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Introduction

Adipose tissue was long thought to be an inert bodily 
substance, which was filled with lipid and surrounded the 
peripheral organs for storage of excess energy and acted 
as a buffer for mechanical strain. However, under normal 
physiological conditions adipose tissue performs important 
functions by secretion of adipokines and growth factors to 
regulate of lipid metabolism (1). These adipocyte processes 
are tightly regulated by homeostatic mechanisms and 
neighbouring cell-to-cell interactions, which maintains 
body temperature by consuming fatty acids via non-
shivering thermogenesis. Adipose tissue experiences 
profound maladaptation in response to calorie excess, such 
as in obesity, which induces adipose tissue hypertrophy, 
dysregulates mitochondrial biogenesis, lowers mitochondrial 
mass and favours oxidative phosphorylation. Furthermore, 
the type and anatomical location of adiposity drives 
diverse regional effects in adipose tissue biology, which are 
reflected in transcriptomic and proteomic profiles (2,3) and 
independently elevate metabolic and cardiovascular disease 
risk for major events such as myocardial infarction (4).

Yet, surprisingly, a complex relationship exists between 
adiposity and the high prevalence of cardiometabolic 
diseases. It’s well established that perivascular adipose tissue 
can drive atherosclerosis (5) and is independently associated 
with residual cardiovascular risk in patients (4). Vascular 
cells also exert powerful effects on neighbouring adipose 
tissue (6). By contrast, epidemiological data show that 
overweight individuals suffering from chronic inflammatory 
diseases do better than normal-weight individuals with 
the same chronic disease (7). However, the underlying 
factors which drive these adipose tissue survival benefits 

remain elusive. One potential mechanism that may explain 
the survival paradox could be via physiologically stressed 
adipose tissue. Chronic high fat feeding in mice is a model 
of diet-induced obesity, which results in oxidative stress, 
lowers mitochondrial mass, cellular ATP and induces 
mitochondrial dysfunction, similar to mitochondrial 
dysfunction observed in metabolic disease patients. 
However, not all mitochondrial stress is pathological, 
transient mild stresses confer protection through 
mitohormesis; a process where mitochondrial derived 
reactive oxygen species can lead to a persistent adaptation 
and protection against future stressors (8).

High fat diet feeding in mice results in numerous multi 
organs changes. To discretely study the role of adipocyte-
induced stress on the myocardium Crewe et al. used an 
inducible mouse model, which selectively overexpresses 
mitochondrial ferritin (FtMT) (adipo-FtMT mouse) 
following doxycycline exposure. This results in systemic 
glucose intolerance, low adiponectin levels and oxidative 
damage in adipocytes, that mimic high fat feeding (9). 
Interestingly, adipo-FtMT mice show enhanced β-cell mass, 
suggestive of beneficial interorgan signalling. Nevertheless, 
high fat feeding in mice and obesity in humans induces 
a number of systemic pathological organ manifestations, 
not least cardiac dysfunction by enhanced reactive oxygens 
species and an elevated risk for subsequent myocardial 
infarction. Adipo-FtMT mice show similar levels of cardiac 
tissue mitochondrial H2O2 to that observed in wild-type 
mice after 16 weeks on a high fat diet (9). Thus, establishing 
that localised adipocyte stress induces across organ 
dysfunction in the myocardium. 

To determine the mode of across-organ communication 
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in adipo-FtMT mice on a doxycycline enriched high 
fat diet, Crewe et al. investigated circulating circulating 
extracellular vesicles (EV). Long range organ-to-organ and 
organ-to-tissue signalling in this context can be mediated by 
EV (10). EV are bi-lipid enclosed envelopes encompassing, 
apoptotic bodies, microvesicles and exosomes. Adipocytes 
EV under normal physiological conditions contribute to 
the circulating plasma pool (10). Following pathological 
stimuli, such as perturbations in glucose, inflammation, 
or in patients with underlying cardiovascular disease 
and metabolic disease, adipocyte EV show differential 
enrichment of EV-cargo, including proteins, microRNAs 
and lipids (11). Pathological adipocyte EV regulate 
properties in recipient cells, including alterations in cellular 
transcription distally from their source in other organs, with 
potential to accumulate in the myocardium (10). 

Crewe et al. demonstrate how high fat feeding in mice 
augments adipocyte EV release and enriches functional but 
oxidatively damaged mitochondria within their membranes, 
that confer mitohormesis and protect against subsequent 
reperfusion injury in mice (8) (Figure 1). Circulating mouse 
adipo-FtMT were positive for generalised EV-associated 
proteins ALG-2-interacting protein X (ALIX), CD63, 
CD81 and contained more fatty acid binding protein-4 
(FABP4), that has previously been shown to be present in 
adipocyte derived EV (12). The results from this study are 

similar to other reports of alterations in blood EV number 
in models of diet-induced obesity (13). There are earlier 
description of mitochondria and mitochondrial derived 
proteins within EV from activated platelets and stem cells 
(14,15). But numerous studies, including investigations 
from our laboratory utilise mitochondrial proteins to 
demonstrate the absence of cellular contaminants in isolated 
EV preparations in line with reporting guidelines by the 
International Society for Extracellular Vesicles (ISEV) (16). 
It’s important to note that many investigators may be 
selecting against functionally important vesicles populations 
during protocol optimisations, which contain functional 
mitochondria and mitochondrial proteins based on these 
recommendations.

