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Introduction

Nearly 25% of non-small cell lung cancer (NSCLC) 
patients have an early stage resectable disease. Increased 
use of computed tomography (CT) screening has led to 
detection of more NSCLC patients with early-stage disease 
who should be treated (1-6). 

There has been little advancement in the management 
of resectable NSCLC regarding neoadjuvant and adjuvant 
setting for almost two decades. Five-year survival rates for 
resected early stage NSCLC remain disappointing. They 
are estimated to be between 41% and 65% (7), ranging 
from 89% to 71% for stage I, 64% to 55% for stage II, and 
37% for stage IIIA (8). The high incidence of recurrence in 
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distant sites suggests that systemic therapies are essential to 
improve cure rates. 

New treatment modalities are being studied in the 
neoadjuvant and adjuvant settings to reduce the risk of 
systemic relapses and improve outcomes in early-stage 
NSCLC. Neoadjuvant treatment has the potential to 
decrease tumor burden and to eliminate subclinical (micro)
metastases, at the same time providing valuable information 
regarding prognosis, tumor response and downstaging. 
Additional advantage is a comprehensive analysis and 
evaluation of the diverse biological features of the tumor 
at resection. The overall survival (OS) as an endpoint for 
the early-stage trials is very challenging because large 
randomized clinical studies are needed with long-term 
follow-up. Significant concern exists that neoadjuvant 
approach might delay the surgery and increase the risk 
of disease progression potentially leading to switch from 
resectable into unresectable tumor (9-12).

Based on data showing significant benefit and better 
treatment outcomes with a biomarker-driven treatment 
in advanced stage NSCLC, numerous neoadjuvant and 
adjuvant studies with molecular targeted agents and 
immune checkpoint inhibitors, either as monotherapy or 
combined with chemotherapy have been undertaken, many 
of them still ongoing. Various challenges of neoadjuvant 
targeted therapy in early stage NSCLC are the themes 
that are discussed in this review. The focus is mainly on 
EGFR-mutant NSCLC in the context of neoadjuvant 
approach, as it has been most studied. This article is 
written in accordance with the Narrative Review reporting 
checklist (available at https://asj.amegroups.com/article/
view/10.21037/asj-21-114/rc).

Methods

A search has been performed between February 5, 2021 
and December 14, 2021 in PubMed/Medline/Embase and 
Google for relevant studies, meta-analyses and reviews on 
neoadjuvant targeted therapy in oncogene-driven NSCLC 
for the period 2010–2022, English language only. For this 
narrative review, an ethics committee approval was not 
required as it was performed to analyze already published 
studies, meta-analyses and reviews. Following terms were 
used: oncogene-driven NSCLC/NSCLC, adenocarcinoma, 
early stage lung cancer, EGFR-mutant NSCLC, ALK 
rearrangement NSCLC, neoadjuvant molecular/targeted 
therapy (Table 1). Since this is a narrative review, a certain 
subjectivity in choice of studies is not excluded. 

Frequency of genomic alterations in early stage 
non-small cell lung cancer 

New molecular, sequencing techniques like NGS (next 
generation sequencing) have enabled the detection of 
many genomic alterations with development new targeted 
therapies (13). 

Activating EGFR-mutations are reported in 10–35% of 
NSCLC cases, almost all adenocarcinoma type, with well-
known ethnic differences (8–15% occurring in Caucasians 
and 30–60% in East Asian populations), prevailing among 
females, non-smokers and younger population (14-19). 

Tumor stage itself appears to impact the EGFR mutation 
rate as well, although standard biomarker testing in the 
early stage NSCLC is currently not recommended by  
guidelines (20). American trial MSK-IMPACT prospectively 

Table 1 The search strategy summary

Items Specification

Date of search November 10, 2022

Databases and other sources searched PubMed/Medline/Embase and Google

Search terms used Oncogene-driven NSCLC/NSCLC, adenocarcinoma, early stage lung cancer, EGFR-mutant 
NSCLC, ALK rearrangement NSCLC, neoadjuvant molecular/targeted therapy.

Timeframe January 2010 – November 2022

Inclusion criteria Randomized and retrospective studies, meta-analyses, reviews and case reports; only 
English language included

Selection process Selection process was carried out by the author

NSCLC, non-small cell lung cancer; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase.

https://asj.amegroups.com/article/view/10.21037/asj-21-114/rc
https://asj.amegroups.com/article/view/10.21037/asj-21-114/rc
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analyzed 860 multiple lines treated recurrent/metastatic 
adenocarcinomas for mutations in >300 cancer-associated 
genes, and evidenced EGFR-mutations in 27% (21). In The 
Cancer Genome Atlas (TCGA) cohort of 230 treatment-
naive resected adenocarcinomas, 11% were EGFR-mutant 
tumors (16). The Lungscape ETOP Project (22,23) in a 
large group of resected stage I–III NSCLC found EGFR 
mutations in 5.4% (9.7% in adenocarcinomas) (22). In the 
adjuvant phase III ADAURA, out of 2,447 resected stage 
IB–IIIA NSCLC, 44% were EGFR mutation positive, 
with a predominance of Asian vs. non-Asian (63% vs. 37%) 
(24,25). A Chinese retrospective study on 790 early-stage 
resected tumors, found the frequency of EGFR mutations 
was close to those in the advanced disease (53.6% vs. 
51.4%) (26). A recent Japanese analysis of 244 resected early 
stage adenocarcinoma, detected EGFR mutations in 44.6% 
in the whole cohort, while in 50% of 162 patients having 
pathological stage I disease (27). In a big South Korean 
series analysis of 689 stage I–III lung adenocarcinomas 
displayed EGFR mutations in 438 patients (64%) (28). 

