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Introduction

MicroRNA (miRNA) biogenesis and function

Noncoding RNAs (ncRNAs) have arisen as a new paradigm 
in gene regulation and cell differentiation (1). Further of 
ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) 
involved in protein synthesis, regulatory ncRNAs classify 
based on their size: those shorter than 200 nucleotides (nt) 
are called short non-coding RNAs and include miRNAs, 
short interfering RNAs (siRNAs), small nuclear RNA 
(snRNA), small nucleolar RNA (snoRNA) and piwi-
interacting RNAs (piRNAs), whereas those longer than 
200 nt are called long non-coding RNAs (lncRNAs) and 

include linear [long intergenic (lincRNA), intronic RNA, 
enhancer RNA (eRNA), natural antisense transcripts (NAT)] 
and circular RNA (circRNA) (2). They can regulate gene 
expression at transcriptional or post-transcriptional level 
by modulating chromatin structure, RNA maturation and 
protein synthesis/transport (3). 

MiRNAs are a large family of conserved, small, non-
coding RNAs of 19–25 nt long that repress the translation 
and/or degradation of their target mRNAs (4). Since the 
discovery of the first miRNA, Lin-4, in Caenorhabditis 
elegans in 1993, thousands of miRNAs have been uncovered 
in many multicellular organisms (5,6). At present, there 
are more than 2,600 and 1,900 mature miRNAs described 
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in human and mouse, respectively (7). This regulatory 
system is based on base-pair complementarity between 
miRNAs and target sequences mainly located in the 3' 
untranslated region (UTR) of mRNAs. However, functional 
miRNA binding sites can also be found in the 5' UTR 
and open reading frame regions (ORFs) (8). This feature 
makes possible that a single miRNA can potentially target 
hundreds mRNAs and that one mRNA can be regulated 
by several miRNAs, with cooperative repression achieved 
by binding closely spaced target sites (9). This dynamic 
interaction relies on many factors, including the subcellular 
location, the abundance of miRNAs and target mRNAs and 
the affinity of miRNA-mRNA interactions (10). MiRNAs 
are transcribed by RNA polymerase II as a long precursor 
RNA primary miRNA (pri-miRNA) which is processed 
by the DROSHA-DGCR8 in the nucleus, resulting in a 
precursor miRNA (pre-miRNA) of ~70 nt in length. Once 
exported into the cytoplasm, it is shortened by DICER, 
yielding a ~22-nt mature miRNA. There, miRNAs associate 
with specific mRNAs within the multiprotein complex of 
Argonaute proteins, the core of the RNA-induced silencing 
complex (RISC) (11). One strand of the miRNA (‘guide 
strand’) is loaded into argonaute (AGO), whereas the 
other strand (‘passenger strand’) is eliminated. Alternative 
cleavage by DROSHA or DICER leads to the generation 
of isomiRs (9). Further, multiple non-canonical miRNA 
biogenesis pathways have been discovered, which include 
Drosha/DGCR8- and Dicer-independent processing  
routes (10). MiRNAs show very specific expression patterns 
that differ among tissues and cell types and are involved 
in virtually every cellular process, including development, 
differentiation, stress response and apoptosis (12).

Extracellular miRNAs

Although miRNAs function cell-intrinsically, miRNAs 
can be found in mostly every body fluid which support 
their role in the communication between cells and tissues. 
MiRNAs can be exported by cells through two main routes: 
(I) active transport via extracellular vesicles (EVs) and (II) 
transport as part of protein-miRNA complexes; which 
confer them protection from degradation by ribonucleases. 
Further, there can be some passive leakage of miRNAs from 
damaged cells (Figure 1) (13). 

EVs are classified based on their size and biogenesis: 
exosomes (30–200 nm), microvesicles (MVs) (100–1,000 nm)  
and apoptotic bodies (ABs) (>1,000 nm). Their heterogeneity 
of cargoes includes lipids, proteins, metabolites and nucleic 

acids. Exosomes, also termed small EVs, are generated 
through the endocytic pathway through the translocation 
of multivesicular bodies (MVBs) to the plasma membrane, 
where they undergo fusion and release their contents 
through the process of exocytosis involving both endosomal 
sorting complex required for transport (ESCRT)-dependent 
or ESCRT-independent ceramide-mediated pathways (14).  
Their characteristic composition of surface proteins facilitates a 
selective targeting of recipient cells (15). The main proteins 
incorporated in exosomes are members of the tetraspanin 
family (CD9, CD63 and CD81), ESCRT proteins (Alix, 
TSG101), integrins, heat shock proteins (Hsp), actin and 
flotillins (14). A growing evidence indicates a selective active 
loading or sorting of miRNAs into these vesicles (16,17). 
Some studies suggest the involvement of AGO2 and other 
RNA-binding proteins in the regulation of this miRNA 
loading (18). Other RNA-binding proteins such as Y-box 
protein 1 (19), nucleophosmin 1 (NPM1) (20), neutral 
sphingomyelinase 2 (nSMase2) (21) and hnRNPA2B (22)  
also confer specificity to this process. The EXOmotif 
GGAG present in some miRNAs can be recognized by 
hnRNPA2B1, thus controlling the loading of these miRNAs. 
Interestingly, sumoylation of hnRNPA2B1 seems to be 
essential for the binding of hnRNPA2B1 to miRNAs (22).  
Recently, Garcia-Martin et al. identified sequence patterns 
in miRNAs which determine their secretion in EVs 
(EXOmotifs) or cellular retention (CELLmotifs), defining 
cell-type-specific EV miRNA profiles (23).

MVs and ABs are EVs formed by direct outward budding 
and fission of the plasma membrane in living and dying 
cells, respectively, and their surface protein largely depend 
on their cellular membrane of origin (24). MVs generation 
mostly occur in lipid-rich plasma membrane microdomains 
(lipid rafts/caveolae). Although the mechanism of miRNA 
uploading into MVs is largely unknown, Collino et al. 
demonstrated that the ribonucleoproteins T-cell internal 
antigen-1 (TIA), TIA-1-related (TIAR) and AU-rich 
element-binding protein (HuR) are involved in the selected 
miRNA pattern in MVs (25). Many MV-encapsulated 
miRNAs can also be associated with RISC proteins such 
as AGO2, which increase their stability and functionality 
in recipient cells (26). Phosphatidylserine is a distinctive 
element of ABs. Zernecke et al. firstly showed that miR-
126-enriched ABs shed by endothelial cells could alter 
chemokine responses in neighboring cells (27). However, 
there are very few studies investigating the AB-encapsulated 
miRNA effects and a limited understanding about the 
specificity and selectivity of miRNA loading into ABs. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/surface-proteins
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MiRNAs can also be transported in vesicle-free systems, 
such as RNA-binding proteins or low-density (LDL) 
and high-density lipoproteins (HDL) (28). More than 
half of the miRNAs found in serum may be bound to 
ribonucleoproteins, such as AGO2, NPM1 and ribosomal 
protein L10a and L5 (20,29). Of note, the profile of 
miRNAs bound to vesicle-free systems differs from that 
found in EVs, indicating complementary and independent 
mechanisms of miRNA transport (28). 

