGTATGACGCACTTT

R TGGGACCTGGCAGTTACAAA

DLAT F CTCCCACAGGTCCTGGAATG

R TGCTTCTCCCTTCTAATATCTGG 

GAPDH F GCACCGTCAAGGCTGAGAAC

R TGGTGAAGACGCCAGTGGA

DLAT-shRNA CCACTCTGTATCATTGTAGAA

Table S3 Immune_checkpoint_genes

Immune_checkpoint_genes

ADORA2A

BTLA

BTNL2

C10orf54

CD160

CD200

CD200R1

CD244

Table S3 (continued)

Table S3 (continued)

Immune_checkpoint_genes

CD27

CD274

CD276

CD28

CD40

CD40LG

CD44

CD48

CD70

CD80

CD86

CTLA4

HAVCR2

HHLA2

ICOS

ICOSLG

IDO1

IDO2

KIR3DL1

LAG3

LAIR1

LGALS9

NRP1

PDCD1

PDCD1LG2

TIGIT

TMIGD2

TNFRSF14

TNFRSF18

TNFRSF25

TNFRSF4

TNFRSF8

TNFRSF9

TNFSF14

TNFSF15

TNFSF18

TNFSF4

TNFSF9

VTCN1
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Figure S1 AUC curve of ATP7A, DLAT, and LIPT1. AUC, area under the curve.

Figure S2 Validation of the risk model with GEO dataset. Green dots: these are located on the left side of the graph and represent patients 
with lower risk scores; Red dots: these are on the right side of the graph and represent patients with higher risk scores. GEO, Gene 
Expression Omnibus; AUC, area under the curve.
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Figure S3 Immune cells infiltration between high-risk groups and low-risk groups.
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Figure S4 The relationship between prognostic signature and immune checkpoints. ***, P<0.001. NRP1, Neuropilin 1; LGALS9, Galectin 
9; LAIR1, Leukocyte Associated Immunoglobulin Like Receptor 1; ICOS, Inducible T Cell Costimulator; HHLA2, HERV-H LTR-
Associating 2; HAVCR2, Hepatitis A Virus Cellular Receptor 2; CTLA4, Cytotoxic T Lymphocyte Associated Protein 4.