 As for ALK rearrangements, the Lungscape ETOP Project 
(22,23) reported them in 6.2% by immunohistochemistry 
(IHC) and around 2.2% by fluorescence in situ hybridization 
(FISH) (23). Similar rates were demonstrated in two 
large Chinese retrospective series of resected stage I–IIIA 
adenocarcinoma, 4% out of 689 patients (28) and 6.6% out of 
1,056 patients (29).

Selected studies on neoadjuvant targeted 
therapy 

Since most of relapses after surgical resection occur in 
distant sites, neoadjuvant systemic treatment increases the 
likelihood of eliminating micrometastases and improving 
outcomes. 

Several randomized controlled trials (RCTs) have clearly 
evidenced the survival benefit of neoadjuvant chemotherapy, 
showing the objective response rate (ORR) ranging from 
35.4% to 41% (10,11). Meta-analysis of 15 RCTs noted 
13% reduction in the death risk in stage IB–IIIA resectable 
NSCLC patients improving OS from 40% to 45% at  
5 years as well (30). 

In the last several years, a significant number of 
neoadjuvant and/or adjuvant studies with molecular targeted 
agents have been undertaken.

Pivotal prospective trials have proven that first line 
TKI treatment show better efficacy with the high rate of 
significant responses and less toxicity than chemotherapy 

in advanced oncogene-driven NSCLC (15,31-39). These 
findings support its evaluation in neoadjuvant setting, 
especially in borderline or potentially resectable tumors 
or those in which a pneumonectomy would otherwise be 
indicated. Importantly, this approach enables analysis of 
tumor specimen before and after targeted treatment and 
thus additionally provides the opportunity to assess tumor 
sensitivity, resistance mechanisms to targeted agents and 
residual tumor burden (40,41). Better insight into the 
biology of residual disease in oncogene-driven NSCLC 
might significantly affect the choice of subsequent therapy 
or combination treatments as well as outcomes. 

Moreover, knowing differing characteristics among 
different TKIs, each generation of targeted therapies 
needs to be carefully evaluated based on their efficacy, 
therapy duration and variety of effects on tumor biology 
characteristics such as intrinsic/acquired resistance 
mechanisms. 

Studies with TKIs in neoadjuvant and adjuvant setting at 
early stage EGFR-mutant and ALK-rearranged NSCLC, 
have shown some promising but mixed results. 

Findings of ADAURA trial (42) represent the proof of 
concept that biomarker-driven treatment could be extended 
from metastatic to the early stage NSCLC and encouraged 
further investigations in the neoadjuvant setting. 

Several clinical trials demonstrated promising efficacy 
and safety of neoadjuvant TKIs (Table 2). EMERGING-
CTONG1103 (43) compared efficacy of neoadjuvant (and 
adjuvant) EGFR-TKI (erlotinib) with platinum-doublet 
chemotherapy (gemcitabine plus cisplatin). The primary 
endpoint of overall response rate (ORR) was not met for 
neoadjuvant erlotinib vs. chemotherapy (ORR 54.1% 
vs. 34.3%; P=0.092) in this cohort of 72 patients, and no 
complete pathological response (pCR) was noted in either 
arm. Major pathological response (MPR) was evidenced in 
erlotinib group only (9.7%). Surgery has been performed in 
73% of patients in erlotinib group vs. 63% of chemotherapy 
group. Significant benefit in progression-free survival (PFS) 
over chemotherapy has been shown (21.5 vs. 11.4 months; 
HR 0.39; P=0.001), but not in OS (45.8 vs. 39.2 months; 
HR 0.77; P=0.417). 

Three small phase 2 studies with neoadjuvant gefitinib 
or erlotinib showed ORRs ranging from 42.1% to 61.5% 
and differing MPR rates from 7.7% to 24.2% (44-46). The 
CSLC-0702 (44) was the first phase II trial of neoadjuvant 
EGFR TKI treatment, with 24 stage IIIA (N2) NSCLC 
patients randomized to receive three cycles of gemcitabine 
plus carboplatin (EGFR-wild type) or erlotinib (EGFR 
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mutated) for 42 days before the surgery. EGFR-mutant 
NSCLC showed a tendency for an improved RR (58.3% 
vs. 25%), with no significant difference in the PFS and OS 
between the two arms. A small, single-arm ESTERN trial (45) 
of neoadjuvant erlotinib for 56 days in 19 patients with stage 
IIIA N2 EGFR-mutant NSCLC patients, has demonstrated 
the radical resection rate (RR) of 68.4% (13/19), with an 
ORR of 42.1%, while median PFS and OS were 11.2 and 
51.6 months, respectively. Another small single-arm phase II 
trial (46) with neoadjuvant gefitinib for 42 days in 35 patients 
with stage II–IIIA EGFR-mutant NSCLC demonstrated 
the ORR as primary endpoint of 54.5%, the rate of MPR of 
24.2%, the median DFS 33.5 months while median OS not 
reached. 