Many research groups have demonstrated that 
extracellular miRNAs are functional in recipient cells. 
However, the mechanisms of miRNA uptake are not fully 
understood. There is evidence that vesicle-associated 

extracellular miRNAs can be internalized by recipient cells 
through endocytosis, phagocytosis or the direct fusion with 
the target-cell plasma membrane. Interaction can operate 
through two main mechanisms: receptor-ligand binding 
and direct release of EV content in target cells (Figure 1). 
Vesicle-free secreted miRNAs may be taken up by specific 
cell surface receptors. Particularly, miRNAs associated 
with HDL interact with the HDL receptor and scavenger 
receptor BI (SR-BI). MiRNAs have also been shown to be 
transferred via direct cell-cell contact and gap junctions (10). 

The fact that many circulating miRNAs dynamically 
exhibit a bio-fluids-specific profile in relation to a 
pathophysiological state, not only constitutes a specific 

Figure 1 Intercellular miRNA transference. Extracellular miRNAs participate in the communication between cells. MiRNAs (mature 
miRNAs and pre-miRNAs) are exported by cells through extracellular vesicles (exosomes, microvesicles and apoptotic bodies), as part 
of protein-miRNA complexes or passive leakage. Uptake mechanisms from vesicle-associated extracellular miRNAs are phagocytosis, 
endocytosis and direct fusion with the target-cell plasma membrane, while vesicle-free secreted miRNAs are taken up by specific cell surface 
receptors. Following internalization, miRNAs released in the cytoplasm can repress target gene expression. miRNA, microRNA; MVB, 
multivesicular bodies.
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mechanism for intercellular communication, but also gives 
rise to the miRNA application as diagnostic and prognostic 
biomarkers (10). Particularly, miRNAs-based biomarkers 
in blood and urine have generated a strong interest in 
the field of nephrology. This review discusses the up-to-
date knowledge of miRNA function in kidney diseases, 
focusing on their participation in cellular communication 
and their value as biomarkers. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://exrna.amegroups.com/article/
view/10.21037/exrna-22-2/rc).

Methods

Bibliography search strategy includes publications in 
English from peer-reviewed journals listed in PubMed 
database from 2000–January 2022. Search terms used 
were: “extracellular miRNAs” OR “kidney disease” OR 
“biomarkers” (Table 1).

Extracellular miRNAs in renal pathophysiology

Chronic kidney disease (CKD)

CKD is a clinical condition with maintained reduction 
of renal function which is present in 30–40% of patients 
with highly prevalent pathologies such as diabetes mellitus 
and hypertension (30). It leads to tubulointerstitial and 
glomerular fibrosis as a result of excessive deposition of 
extracellular matrix of proteins (ECM), such as hyaluronic 
acid, fibronectin (FN), proteoglycans and interstitial 
collagens in association with a persistent inflammatory 

response, tubular epithelial cell (TEC) dedifferentiation and 
loss and rarefaction of the peritubular microvasculature (30). 
Myofibroblasts, derived from fibroblasts and PDGFRβ+/
PDGFRα+ mesenchymal cells in the kidney, are the 
principal cells responsible for producing ECM (31). 

Regulation of kidney fibrosis by miRNAs
MiRNAs have raised as powerful dynamic regulators 
of fibrotic processes [fibromiRs, (32)]. It mainly occurs 
thought the regulation of transforming growth factor beta 1  
(TGF-β1) signaling in a cell-dependent and context-
dependent manner (33). In keeping, Dicer1 deficiency 
promotes fibrosis in different organs by upregulating 
Smad2/3 (34,35). TGF-β signaling, in turn, can regulate 
the transcription of miRNAs by binding Smad proteins to 
Smad-binding elements (SBEs) in the DNA. In addition, 
Smad-activated auxiliary factors such as the RNA helicase 
p68, a component of the Drosha microprocessor complex, 
can promote the recruitment of Drosha/DGCR8 to specific 
pri-miRNAs (36). 

Gomez et  a l .  identified 24 miRNAs commonly 
upregulated both in human CKD and in animal models 
of kidney fibrosis, suggesting a “fibrotic” miR signature 
in the kidney (37). Cell-specific small RNA-sequencing 
(sRNA-seq) on TECs, endothelial cells, PDGFR-β+ cells 
and macrophages also show a differential miRNA profile in 
injured kidneys (38).

MiRNA-mediated control of kidney fibrosis mainly 
occurs thought the regulation of crucial signaling pathways 
associated with epithelial dedifferentiation, myofibroblast 
activation, matrix deposition and inflammation (Table 2) (113). 
MiR-21 regulates TGF-β-induced signaling pathways by 
targeting Smad7 and phosphatase and tensin homology 
(PTEN) and, in turn, is upregulated by TGF-β in TECs 
promoting renal fibrosis (39,40). Other miRNAs regulating 
TGF-β signaling are: miR-433 which contributes to 
renal fibrosis by amplifying the TGF-β/Smad3-Azin1  
pathway (42), miR-23b targeting TGF-β receptor type II 
(TGF-βRII), SMAD3 and TGF-β, suggesting a negative 
feedback loop-regulating TGF-β signaling (43), and 
miRNA-196a/b, which mitigate renal fibrosis by targeting 
TGF-βRII (44). Although the contribution of epithelial 
to mesenchymal transition (EMT) to fibrosis is seriously 
questioned (31), some miRNAs have been closely related 
to it. MiR-200a targets include EMT-related factors 
such as TGF-β2, β-catenin and the Zinc finger E-box 
binding homeobox 1 (ZEB1), which negatively modulates 
E-cadherin (45-47). Let-7d and miR-214 has been 

Table 1 Search strategy summary

Criterion Specification

Date of search January 2022

Databases and other 
sources searched

PubMed

Search terms used “Extracellular miRNAs” OR “kidney 
disease” OR “biomarkers”