Adipo-FtMT serum EV accumulate in the heart in vivo  
and mediate pro-oxidant effects, but the authors note that 
the heart is not the predominant site of accumulation 
in vivo ,  with significant accumulation in the liver. 
However, the authors do not allude to other dominant 
sites of EV capture, such as the spleen, lung and kidney, 
which are also liable to metabolic dysfunction and show 
mitochondrial stress in chronic diseases (17). The primary 
cell type for EV capture in numerous organs are resident 
macrophages. EV enriched with mitochondrial proteins 
can modulate pro-inflammatory and anti-inflammatory 
responses in macrophages (14,15). The present study 
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Figure 1 Crewe et al. 2021 described how physiologically stressed adipocytes release extracellular vesicles, that contain mitochondrial 
proteins and induce pro-oxidation mitohormesis in the heart and protect against future ischaemic reperfusion injury.
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reports that adipocyte EV, in part, are capable of evading 
the mononuclear phagocytic system and induce localised 
effects in the myocardium (8). But the EV-properties, which 
orchestrate this adipocyte-to-myocardium signalling axis 
are not understood. Determination of biodistribution of EV 
in vivo is complex, owing to their very small size. Lipophilic 
dyes, such as PKH26 used in this study, to exogenously label 
EV and subsequently inject them into mice is one method 
to track EV fate post-mortem. However, lipophilic dye 
labelling of EV for biodistribution in vivo has a number of 
limitations, including non-specific labelling of lipoproteins, 
dye leaching and formation of dye aggregates, which have 
been discussed in detail elsewhere (18). These highlight the 
need for more in-depth EV tracking analyses of adipocyte 
derived EV in vivo, determination of the EV characteristics 
that allows localised capture to the myocardium and 
establishment of whether adipocyte EV capture in other 
organs confers mitohormesis.

The effective dose injected represented as 0.033% of 
endogenous circulating EV in the mouse, suggests very 
powerful effects on redox signalling. Numerous studies 
utilise doses, which are several orders a magnitude greater 
than those used here, or present under normal physiological 
or pathological conditions (19). But it remains uncertain, 
which proportion of the injected EV accumulated within 
the myocardium versus those, which localise to other 
tissues such as the liver, which outweigh the mass of the 
myocardium. Cardiomyocytes, are a predominant cell 
type in the heart, uptake adipocyte EV and adipo-FtMT 
high fat diet fed serum EV induce oxidative damage 
in cardiomyocytes when compared to serum EV from 
controls (8). Investigations by others suggest that uptake 
of EV by other cell types found in the myocardium surpass 
cardiomyocyte EV uptake, namely EV uptake by vascular 
endothelial cells is far greater than cardiomyocytes and 
even fibroblasts. Endothelial cell dysfunction is a hallmark 
event in metabolic and cardiovascular dysfunction and the 
authors of the present study have previously reported the 
transfer of caveolin-1 from endothelial cells to adipocytes in 
EV. Highlighting the intricate complexity of EV mediated 
signalling in whole organisms and across organs systems (20).

To study cell-to-cell specific EV communication 
pathways, cell-specific EV inhibition is required. As of 
now, it is not possible to completely abolish EV mediated 
signalling in distinct cell types, but EV release in vivo can 
be limited through application of GW4869, a neutral 
sphingomyelinase 2 (nSMase2) inhibitor of ceramides. 
Circulating plasma ceramides and plasma EV-ceramides 

regulate vascular redox signalling and influence outcomes 
in patients with cardiovascular disease (11). GW4869 is 
general inhibitor of nSMase2, and it is likely that numerous 
processes dependent on ceramide synthesis will be affected 
if such inhibitors are used for longer periods of time, which 
is often necessary for treatment of chronic diseases such 
as cardiometabolic dysfunction. Cell-specific adipocyte 
derived EV inhibitors will enable delineation of adipocyte 
EV versus those generated by other cell types in vivo.

Emerging data shows that the heart can also produce 
signals to influence body weight, through systemic 
regulation of energy metabolism and mitochondrial 
biogenesis (21). Specifically, plasma EV isolated following 
ischemic reperfusion injury induce adipocyte endoplasmic 
reticulum stress through an EV-miRNA cluster, which 
can similarly to this study, be inhibited by application of 
GW4869 (22).

The findings by Crewe et al. have important health 
implications. But subsequent investigations will need to 
determine, whether the anatomical location of adipose tissue 
has negative consequences on metabolic health. Visceral 
white adipose tissue is more pathological than subcutaneous 
white adipose tissue. These adipose tissue depot differences 
may have important variations in their ability to mediate 
mitohormesis through EV mediated signalling, which may 
be further influenced by sex. Males are more likely to store 
visceral adipose tissue, whereas women are more likely to 
preference subcutaneous adipose tissue, which are driven by 
sex hormones (23).

The study highlights the tremendous complexity of 
across organ signalling, diverging away from a narrow 
focus on immediate cell-to-cell interactions locally in 
tissue microenvironments. Across organ communication 
in pathological settings may be both acute, with selective 
bursts of EV for immediate effects and prolonged in chronic 
disease. A better understanding of how EV mediated organ-
to-organ communication mediates pathological signalling 
will underpin the creation of new blood based diagnostic 
tests, to offer precision medicine and potentially EV-based 
therapeutics to protect tissues from future insults.
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