The PROGRESS trial (47) is an ongoing study 
evaluating neoadjuvant gefitinib in resectable IA–IIIA 
EGFR-mutant NSCLC with the primary endpoint to 
assess EGFR-TKI sensitivity biomarkers in responders vs. 
non-responders and correlation of pathologic responses 
with serial plasma and tissue sequencing. The ORR in 13 
evaluable patients was 62%, all have undergone surgery, and 
8% (1/13) had MPR. There was no correlation of residual 
tumor burden with FDG-uptake or tumor response. 
RNA sequencing revealed that immune regulatory and 
inflammatory response genes were upregulated compared 
to the treatment naive cohort, indicating infiltration of 
fibroblasts and T cells. This reflected adaptive responses 
and thus pointed to the consideration of developing relevant 
combination therapeutic strategies in EGFR-mutant 
NSCLC (Table 2).

Neoadjuvant osimertinib, the third-generation EGFR 
TKI given for 6 weeks, is shown to be effective and feasible 

for patients with stage II–IIIB adenocarcinoma with EGFR 
common mutations, according to interim report of the 
NEOS Chinese prospective single-arm study (48). In 28 
evaluable patients, the primary endpoint, objective RR was 
71%—all partial responses, 29% had stable disease with 
disease control rate (DCR) of 100%. Twenty-two patients 
(78.6%) were considered for R0 resection and 95% of them 
underwent R0 resection. The pathological downstaging 
rate was 55%, with only 1 patient achieving a pCR. Adverse 
events (AEs) were observed in 93% with no treatment 
discontinuation. The updated results of the ongoing phase 
2 trial (NCT03433469) (49) of neoadjuvant osimertinib 
show the objective RR 46%, the primary endpoint pCR 
rate 69%, the MPR rate of 15%, with no serious or grade 
3/4 AEs noted. There were neither unexpected delays 
to surgery, nor tumors turning to unresectable or more 
surgical complications reported. 

Based on the firm evidence of osimertinib efficacy 
as the adjuvant therapy (41) and the findings of the 
neoadjuvant phase 2 trial (49), the phase 3 neoADAURA 
trial (NCT04351555) was started (51), the three-arm trial 
comparing the use of neoadjuvant osimertinib with or 
without chemotherapy to chemotherapy alone in patients 
with resectable, stage II to IIIB EGFR-mutant NSCLC 
(Table 3).

Besides, phase II randomized trial (ANSWER) is 
evaluating the efficacy of neoadjuvant novel 3rd generation 
EGFR-TKI Aumolertinib compared with erlotinib or 
platinum doublet chemotherapy in resectable EGFR-
mutant stage IIIA NSCLC, with ORR as the primary 
endpoint (52) (Table 3).

There is growing number of meta-analyses, pooled 

Table 3 Ongoing clinical trials investigating neoadjuvant EGFR TKIs 

Study Phase Stage
Number of  
pts planned

Therapy regimen Primary endpoint

NeoADAURA 
(NCT04351555) (51)

III II–IIIB (N2) 328 Osimertinib vs. osimertinib + CT vs. placebo + CT   
surgery → investigator choice (osimertinib for 3 years)

MPR

ANSWER 
(NCT04455594) (52)

II IIIA N2 168 Almonertinib vs. erlotinib/CT ORR

NeoIpower 
(NCT05104788)

II II–IIIB 27 Icotinib + CT for 2 cycles → surgery MPR

NCT04201756 II IIIA N2 47 Afatinib 16 weeks → surgery → afatinib for 1 year ORR

NCT03749213 II IIIA N2 36 Icotinib for 8 w → surgery → icotinib for 2 years ORR

EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; pts, patients; CT, chemotherapy; MPR, major pathological 
response; ORR, objective response rate.
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analysis and retrospective real-world studies as well.
In a large meta-analysis of 9,635 resected NSCLC 

encompassing 32 studies (53), a significant benefit in 
disease-free survival (DFS) (HR 0.77; P=0.001) and OS 
(HR 0.72; P<0.00001) in early-stage EGFR-mutant 
NSCLC was evidenced. But these findings must be 
interpreted very carefully not only because of other positive 
confounding factors, but also given commonly used PCR 
testing limited to exons 18–21 only in most of the studies. 
Novel comprehensive molecular tests have significantly 
contributed increasing knowledge about the complex 
biology of EGFR-mutant tumors that impact response to 
EGFR TKIs and natural history of EGFR-mutant tumors. 