Timeframe 2000–January 2022

Inclusion and 
exclusion criteria 

Only articles written in English language 
and published in peer-reviewed journals 
were included

Selection process Selection process was carried out by 
the author

miRNAs, microRNAs.

https://www.pnas.org/content/117/39/24213#ref-10
https://exrna.amegroups.com/article/view/10.21037/exrna-22-2/rc
https://exrna.amegroups.com/article/view/10.21037/exrna-22-2/rc
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Table 2 MiRNAs in chronic and acute kidney injury, diabetic nephropathy, hypertensive nephropathy, kidney immune diseases and polycystic 
kidney disease

miRNAs Level during disease Target Effect Reference(s)

Chronic kidney injury

miR-21 Up SMAD7, PTEN, PPARA, MMPs, TIMPs ECM*, mitochondrial dysfunction* (39-41)

miR-433 Up AZIN1 ECM* (42)

miR-23 Up TGFBRII, SMAD3, TGFB ECM# (43)

miR-196 Up TGFBRII ECM# (44)

miR-200a Up TGFB2, CTNNB1, ZEB1/2 EMT# (45-47)

Let-7 Down TGFBRI, HMGA2 EMT* (48,49)

miR-214 Up SNAIL, TWIST, ND6, ND4 EMT* (50,51)

miR-27 Up PPARG Mitochondrial dysfunction* (52)

miR-33/-150/-495 Up CPT1A Mitochondrial dysfunction* (53,54)

miR-29 Up COLs, FBNs, LMNAs, ELNs ECM# (55)

miR-132 Up FOXO3A, P300 Fibroblast proliferation# (56)

miR-503 Down RAF1 Fibroblast proliferation# (57)

Acute kidney injury

miR-21 Up PDCD4, PTEC, PPARA, NFKB Apoptosis#, inflammation# (58,59)

miR-494 Up ATF-3 Apoptosis*, inflammation* (60)

miR-24 Up H2A.X, HO-1 Apoptosis* (61)

miR-194 Down RHEB ROS#, inflammation# (62)

miR-181 Up BCL-2 Apoptosis* (63)

miR-489 Up PARP1 Apoptosis# (64)

miR-150 Up MYB Apoptosis*, inflammation* (65)

miR-16 Up BCL2 Apoptosis* (66)

miR-107 Up DUSP7 Inflammation* (67)

miR-183 Up SIRT1 Fibrosis*, apoptosis* (68)

Diabetic nephropathy

miR-192 Up ZEB1/2 ECM* (69)

miR-200b/c Up ZEB1, FOG2 ECM* (70)

miR-216/-217 Up PTEN Cellular hypertrophy* (71)

miR-21 Up SMAD7, MMP-7, TIMP1 ECM* (41,72)

miR-23 Down SNON ECM*, EMT* (73)

miR-29a Down HDAC Podocyte damage* (74)

miR-29c Up SPRY-1 Apoptosis*, ECM* (75)

miR-25 Down NOX4 ROS* (76)

miR-30/-130b Up SNAIL1, CTGF, GIPR2 EMT# (77-79)

Table 2 (continued)
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Table 2 (continued)

miRNAs Level during disease Target Effect Reference(s)

miR-10 Up NLRP3 Inflammation# (80)

miR-45 Up PSHD11, LMP7, P65 Inflammation# (81,82)

miR-377 Up P21, Mn-SOD ROS*, autophagy# (83)

miR-214 Up ULK1, PTEN Autophagy#, ECM*, cellular hypertrophy* (84,85)

miR-150 Up SIRT1 Autophagy# (86)

Hypertensive nephropathy

miR-29 Up COL1A1 ECM# (87)

miR-204 Down SHP2 ECM* (88)

miR-192 Up ZEB1/2 ECM* (89)

miR-155 Up AGTR1 ECM# (90)

miR-21 Up PPARA ECM* (91)

miR-103 Up SNRK ECM*, inflammation* (92)

miR-429 Up ZEB1 EMT# (93)

Kidney immune diseases

Let7a miR-148/-
196

Up GALNT2, C1GALT1 Aberrant IgA glycosylation* (94-96)

miR-223 Down KPNA3/1 Endothelial cell proliferation* (97)

miR-100 Down IL-8 Inflammation* (98)

miR-877 Down IL-1β Inflammation* (98)

miR-200bc
miR-429

Up TWEAK Inflammation# (99)

miR-21 Up PTEN ECM* (100)

miR-146 Up TRAF6 Inflammation# (101)

miR-150 Up SOCS1 ECM* (102)

miR-422 Up KLK4 ROS*, inflammation* (103)

miR-10 Down IL-8 Inflammation* (104)

Polycystic kidney disease

miR-17 Up PKD1/2, PPARA Cyst growth* (105,106)

miR-92 Up HNF1B Cyst growth* (105)

miR-20/-106a Down KLF12 Cell proliferation* (107)

miR-365 Up PKHD1 ECM# (108)

miR-192/-194 Down ZEB2, CADH2 EMT* (109)

miR-21 Up PDCD4 Apoptosis# (110)

miR-199a Up CDKN1C/P53 Cell proliferation* (111)

miR-214 Up TLR4 Inflammation# (112)

* and 
#
 represent enhanced or repressed process, respectively. miRNA, microRNA; ECM, extracellular matrix; EMT, epithelial-mesenchymal 

transition; ROS, reactive oxygen species.
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described as regulators of key EMT genes SNAIL and 
TWIST (48-50). Metabolic derangement, particularly 
mitochondrial impairment in TECs, is now identified as a 
key culprit in fibrogenesis (114). MiR-21 promote fibrosis 
by silencing metabolic pathways targeting peroxisome 
proliferator-activated receptor alpha (PPAR-α) and MPV17-
like protein (39). MiRNA-27a also promotes fibrosis via 
suppressing PPAR-γ pathway (52), while disruption of 
mitochondrial oxidative phosphorylation during CKD 
is also a consequence of miR-214 increase, by targeting 
the mitochondrial genes MT-ND6 and MT-ND4L (51). 
Impairment of renal fatty acid oxidation during fibrosis 
progression is a process controlled by miR-33 (115), miR-
150 and miR-495 (53). Other miRNAs can regulate ECM 
production during CKD. TGF-β/Smad3 signaling inhibits 
miR-29 in TECs which targets collagens, fibrillins, laminins 
and elastin (55). MiR-21 also has a role in ECM homeostasis 
through the regulation of metalloproteinases (MMPs) 
and tissue inhibitors of metalloproteinases (TIMPs) (41).  
MiRNA-132 and miR-503 can reduce renal fibrosis by 
selectively inhibiting myofibroblast proliferation (56,57).

Extracellular miRNAs in renal fibrosis: potential 
biomarkers
In the kidney, EVs can be originated from all segments 
of the nephron and have an important role as signaling 
messengers, regulating the phenotype of renal and 
extrarenal cell types controlling various biological 
processes including programmed cell death, angiogenesis, 
inflammation, immunosuppression and regeneration, and 
subsequently, the outcome of kidney injury (116). 

Crosstalk between kidney cells, including injured 
and uninjured TECs, fibroblasts and immune cells, has 
emerging as a crucial mechanism during fibrogenesis which 
involves EVs shuttled miRNAs (Figure 2) (117). TGF-β1 
mRNA is secreted by injured TECs and transported to 
interstitial fibroblasts through exosomes (118). Hypoxia-
injured proximal TECs (PTECs) promote fibroblast 
activation by shuttling exosomes containing miR-150 (119). 
In fibrotic tissue, secreted miR-21-containing MVs from 
injured and senescent TECs promote EMT in neighboring 
cells by targeting PI3K-Akt and PPARα-HIF-1α pathways, 
respectively (120-122), while MV-secreted miR-216a 
promotes EMT and aggravates renal fibrosis through the 
PTEN/Akt pathway (123). By contrast, miR-34a is secreted 
by interstitial fibroblasts and transported via MVs toward 
TECs, inducing apoptosis and tubular atrophy (124). 

Urine and serum levels of some fibromiRs correlate 

with proteinuria and kidney function in CKD patients  
(Figure 3). Muralidharan et al. provided an extracellular 
miRNA signature of 384 urinary and 266 circulatory 
miRNAs differentially expressed between patients with 
estimated glomerular filtration rate (eGFR) ≥30 versus 
<30 mL/min/1.73 m2. Thus, let-7a and miR-423 showed 
lower levels in urine and plasma of patients with eGFR <30, 
respectively while the presence of miR-130, miR-1825 and 
miR-1281 was upregulated in urine and plasma of patients 
with eGFR <30; which was confirmed in albumin/TGF-
β1-treated mice and TECs (125). Increased serum and 
urinary miRNA-21 levels, the best characterized miRNA in 
CKD, parallel the severity of kidney fibrosis and renal loss 
of function (126,127). In another cohort of CKD patients, 
increased miR-29 and miR-196a and decreased miR-155, 
miR-214, miR-200a and miR-93 levels were observed in 
urine, while increased miR-155, miR-214 and miR-200a 
and reduced miR-29a and miR-93 were found in serum 
of CKD patients, suggesting their use as potential non-
invasive disease biomarkers (128). Another study examined 
miR-126 and miR-223 in serum of 601 CKD patients 
with a follow-up for 6 years, noticing that the level of 
both miRNAs had decreased along time (129). Serum 
miR-483 and miR-363 were identified by next generation 
sequencing as potential diagnostic biomarkers associated 
with CKD severity (130). By the same approach, Khurana 
et al. identified 30 differentially expressed ncRNAs in 
urinary exosomes from CKD patients. Among them, 
miRNA-181a was 200-fold decreased and appeared as the 
most robust and stable potential biomarker (131). Ichii  
et al.  found increased levels of miR-146a in urine 
sediments of mice with CKD (132).

Acute kidney injury (AKI)

AKI is characterized by the rapid decline of renal function 
due to ischemia, nephrotoxicity, sepsis, obstruction of 
urinary tract or bladder outflow obstruction which can lead 
to tubular necroinflammation. AKI is a predisposing cause 
and an occasional precedent of CKD, whereas CKD is a 
major risk factor for AKI (133). 

Regulation of AKI by miRNAs
The importance of miRNAs in AKI was first evidenced 
by the conspicuous protective effect observed in PTEC-
specific Dicer knockout mice where over 80% miRNAs 
were depleted (134). Altered expression of >50 miRNAs 
have been described to play protective and pathogenic roles 
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in the development of AKI including miR-21, miR-205, 
miR-127 and miR-494 (60,135-137). Cell-enriched miRNA 
analysis in AKI shows macrophage-enhanced miR-18a and 
miR-16 and PTEC-enhanced miR-194 (38). 

Inflammation and apoptosis are the main responses 
regulated by miRNAs during AKI (Table 2). MiRNA-21 
inhibits apoptosis by targeting programmed cell death 
protein-4 (PDCD4) and PTEN (138), while showing an 
anti-inflammatory role by targeting PPAR-α and nuclear 
factor-kappa B (NF-κB) (58,59). MiR-494 is up-regulated 
in AKI repressing activating transcription factor-3 (ATF-3) 
which increases inflammatory mediators (60). In turn, miR-

219 downregulation triggers a proinflammatory phenotype 
of macrophages increasing the expression of Mincle 
during AKI (139). Other miRNAs such as miR-24 (61),  
miR-181 (63), miR-150 (65), miR-16 (66) and miR-183 (68)  
stimulate apoptosis during AKI, while miR-489 is induced 
via hypoxia-inducible factor-1 (HIF-1α) to protect from 
apoptosis (64). Endothelial activation also plays a key 
role in septic AKI, involving altered vascular reactivity, 
permeability and adherence of leukocytes. It has been 
described that increased miR-107 induces tumor necrosis 
factor alpha (TNF-α) secretion by targeting dual-specificity 
phosphatase 7 (DUSP7) in endothelial cells (67). 