Five, phase II, prospective, clinical trials comprising 124 
patients with resectable or potentially resectable EGFR-
mutant NSCLC treated with neoadjuvant erlotinib or 
gefitinib were included in a pooled analysis showing good 
surgery results and safety of neoadjuvant EGFR TKI (54). 
The pooled ORR was 58.5% and the surgical resection 
and complete resection (R0) rates were 79.9% and 64.3% 
respectively. In the stage IIIA subgroup (n=68), the pooled 
ORR, resection rate and R0 rate were 51.4%, 72.9%, and 
57.0%, respectively; the downstaging and pCR rates were 
14.0% and 0.0%, and the pooled median PFS and OS were 
13.2 and 41.9 months, respectively. The most frequent post-
surgical complications were lung infection, arrhythmia, and 
pneumothorax.

Recently published meta-analysis (55) of 3 prospective 
RCTs,  and 2  non-RCTs,  a l l  together  wi th  large 
heterogeneity, that included 319 EGFR-mutant stage IIIA 
NSCLC patients (264 in the subgroup analysis of 3 RCTs), 

found that neoadjuvant targeted therapy compared with 
chemotherapy, significantly increased ORR (although it 
was lower than observed in advanced disease), whereas 
significantly decreased grade 3/4 AEs, with the surgical 
rate ~83.8% vs. 74.2% respectively. Data for the OS and 
PFS that were available from four trials only showed no 
significant difference. 

 Few studies have reported on early stage ALK-positive 
lung cancer patients (41,50,56) due to the rarity of this 
distinct subtype of NSCLC. The first one from 2016 (41) 
treated patients with early stage NSCLC harboring ALK- 
or ROS1-fusions or MET ex14 skipping mutations with 
the ALK/ROS1/MET TKI Crizotinib with the aim to 
evaluate resected tumor samples for pathologic response to 
induction therapy, ORR, disease free survival and to identify 
early mechanisms of resistance to targeted therapy. Another 
one (50) reported 11 cases of pathologically confirmed N2 
ALK-positive NSCLC treated with neoadjuvant crizotinib 
followed by surgery, 10 of which achieved R0 resection and 
2 achieved pCR, but one of them with rapid postoperative 
relapse (57). The ongoing phase II multicenter ALNEO 
trial with MPR as the primary endpoint evaluates the 
efficacy and safety of neoadjuvant alectinib in (potentially) 
resectable ALK-positive NSCLC (any T stage with N2, 
T4N0–1) (56) (Table 4).

There are several case reports on neoadjuvant crizotinib 
(60,61), and alectinib (62-65) as well,  pointing to 
neoadjuvant ALK TKI approach as feasible, efficient and 
well tolerated.

The increasing number of approved targeted therapies—
including for KRAS G12C mutations, ROS1, BRAF V600E, 

Table 4 Ongoing clinical trials investigating neoadjuvant TKIs for ALK rearrangement and other rare mutations

Study/oncogenic driver mutation Phase Stage
Number of 
pts planned

Therapy regimen
Primary 
endpoint

ALNeo (NCT05015010)/ALK 
rearrangement; Leonetti et al.  
2021 (56) 

II III 33 Alectinib 2 cycles → surgery → alectinib 
for 2 years

MPR

Geometry-N (NCT04926831)/MET; 
Lee et al. 2022 (57) 

II IB–IIIA, N2 and selected 
IIIB (T3N2 or T4N2)

38 Capmatinib → surgery → adjuvant 
capmatinib 

MPR

NAUTIKA1 (NCT04302025) ALK/
ROS1/BRAF/RET/NTRK (58) 

II  II–III 60 TKI 2 cycles → surgery → CT + TKI for  
2 years (alectinib, entrectinib, pralsetinib, 
vemurafenib + cobimetinib) 

MPR

ALINA (NCT03456076)/ALK 
rearrangement (59) 

III IB (T ≥4 cm) – IIIA 255 CT vs. alectinib for 2 years DFS

TKI, tyrosine kinase inhibitor; ALK, anaplastic lymphoma kinase; pts, patients; CT, chemotherapy; MPR, major pathological response; DFS, 
disease-free survival.
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MET exon 14 alterations, HER2 exon 20 insertion, NTRK 
and RET rearrangements—brings novel opportunities for 
personalized, oncogene-driven treatment approach in (neo)
adjuvant setting (66). Two case reports have been published, 
one on pCR to neoadjuvant crizotinib in adenocarcinoma 
with a MET Exon 14 skipping mutation (67), and the 
other on MPR induced by neoadjuvant BRAF and MEK 
inhibitors in a patient with stage IIIA lung adenocarcinoma 
harboring BRAF V600E-mutation (68).

Geometry-N, a phase II trial of neoadjuvant and 
adjuvant capmatinib in NSCLC with MET exon 14 
mutations and/or high MET amplification is ongoing 
(NCT04926831) (57). Considering those rare mutations, 
the Lung Cancer Mutation Consortium (LCMC) has 
initiated the PROMISE umbrella trial in resectable stage I–
III NSCLC with matched targeted therapies in neoadjuvant 
setting (69). Another ongoing trial, NAUTIKA1 evaluates 
neoadjuvant and adjuvant alectinib, entrectinib, vemurafenib 
plus cobimetinib, or pralsetinib in patients with resectable 
stage II–III NSCLC with ALK, ROS1, NTRK, BRAF 
V600, or RET molecular alterations (NCT04302025) 
(58,70) (Table 4).