Figure 2 EV miRNA-mediated cellular crosstalk in kidney injury. EV-borne miRNAs contribute to cell-to-cell communication and 
regulates signaling pathways associated with the pathogenesis of kidney disease such as podocyte apoptosis, glomerular barrier disfunction, 
activation and migration of macrophages, epithelial cell dedifferentiation, activation of fibroblasts and ECM accumulation. Names in blue, 
green and red represent EV miRNAs in chronic and acute kidney disease and diabetic nephropathy, respectively. Names in grey squares 
represent miRNA target genes for these kidney diseases. A20, TNF alpha induced protein 3; NF-κB, nuclear factor-kappa B; SOCS1, 
suppressor of cytokine signaling 1; TLR4, toll like receptor 4; STAT3, signal transducer and activator of transcription 3; SOCS2, suppressor 
of cytokine signaling 2; PI3K, phosphoinositide 3-kinases; AKT, protein kinase B; PPAR-α, peroxisome proliferator-activated receptor 
alpha; HIF-1α, hypoxia-inducible factor-1; PTEN, phosphatase and tensin homology; GLP1R, glucagon-like peptide 1 receptor; ECM, 
extracellular matrix proteins; EV, extracellular vesicle; miRNA, microRNA.
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Extracellular miRNAs in AKI: potential biomarkers
EV-borne miRNAs also participate in cell-to-cell 
communicat ion during AKI (Figure 2 ) .  Hypoxia-
injured PTECs trigger the pro-inflammatory phenotype 
of macrophages by exosomal miR-23a and miR-19b 
transferring which suppress the activity of the ubiquitin 
editor A20 and NF-κB/SOCS1, respectively (140,141). 
MiR-20a is enriched in hypoxia-derived tubular exosomes 
and protects against TECs mitochondrial failure and 
apoptosis (142). In turn, miR-191 secreted by platelet-
derived MVs induces apoptosis of TECs in AKI by 
targeting cystathionine-β-synthase (CBS) (143).

There is an urgent need to identify sensitive and specific 
early markers for AKI that overcomes the limitations of 
traditional serum creatinine and blood urea nitrogen values 
which change only after significant kidney injury with a 
substantial time delay. Some serum and urine miRNAs 

have raised as promising early indicators of this disease 
(Figure 3) (144). It has been described that increased 
serum and urinary miRNA-21 levels parallel the severity 
of AKI (145). Other miRNAs with differential urine levels 
are miR-494, miR-10a, miR-30d, miR-200c, miR-423 
and miR-4640 (60,146,147). MiRNA profiling of urinary 
exosomes shows that miRNA concentration tracks with 
AKI progression, including miR-16, miR-24 and miR-200c. 
Complementarity, miR-9a, miR-141, miR-200c and miR-
429 were associated to AKI recovery stage (148). Several 
miRNAs, including miR-101, miR-127, miR-210, miR-
126, miR-26b, miR-29a, miR-146a, miR-27a, miR-93 and 
miR-10a have also been reported to be altered in serum of 
AKI patients (149). Noteworthy, miR-210 predicted AKI 
mortality in intensive care unit patients (150).

Specific serum and urine miRNA signatures have been 
associated with the different casualties of AKI. Pavkovic 

Figure 3 Blood and urine miRNAs as potential biomarkers of renal disease. Names in green and red represent enhanced or repressed 
miRNAs, respectively. EV, extracellular vesicle; CKD, chronic kidney disease; DN, diabetic nephropathy; AKI, acute kidney injury; PKD, 
polycystic kidney disease; IgAN, IgA nephropathy; LN, lupus nephritis; miRNA, microRNA.

LN

LN

Ig
AN

C
KD

AKI

D
N

PKD

Blood

EVs

miRNAS
5' 3'

Urine

Let-7a
miR-423
miR-130
miR-1825
miR-1281
miRNA-21
miR-155
miR-214
miR-200a
miR-29a
miR-93
miR-126
miR-223
miR-483
miR-363

miR-103a 
miR-146a
miR-26
miR-29a
miR-21

miR-126
miR-770
miR-217
miR-130b
miR-135a
miR-638

miR-130
miR-145
miR-155
miR-424
miR-192
miR-21
miR-30
miR-126
miR-770

miR-95
miR-631
miR-415
miR-34a
miR-320
miR-15b
miR-636
miR-34a
miR-4534

Let-7a
miR-423
miR-130
miR-1825
miR-1281
miRNA-21
miR-29
miR-196a
miR-155
miR-214
miR-200a
miR-93
miRNA-181a
miR-146a

miR-155
miR-103a

miR-21
miR-101
miR-127
miR-210
miR-126
miR-26b
miR-29a
miR-146a
miR-27a
miR-93
miR-10a
miR-188
miR-30a
miR-30e
miR-24
miR-23a
miR-145

miR-21
miR-494
miR-10a
miR-30d
miR-200c
miR-423
miR-4640
miR-16
miR-18a
miR-24
miR-200c
miR-376b
miR-16
miR-18a miR-20a

miR-93
miR-106a
miR-3907

miR-1
miR-133
miR-223
miR-199

miR-181a
miR-223
miR-342
miR-223
miR-20a
miR-371
miR-1224
miR-423
miR-146

miR-221 
miR-222
miR-146a
miR-26a
miR-30b
miR-135b
miR-107
miR-31
miR-29c
miR-21
miR-150
Let-7a

Let-7a
miR-146a
miR-654
miR-3135bmiR-148b

Let-7b
miR-148a
miR-150
miR-20a
miR-425
miR-192
miR-33a

miR-146a
miR-155
miR-150
miR-155
miR-146a
miR-17
miR-93
miR-29b
miR-29c
miR-204
miR-431
miR-29c
miR-555

miR-33a
miR-25
miR-144
miR-486



ExRNA, 2022Page 10 of 24

© ExRNA. All rights reserved.   ExRNA 2022;4:12 | https://dx.doi.org/10.21037/exrna-22-2

et al. detected more than 20-fold changes in 11 urinary 
miRNAs of the cisplatin-induced AKI model, which 
are associated with DNA damage response, cell cycle 
dysregulation and apoptosis (151). In different models of 
contrast-induced AKI, increased miR-188, miR-30a and 
miR-30e levels are detected in plasma (152). Decreased 
urinary miR-376b is proposed as a useful biomarker for the 
diagnosis or identification of AKI in patients with sepsis. 
Mechanistically, miR-376b is suppressed by NF-κB in 
TECs, leading to the induction of its target gene NF-κB  
inhibitor zeta (NFKBIZ), which limits inflammation and 
cell death (153). A significant upregulation of miR-16 and 
miR-18a was observed in the first-passed urine of patients 
who developed delayed graft function (DGF), the typical 
first clinical AKI manifestation occurring following renal 
transplantation (38). Decreased serum miR-24, miR-23a  
and miR-145 levels were reported in post-myocardial 
infarction AKI pathogenesis (154).

Diabetic nephropathy (DN)

DN is a complication of type 1 and 2 diabetes mellitus, with 
a global incidence of 9%. It is histologically characterized by 
early tubular cell atrophy followed by mesangial cell (MCs) 
hypertrophy, podocyte dysfunction, glomerulosclerosis, 
renal fibrosis and matrix expansion. DN main contributors 
are hyperglycaemia and insulin resistance (155). 