Challenges of neoadjuvant targeted treatment

Challenges of neoadjuvant targeted treatment approach 
focused on EGFR TKIs, are numerous, however here been 
referred to several important questions based on available 
data.

Aspects of neoadjuvant TKIs in oncogene-driven early 
stage lung cancer relevant for surgery outcomes

The data obtained from the studies on neoadjuvant TKI 
therapy relate mostly to EGFR TKIs.

From surgical point of view one of the concerns related 
to neoadjuvant TKI treatment is the TKI toxicity, grade 3 
or 4 treatment AEs that might delay surgery.

Neoadjuvant TKI treatment seems to be generally well 
tolerated, with no new safety concerns noted. Available 
data have pointed to low rates of grade ≥3 adverse effects, 
in the range of 0% to 15.8% (43-46,48,54,55). In recently 
published pooled analysis of 5 prospective clinical trials with 
small number of patients included, the incidence of grade 
3/4 AEs was 5.3% for hepatotoxicity and 14.7% for skin 
rash, but there was no surgery delay (54). 

Delay in surgery and potential transformation into 
unresectable tumor represent important concerns 

particularly since the objective RR to EGFR TKIs in 
clinical studies is lower than evidenced in advanced disease. 
Additionally, there is also a certain concern about disease 
flare after EGFR TKI interruption.

Post-operative complications represent another important 
aspect. The incidence of post-operative complications 
reported in the EMERGING-CTONG110323 study (43) 
was similar to neoadjuvant chemotherapy trials (11,71). 
In another phase II study with neoadjuvant gefitinib in 
stage II–IIIA NSCLC (46), there was higher incidence of 
postoperative chylothorax (12.1%) than generally evidenced 
(1.0%) (71,72). No perioperative mortality was noted in 
either of these studies. 

Although it appears that neoadjuvant EGFR TKIs 
don’t entail more pre-operative complications and more 
increased surgical risk than neoadjuvant chemotherapy, each 
generation of targeted agents requires to be thoroughly 
evaluated for features that might influence preoperative 
status or surgical risk, in order to make the most adequate 
selection of patients who will benefit from neoadjuvant 
approach.

Assessment of response to neoadjuvant therapy

Novel neoadjuvant strategies have denoted some weak 
points of widely used response parameters, such as the 
discordance between RECIST response and pathological 
response, as already mentioned, but at the same time 
provided expanded possibilities for detection of reliable 
new biomarkers as well. Incorporating a biomarker testing 
approach into the routine work-up of early-stage NSCLC 
is needed, but still there are many challenges such as to 
establish standardized surrogate endpoints of neoadjuvant 
treatment. Major pathologic response (MPR) defined as 
10% or less residual tumor cells represents a potential 
surrogate endpoint for OS in NSCLC and a marker for 
neoadjuvant treatment efficacy (73,74). 

Regarding this important issue of assessment of 
response to neoadjuvant therapy in clinical trials and 
in everyday practice as well, particularly in the light of 
novel neoadjuvant/adjuvant approaches, the International 
Association of Lung Cancer (IASLC) has released the 
multidisciplinary recommendation for the pathologic 
assessment of resection specimens, encompassing MPR 
and pCR (75). They recommend assessment of the 
percentages of viable tumor, necrosis, and stroma (including 
inflammation and fibrosis), to be applied for all systemic 
therapies, given either as monotherapy or in combination. 
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One of key goals is to enable comparisons of the impact 
of pathologic responses as potential surrogate endpoints 
between diverse types of neoadjuvant therapies in clinical 
studies as well as DFS and OS, but with hope to be 
implemented as well in routine clinical practice. 

Very recently a novel MPR calculator tool (MPRCT) 
for standardized, comprehensive collection of percentages 
of viable tumor, necrosis, and stroma in the tumor bed, 
including tumor width and length in the latter, has been 
developed (76). It has the potential to validate trials with 
MPR and pCR as surrogate end points of neoadjuvant 
therapy eff icacy.  Data from the ongoing Phase 3 
neoadjuvant trials using MPRCT such as IMpower030 
are awaited. The MPRCT compared to the IASLC 
recommendations, might better capture data in areas of 
tumor heterogeneity and decrease the bias of standard 
pathology approach selecting viable areas and avoiding 
necrotic ones, that cause underestimation of pathologic 
response (76).

There is a need for data on precise histological changes 
after targeted therapy such as EGFR-TKI, not only to 
compare with the pre-treatment tumor specimen and assess 
the level of tumor shrinkage, but, even more importantly 
to perform in-depth molecular analysis. This analysis 
is essential for making adequate decision on adjuvant 
approach. Additionally, it remains to be determined whether 
histological characteristics of resected specimens differed 
upon treatment with different EGFR-TKIs. 