Regulation of DN by miRNAs
First evidences of the involvement of miRNAs in DN 
were observed in mice with podocyte-specific deletion of 
Dicer or Drosha, which exhibited severe renal phenotypes 
including proteinuria, podocyte foot process effacement and 
apoptosis, glomerulosclerosis and tubulointerstitial fibrosis 
(Table 2) (156,157).

MiR-192 is a master miRNA regulator of DN (158). 
MiR-192 upregulates collagen genes in MCs by targeting 
the transcriptional repressors ZEB1/2 (69). Of interest, 
miR-192 upregulates other miRNAs, including miR-216a/
miR-217 and miR-200b/c whose targets promote cellular 
hypertrophy (71). MiR-21 and miR-23 also promote 
renal fibrogenesis and hypertrophy by regulating TGF-β 
signaling (41,73). Inflammation is an early event during 
DN. MiR-10 negatively regulates inflammation by targeting 
activation of the NLRP3 inflammasome (80), while miR-45 
downregulates the 26S proteasome non-ATPase regulatory 
subunit 11 (PSMD11), multifunctional protease 7 (LMP7) 
and NF-κB p65 (81,82). Redox and autophagy imbalance 

are also drivers of DN. Enhanced expression of miR-377 
increases FN levels by targeting p21-activated kinase and 
manganese superoxide dismutase (MnSOD) (83). MiR-214 
and miR-150 control autophagy during DN by regulating 
the PI3K/AKT/mTOR and SIRT1/p53/AMPK pathways, 
respectively (84,85). Other miRNAs modulate the high-
glucose (HG)-induced homeostasis imbalance in DN. HG 
induce apoptosis of mouse podocytes by downregulating 
miR-29a and increasing miR-29c expression. Low levels of 
miR-29a correlate with enhanced levels of its target histone 
deacetylase (HDAC), which modulates the acetylation 
status of nephrin (74). MiR-29c promotes apoptosis and 
FN synthesis by inhibition of sprouty RTK signaling 
antagonist 1 (SPRY1) (75). Other miRNAs involved in the  
HG-induced response are miR-25 (76), miR-30c and miR-
130b (77-79), which modulate reactive oxigen species (ROS) 
and EMT, respectively. 

Extracellular miRNAs in DN: potential biomarkers
EV miRNAs also participate in the cellular crosstalk during 
DN (Figure 2). EVs enriched in miR-196b from TECs 
mediate fibroblast activation and promotes renal fibrosis in 
diabetic mice through the activation of the signal transducer 
and activator of transcription 3 (STAT3)/suppressor of 
cytokine signaling 2 (SOCS2) signaling pathway (159). 
MiR-199a is increased in EVs from human serum albumin 
(HSA)-induced TECs which triggers kidney macrophage 
M1 polarization by targeting the Klotho/toll like receptor 
4 (TLR4) pathway (160). EVs enriched in miR-4756 
are also produced by HSA-induced TECs and promote 
EMT and endoplasmic reticulum stress by targeting 
Sestrin2 (161). EVs from HG-stimulated TECs favors 
renal fibrosis by transferring miR-192 to healthy recipient 
TECs and targeting glucagon-like peptide 1 receptor  
(GLP1R) (162). EVs from injured podocytes containing 
miRNA-424 and miR-149 induce apoptosis and p38 
phosphorylation in TECs (163). 

Many of the altered urinary miRNAs in type 1 DN 
patients are associated renal fibrosis-associated pathways 
(Figure 3) (164). Urinary exosomes from diabetic patients 
with microalbuminuria are enriched in miR-130 and miR-
145 while have reduced miR-155 and miR-424 levels (165). 
Urine miR-192 and miR-21 are significantly increased 
while miR-30b levels are decreased in diabetic patients 
with altered kidney function (166-169). Interestingly, miR-
415 was found to be elevated in urinary exosomes prior to 
albuminuria and glomerulosclerosis which suggest its use 
as an early biomarker (170). Park et al. identified miR-126 
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and the miR-770 family in urine and blood as promising 
predictive markers of DN progression (171). Serum miR-
217 levels positively correlates with severity of diabetes 
nephropathy (172). By contrast, reduced serum miR-130b 
correlate with it (173). Urinary sediment miR-95 and miR-
631 also reflect the severity and prognosis of DN (174). 
MiR-135a levels are upregulated in serum and renal tissue 
from patients with DN and db/db mice, and correlate with 
microalbuminuria and renal fibrosis scores (175). MiR-34a 
and miR-320c are upregulated in the urinary exosomes of 
type 2 DN (176,177). MiR-34a regulates MC proliferation 
and glomerular hypertrophy by targeting growth arrest-
specific 1 (GAS1) (178), while miR-320c protects TECs 
from damage by downregulating Bone Morphogenetic 
Protein 6 (BMP6) (179). Other potential biomarkers for 
type 2 DN are miR-15b, miR-636, miR-34a and miR-4534 
in urine (177,180) and miR-638 in serum (181).

Hypertensive nephropathy

Hypertension affects 25–30% population worldwide. Under 
chronicity, elevated blood pressure damages renal vessels 
and impairs GFR, promoting nephropathy characterized 
by renal fibrosis, tubular and glomerular hypertrophy. 
In turn, about 80% of CKD patients eventually develop 
hypertension as a consequence of an unbalanced renin-
angiotensin-aldosterone system (RAS) (182). 

Regulation of hypertensive nephropathy by miRNAs
The miRNA profile of human hypertensive nephrosclerosis 
biopsies revealed differential expression, showing higher 
levels of miR-200a, miR-200b, miR-141, miR-429, miR-
146, miR-132, miR-192 and miR-205 (183,184). 

High salt intake, one of the risk factors of hypertension, 
increases miR-29b expression in renal medulla in non-
salt sensitive rats. Due to several collagen genes are miR-
29b target genes, its increase may have a protective role  
(Table 2) (87). In the same model, miR-204 is downregulated 
and promotes the protein tyrosine phosphatase nonreceptor 
type 11 (SHP2)/p-STAT3 signaling, exacerbating renal 
interstitial fibrosis (88). Angiotensin (Ang) II, the main 
peptide of the RAS, can exert both a vasoconstrictor 
effect and a pro-inflammatory action in post-glomerular  
arteries (185). MiR-155 controls blood pressure by 
downregulating the expression of the Ang II type 1 receptor 
(AGTR1) (90). In the same vein, miR-21 mediates Ang 
II-induced kidney fibrosis via amplifying the TGF-β1/
Smad3 pathway by targeting PPAR-α (91), while miR-

103a contributes to Ang II-induced renal inflammation and 
fibrosis through the SNF related kinase (SNRK)/NF-κB/
p65 regulatory axis (92). 