The need for comprehensive molecular profiling in the 
light of complex mechanisms of intrinsic and acquired 
resistance to TKIs (EGFR TKIs)

A very important issue is related to establishment of reliable 
genomic/epigenetic biomarkers at the time of diagnosis, and 
consequently the optimal selection of neoadjuvant approach 
with possibility to predict who would most likely respond to 
targeted drugs. NSCLC is a highly complex, heterogeneous 
tumor with co-occurring genomic alterations i.e. with a 
variety of spatially and temporally different co-mutations. 
Given this NSCLC complexity, nowadays widely applied 
molecular profiling at diagnosis such as PCR panels, 
targeted NGS, FISH, IHC, do not encompass sufficient 
number of driver genes unlike comprehensive molecular 
profiling. 

Different resistance mechanisms to EGFR TKIs 
that are responsible for disease progression in advanced 
NSCLC, have been detected based on analyses of tumor 

biopsy samples obtained at the time of tumor progression. 
Around 20–30% of patients with advanced EGFR-mutant 
NSCLC do not respond at all or show some response to 
TKIs for a very brief time (<3 months) as the consequence 
of intrinsic resistance mechanisms which are not yet fully 
recognized (13,77). Due to clonal tumor heterogeneity of 
NSCLC, different genetic alterations may exist in clones 
before treatment initiated, namely de novo alterations, that 
are either cause of intrinsic resistance to EGFR TKIs (78), 
or may reflect prompt adaptive response by some surviving 
tumor cells, a phenomenon called “drug tolerance” to the 
TKI therapy. Those surviving cell subpopulations acquire a 
dormant or “persister” state of cell-cycle arrest and have the 
potential for further tumor growth and progression (79). 

Comprehensive molecular profiling of tumor biopsy 
samples at the time of diagnosis has evidenced the co-
existence of multiple genetic, epigenetic, and functional 
mechanisms underlying variety of EGFR-dependent and/
or EGFR-independent processes that may cause TKI-
resistance (13,16,21,78,80,81). It appears that acquired 
resistance is the result of combined expansion of certain 
pre-existing clones and newly developed resistance 
mechanisms that reflect adaptive tumor response to 
EGFR TKIs therapy. Some of mechanisms are shared 
by these two types of resistance, but with clear temporal 
differences. Thus, since the majority of advanced EGFR-
mutant NSCLC do not depend on EGFR only, but also 
on multiple co-occurring oncogenic events (82), different 
mechanisms underlying intrinsic and acquired resistance 
may be identified concomitantly. All this contribute to 
the complexity of this important aspect for targeted  
treatment (83). Sensitizing EGFR mutations represent 
early clonal events in the process of tumor development, 
while most advanced NSCLCs exhibit heterogeneous 
regions having late clonal driver aberrations that are in fact 
TKI-resistance mechanisms, such as mutations in TP53, 
RB, and genes related to the RAS-RAF-MAPK or PI3K-
AKT-PTEN-mTOR pathways, cell cycle regulation, 
Wnt/β-catenin pathway, DNA damage repair, chromatin 
remodeling, and histone methylation (82-84). While being 
treated with the EGFR TKIs, further on during tumor 
evolution some of those pre-existing clones that most 
effectively foster tumor progression may be selected to 
proliferate as the predominant cell subpopulation reflecting 
prevailing resistance mechanism (13,23,78). Co-occurring 
TP53 mutation is a highly prevalent mutation and the 
most frequent co-mutation found in 30% to over 60% of 
EGFR-mutant tumors. These TP53 alterations reduce 
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responsiveness to EGFR-TKIs and worsen prognosis in 
EGFR-mutant NSCLC patients (45,84-89).

The fact that diverse and heterogeneous intrinsic TKI-
resistance mechanisms may co-exist in the same EGFR 
TKI-resistant NSCLC, is particularly challenging for 
treatment in the neoadjuvant setting, but the only way 
to detect those mechanisms is to endorse comprehensive 
molecular profiling tests such as NGS in routine clinical 
practice in early stage disease. In this context, it becomes 
necessary not only to define EGFR-mutant patients 
subpopulations who are suitable for neoadjuvant targeted 
therapy, but also to identify which EGFR TKI to be 
recommended in an individual case. Comprehensive 
molecular profiling is of great importance for treatment 
decision which EGFR TKI to be administered as some 
of the EGFR-dependent resistance mechanisms cause 
resistance to EGFR TKIs of all three generations, while 
others are sensitive to 2- or 3-generation TKIs, whereas on 
the other hand most of the EGFR-independent resistance 
mechanisms are common to EGFR TKIs of all three 
generations. 

Selecting the appropriate combination targeted therapy 
at the diagnosis as well requires the use of extensive 
molecular profiling. Thus discovered alterations might 
become additionally actionable targets having then potential 
to be predictive biomarkers in certain subpopulations of 
patients (13,17,21,76,80). Consequently, the combination 
of drugs targeting alterations that are detectable already at 
the time of diagnosis might have potential to prevent or at 
least to postpone the predominant proliferation of resistant 
cancer cells, and thus impact the outcomes in early stage 
oncogene-driven NSCLC.

Still, there is a risk that certain tumor cell subpopulations 
harboring other resistance-mechanisms exist while not 
been discovered (80). Thus, EGFR-mutant NSCLC with 
its complexity and diversity of baseline co-existing TKI-
resistance mechanisms that are not even recognized or/
and not targeted, may additionally explain why in a number 
of studies there has been no evidence of OS benefit or of 
decreased risk of relapse following neoadjuvant EGFR 
TKIs treatment.

Moreover, even with extensive molecular profiling tools 
such as NGS, of most frequently a small tumor biopsy 
sample at diagnosis, the aspect of tumor heterogeneity is 
underestimated (82,90,91). 

It should be underlined that circulating tumor DNA 
(ctDNA) that has been analyzed to discover acquired-
resistance mechanisms to TKIs (92-95), might have 

potential as well to detect alterations relevant for selection 
of optimal treatment approach in early stage disease.

Another very important aspect is that more extensive 
use of comprehensive molecular profiling in early-stage 
NSCLC will enable the detection of other, rare oncogene-
driven mutations such as ALK, NTRK, RET, BRAF, HER, 
MET, for which the expanding number of efficient targeted 
drugs have been developed, but large trials enrolling 
patients with tumors harbouring any of them are not 
realistic. 

Prognostic and predictive impact of EGFR mutations in 
early-stage EGFR-mutant NSCLC 

Although oncogene addiction is an established predictive 
factor for TKI response, its prognostic significance in 
resected oncogene-driven NSCLC has not been elucidated. 
But, with increasing knowledge about complex mechanisms 
of intrinsic and acquired resistance, and inevitable shift 
toward comprehensive genomic profiling in near future, 
the prognostic role of oncogenic driver alterations in early 
stage NSCLC and its determinants will be possible to 
define. EGFR mutations as a prognostic factor in resected 
NSCLC have been investigated in a number of studies, with 
conflicting results (28,96-105). 

Several retrospective studies pointed to a significant 
survival benefit in resected EGFR-mutant NSCLC 
compared with EGFR wild-type (96,101,103,105), unlike 
some other studies (22,97-100,102,106,107). In a big South 
Korean series of 438 patients with resected EGFR-mutant 
stage I–III NSCLC (28), EGFR mutation was independent 
prognostic factor of the long-term outcomes with a more 
favorable prognosis in younger patients. The results of 
two meta-analyses were discordant as well (53,107). A 
significant benefit in DFS (HR 0.77; P=0.001) and OS (HR 
0.72; P<0.00001) in early-stage EGFR-mutant NSCLC 
was evidenced in a large meta-analysis of 9,635 resected 
NSCLC patients from 32 studies (53) unlike the other 
meta-analysis (107). 

 Regarding this aspect, comprehensive molecular 
profiling such as NGS may detect co-occurring genomic 
alterations that might influence prognostic and/or predictive 
impact of EGFR mutations. The first study to look at the 
impact of single and multiple cancer-related co-mutations in 
early stage I–III resected NSCLC using NGS was the study 
of Jao et al. 2018 (85). Somatic mutations were detected 
in 86% (184 out of 214 patients), single in 47.2% and 
multiple ≥2, in 38.8% patients. The presence of any known 
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mutation was associated with shorter DFS and an increased 
risk of disease relapse compared to NSCLC tumors with 
no mutations. The negative trend was similar for OS but 
with no significance, which in those with sensitizing EGFR 
mutations might be explained by the subsequent use of 
EGFR TKIs upon relapse.

Interestingly, regarding resected stage IA NSCLC 
patients with no confounding effect of adjuvant therapy, 
no recurrences were noted during the follow-up period in 
those with no somatic mutations unlike in patients with 
NSCLC harbouring mutations (85). This might imply that 
genomic profiling in this particular subgroup potentially 
leads to consideration of adjuvant (targeted) therapy in cases 
of tumors harbouring mutations.

In this study, more than 60% of EGFR positive tumors 
with co-mutations had TP53 as co-mutation which was 
associated with worse DFS and worse OS, unlike the 
LACE-Bio pooled analysis findings (108,109). Negative 
impact of TP53 co-mutation was confirmed in several 
studies (44,89,110). A small phase II trial with neoadjuvant 
erlotinib in EGFR-mutant Stage IIIA N2 NSCLC) found 
that TP53 co-mutation significantly reduces the efficacy 
of neoadjuvant EGFR TKIs (89). Absence of TP53 co-
mutation, or very low abundance of it was associated with 
longer PFS, whereas high abundance was associated with 
short PFS (44). According to updated results from the 
ongoing phase 2 trial (49) of neoadjuvant osimertinib, a 
loss-of-function RBM10 mutation was evidenced in tumors 
lacking pathologic response. This might be explained 
by the fact that loss-of-function mutation in RBM10 
tumor suppressor gene contributes to the pathogenesis 
of adenocarcinoma, cell  proliferation and disease  
progression (111).

All those results just emphasize the importance of 
comprehensive genomic profiling in early stage EGFR-
mutant NSCLC. 