Extracellular miRNAs in hypertensive nephropathy: 
potential biomarkers
Gildea et al. identified 45 urinary exosomal miRNAs 
associated with salt sensitivity or inverse salt sensitivity 
(Figure 3) (186). Upregulated expression of miR-155 has 
been reported in plasma of renal transplant recipients (187). 
In patients with hypertensive nephropathy, miR-103a was 
upregulated in urine and serum. Interestingly, patients with a 
positive response to angiotensin-converting enzyme inhibitor 
or β-blocker treatment displaying a reduction in their 
albumin–creatinine ratio showed a decrease in miR-103a, 
suggesting this miRNA as a dynamic biomarker reflecting 
the pathological status and treatment response (188). MiR-
146a, miR-26 and miR-29a from urinary exosomes correlates 
with albuminuria in essential hypertension (189-191), while 
higher urinary miR-21 levels are detected earlier than urinary 
albumin (184).

Kidney immune diseases

IgA nephropathy (IgAN) and lupus nephritis (LN) are the 
main kidney immune diseases. IgAN is the most common 
form of primary glomerulonephritis. It is characterized 
by the aberrant glycosylation of immunoglobulin A 
(IgA1) and consequently alters the synthesis and binding 
of antibodies directed against this IgA1 form, generating 
an immune complex that accumulates in the glomerular 
mesangium. It activates MCs, enhancing proliferation and 
secretion of ECM, cytokines and chemokines and leading 
to renal injury (192). LN is an autoimmune disorder with a 
complex pathophysiology whose immunological hallmark 
is the production of a range of autoantibodies directed at 
ubiquitous nuclear components (193).

Regulation of IgAN by miRNAs
MiRNA expression profiling of kidney biopsies from 
patients with IgAN showed that dysregulated levels of 
miRNAs related to fibrosis (downregulation of miR-200c 
and upregulation of miR-192, miR-141 and miR-205) (194)  
and to the immune response (upregulation of miR-155 
and miR-146a) (195), associated with disease severity and 
progression. MiR-150 has been proposed as a potential 
functional mediator of kidney fibrosis progression in 
IgAN (196). Let-7a and miR-148b/miR-196b control N-
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acetylgalactosaminyltransferase 2 (GALNT2) and 1β,1,3 
galactosyltransferase 1 (C1GALT1), respectively, enzymes 
which are involved in aberrant IgA glycosylation (94-96). 

MiRNAs regulates IgA features in different renal cell 
types (Table 2). Glomerular endothelial cells of patients with 
IgAN showed decreased levels of miR-223, contributing to 
cellular proliferation. This miRNA targets importin α4 and α5 
(KPNA3/1), responsible for the nuclear transport of NF-κB 
p65 and STAT3 (97). Downregulation of miR-100 and miR-
877 controls overproduction of interleukin 8 (IL-8) and IL-1β 
in MCs activated by secretory IgA from IgAN patients (98). 
By contrast, miR-200bc/429 cluster alleviates inflammation in 
podocytes from IgAN patients by targeting TNF-related weak 
inducer of apoptosis (TWEAK)/FN14 (99). Of note, miR-
21 promotes fibrogenic activation in podocytes and TECs by 
activating the PTEN/Akt pathway activation in IgAN (100). 

Extracellular miRNAs in IgAN: potential biomarkers
Several studies have described the serum and urine 
miRNome of IgAN patients postulating some miRNAs as 
potential biomarkers (Figure 3). Serum miR-148b and miR-
let-7b levels were reported to discriminate patients with 
IgAN from both controls and patients with other forms 
of glomerulonephritis (197). Plasma content in miR-148a, 
miR-150, miR-20a and miR-425 is increased in IgAN 
patients, especially in the early-stage (198), while IgAN 
patients with lower miR-192 levels are more likely to have 
renal function decline (199). Elevated urinary levels of 
miRNA-146a and miRNA-155 in IgAN patients, correlate 
with proteinuria but inversely correlate with urinary 
expression of the cytokines IL-1β and TNF-α (195). Other 
potential biomarkers of IgAN are miR-150, miR-155, miR-
146a, miR-17 and miR-93—which are found at increased 
levels—and miR-29b, miR-29c, miR-204, miR-431 and miR-
555—which are found at decreased levels—in the urine of 
patients with IgAN (200,201). These changes have also been 
reported in miR-29c and miR-146a urinary exosomes (202). 
Levels of miR-33a both in serum, urine and kidney tissues 
decrease with the severity of renal injury and the progression 
of renal failure in IgAN patients (54). Increased levels of 
miR-25, miR-144 and miR-486 in urinary sediment, mainly 
derived from urinary erythrocytes, could also be non-invasive 
candidate biomarkers for IgAN (203).

Regulation of lupus nephritis by miRNAs
MiRNA expression evaluation in kidney biopsies from 
class II LN patients (characterized by pure mesangial 
involvement ) ,  ident i f ied  36  upregula ted  and 30 

downregulated miRNAs (204). In patients with LN, disease 
severity correlates and glomerular and tubulointerstitial 
expression of miR-638, miR-198 and miR-146a (205). 
MiR-150 has also been demonstrated to promote renal 
fibrogenesis by targeting the suppressor of cytokine 
signaling 1 (SOCS1), a negative regulator of the JAK/
STAT signaling pathway, which controls cell proliferation, 
inflammation and fibrosis (Table 2) (206). MCs contribute 
to the pathogenesis of LN through both the secretion of 
proinflammatory cytokines and matrix protein deposition. 
MiR-422a is upregulated in MCs and TECs from renal LN 
biopsies. This miRNA targets kallikrein related peptidase 
4 (KLK4) which belongs to the kallikrein-kinin system 
and have pleiotropic effects in inflammation, oxidative 
stress and vascular function (103). IL-8, essential in type 
III hypersensitivity and a major characteristic of LN, was 
confirmed as a direct target of miR-10a in MCs (104).