There are some convincing data that the abundance 
of EGFR mutation is related to the efficacy of targeted 
treatment that cannot be detected by commonly used PCR 
test (112,113). In a retrospective real-world study (35) 
comparing the efficacy and survival outcome of neoadjuvant 
EGFR TKI vs. chemotherapy in patients with stage  
I–IIIA lung adenocarcinoma, the mechanisms underlying 
the primary and acquired TKI resistance have been 
explored by NGS DNA sequencing of both, pre- and post-
treatment tumor samples. The prominent finding was 
the mutant allele frequency (MAF) of EGFR mutation 

decreasing following targeted therapy except in one case of 
T790M mutation. It was noted that patients maintaining 
stable disease exhibited significantly lower EGFR mutation 
MAF following TKI therapy (P=0.032) which in 3 of them 
was even undetectable after therapy (35). 

In a recent large Chinese study, patients with EGFR 
and co-occurring other multiple mutations, treated with 
immunotherapy, had a longer survival time with higher 
TMB score and distinct immune cell infiltration features 
compared to patients with EGFR mutation only (114).

Prognostic role of EGFR mutations as oncogenic driver 
alterations of immunotherapy efficacy 

Regarding prognostic impact of EGFR mutations 
on immunotherapy ef f icacy,  s ince  (neo)adjuvant 
immunotherapy emerging in early stage setting, it is 
recognized that EGFR mutations may influence anti-
tumor immune responses. The mechanisms underlying 
poorer response to immunotherapy in EGFR-mutant 
NSCLC seem to be related to the higher diversity and 
lower clonality of those tumors (115). Some relatively 
recent studies have found as well that patients with 
exon 19 deletion have lower TMB leading to poorer 
immunotherapy efficacy compared to patients with 
L858R mutations or wild-type EGFR (116). Recent 
study on the correlation of the T-cell receptor (TCR) 
repertoire with EGFR mutations, found that EGFR exon 
19 deletion tumors better induce T-cell expansion than 
EGFR L858R mutant and EGFR rare mutations tumors, 
thus leading to differing responses to EGFR TKIs as  
well (115). This was in line with the findings in advanced 
stage EGFR-mutant NSCLC (98,117,118). 

Correlation between TMB and outcomes of EGFR TKI 
treated EGFR-mutant adenocarcinoma

The issue of TMB affecting the efficacy of EGFR TKI 
treatment has been explored in recent years (119,120). 
Higher TMB was demonstrated to be associated with 
worse DFS (120). The recent study (91) found that TMB is 
significantly increased post-EGFR TKI based on analysis of 
paired tumors pre- and post-EGFR-TKI. The initial TMB 
of those ultimately developing T790M resistance tended 
to be lower compared to other resistance mechanisms. 
This points to the distinct biology and course of EGFR-
mutant NSCLC related to pre-treatment TMB and 
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tumor heterogeneity. It has been speculated that mostly 
the emergence of initially subclonal mutations drive the 
increase in TMB after 1st/2nd generation EGFR TKI 
treatment, but unable to increase effective immunogenicity. 
Further investigation in the 3rd generation EGFR TKI is 
of interest as well.

Interestingly, recently published study (121) on 198 
advanced NSCLC patients explored how TMB affects 
the efficacy of EGFR TKIs and pemetrexed/platinum. 
The findings pointed that higher non-synonymous TMB 
correlates with inferior PFS for 1st generation EGFR 
TKIs in EGFR-mutant NSCLC and worse response to 
pemetrexed/platinum in EGFR/ALK wild-type patients. 
The potential for clinical use of TMB as additional 
biomarker for neoadjuvant approach in early stage setting 
needs to be investigated in large clinical studies.

Conclusions

A number of neoadjuvant and adjuvant trials with molecular 
targeted agents have been undertaken, several of them 
showing some clinically meaningful results for patients 
with EGFR-mutant NSCLC. Various challenges of 
neoadjuvant targeted therapy in early stage NSCLC are the 
themes that are discussed in this review. Based on available 
published data several important issues include treatment 
efficacy, aspects of neoadjuvant targeted treatment relevant 
for surgery outcomes, response assessment on resection 
specimens after neoadjuvant treatment, the need for 
comprehensive molecular profiling in the light of complex 
resistance mechanisms, prognostic and predictive impact 
of oncogenic driver alterations in early-stage NSCLC, 
relationship between TMB and outcomes. 

It should be underscored that conflicting results 
of studies in last decade interpreted with caution, in 
particular because of commonly used PCR testing limited 
to mutations in exons 18–21 only in most of them. Novel 
comprehensive molecular profiling tools like NGS have 
significantly changed our increasing knowledge about 
the biology features of EGFR-mutant tumors and impact 
of evidenced diverse co-mutations and mechanisms of 
intrinsic/acquired resistance, not only on response to 
TKIs, but also on the natural history of EGFR-mutant 
tumors. More studies with much larger patients population 
enrolled and with extensive molecular profiling are needed 
to develop the optimal neoadjuvant treatment approach for 

oncogene-driven NSCLC.
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