Extracellular miRNAs in lupus nephritis: potential 
biomarkers
Some miRNAs have emerged as potential LN biomarkers 
(Figure 3). MiR-181a was increased while miR-223 was 
decreased in serum samples from LN patients, whose 
levels correlate with markers of this disease (68). MiRNA 
expression profiles in plasma, urinary sediment and 
peripheral blood mononuclear cells (PBMCs) revealed a 
group of miRNAs associated with LN (miR-342, miR-
223 and miR-20a in plasma, miR-221 and miR-222 in 
urinary sediment, and miR-371, miR-1224 and miR-
423 in PBMCs), which are promising disease biomarkers 
(207-209). Although, miR-146 expression is increased in 
the glomerulus, the levels are decreased in PBMCs from 
patients with LN. However, miR-146 enrichment in urinary 
exosomes associates with renal damage and can discriminate 
patients with active from inactive LN patients (210). Levels 
of miR-26a and miR-30b are decreased in the kidneys and 
urine of LN patients and promote MC proliferation (211). 
Urinary exosomal miR-135b, miR-107 and miR-31 levels 
are higher in treatment responder patients. These are 
mainly produced in TECs and are engulfed by endothelial 
and MCs where target HIF-1α, reducing proliferation 
and inflammation (212). Decreased urinary exosome-
associated miR-29c appears to be a predictor of early 
renal fibrosis in LN (213), while in the case of miR-21, 
miR-150 and let-7a correlate with the clinical stage (214). 
MiR-146a, miR-654 and miR-3135b in urinary exosomes 
possess a predictive value in type IV LN complicated 
by cellular crescent (215).
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Polycystic kidney disease (PKD)

PKD is a genetic kidney disorder characterized by the 
growth of cysts in the kidneys, due to mutations or 
dysregulated expression of either polycystic kidney disease 
1 (PKD1) or 2 (PKD2) gene, which encode for polycystin 1 
and 2, respectively, with an autosomal dominant (ADPKD) 
pattern of inheritance, or the polycystic kidney and hepatic 
disease 1 (PKHD1) gene which encodes for fibrocystin/
polyductin, resulting in an autosomal recessive (ARPKD) 
disease. Aberrant expression of these genes leads to 
disrupted cell division, proliferation and impaired cell-
matrix and/or cell-cell interactions (216). 

Regulation of PKD by miRNAs
Genetic profiling assays revealed alterations in miRNA 
expression profiles in PKD, most of them directly 
regulating the expression of PKD1, PKD2, PKHD and 
cell proliferation-related genes (Table 2) (217). Thus, the 
dysregulated miRNAs miR-214, miR-31, miR-199a, miR-
21, miR-34a, miR-132 and miR-146b are believed to target 
major pathways in autosomal dominant PKD (218). Pandey 
et al. predicted and verified several miRNAs (miRs-10a, 
miR-30a, miR-96, miR-126, miR-182, miR-200a, miR-204, 
miR-429 and miR-488): mRNA reciprocal interactions in a 
PKD mouse model (217). 

The miR-17~92 cluster is upregulated in the kidney of 
various PKD mouse models and its overexpression produces 
cysts. Particularly, miR-17 targets PKD1 and PKD2 whereas 
miR-92 inhibits PKHD1 through the transcription factor 
hepatocyte nuclear factor 1 homeobox B (HNF-1β). It has 
been described that the cellular myelocytomatosis oncogene 
(C-MYC) transcriptionally activates the miR-17~92 cluster, 
which regulates the mechanistic target of rapamycin 
kinase (mTOR) and TGF-β pathways, both of which are 
implicated in cyst growth (105). Tran et al. demonstrated 
that the binding of miR-17 to PKD2 is antagonized by the 
RNA-binding protein bicaudal C homolog 1 (BICC1), thus 
regulating PKD2 gene dosage (219). 

MiRNAs have a key role in cyst expansion which is 
associated with EMT. PKHD1 is a direct target of miR-
365 and is involved in the decrease of E-cadherin and 
destruction of ECM (108). MiR-192 and miR-194, 
whose levels are downregulated by hypermethylation 
of their promoter region, directly target ZEB2 and 
cadherin-2, which are involved in EMT. MiR-199a 
inhibitor suppresses proliferation of cystic cells and 
induces cell apoptosis by targeting cyclin dependent 

kinase inhibitor 1C (CDKN1C)/p57, a negative regulator 
of cell proliferation by inhibiting G1 cyclin-dependent  
kinases (111).

Extracellular miRNAs in PKD: potential biomarkers
The role of EVs in ADPKD progression have not drawn 
considerable attention so far (Figure 3). Of note, EVs 
generated from cystic TECs display increased levels of 
miR-200b, miR-200c, miR-429 and miR-21 levels which 
promote cyst growth in ADPKD by inducing epithelial 
cell proliferation, fibroblast activation and macrophage 
recruitment (220).

The serum and urine miRNA profile in ADPKD patients 
differ substantially depending on the stage of CKD. Serum 
exosomal levels of miR-17 family members miR-20a, miR-
93 and miR-106a significantly drop after hemodialysis in 
ADPKD patients (221). In urine from ADPKD patients, 
dysregulated miRNAs have previously involved in kidney 
tumor suppression (miR-1 and miR-133). Others miRNAs 
have presumed inflammatory and fibroblast cell origin 
(miR-223/miR-199) (222). Increased levels of miR-3907 in 
the circulation can predict ADPKD progression (223).

Clinical applications and perspectives

Since early 1940s, the mainstay of renal functional 
monitoring has not progress significantly. So, the increased 
estimated prevalence of kidney diseases urgently demands 
novel biomarkers to enhance early diagnosis, guide 
prognosis and monitor response to treatment (224). The 
importance of miRNAs in the kidney field has gained 
widespread interest over the last decade not only enabling 
to understand in-depth the pathways involved in kidney 
pathophysiology, but also as biomarkers circulating in 
biofluids. In kidney diseases, urine is the preferred source 
of biomarkers due to its direct access to the damaged 
tissues of the kidney and urinary tract. Although a kidney 
disease-specific blood and urine miRNA signature has 
been identified in patients and mouse models, no definitive 
data have yet been translated to the clinic (225). There 
is limited knowledge about the cell type of origin and 
functional role of circulating miRNA and therefore, if 
they are tissue/disease-specific or represent more general 
pathologies like inflammation. Understanding the cell 
specificity of miRNAs’ expression in the kidney is essential 
to contextualize whole-tissue miRNA changes and target 
validation, which would improve the rational selection 
of biomarkers. Identification of host cell-derived protein 
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surface markers among EVs surface proteins would allow to 
determine their cellular origin (226). Further, unification of 
methodology for extracellular RNA isolation, purification 
and detection by combining-omics technologies, including 
proteomic, transcriptomic, and metabolomic methods, as 
well as to standardize EVs classification is needed to provide 
more robust biomarkers. Consideration of the distinct 
miRNA half-lives, conservation degree between species and 
variability between patients, evaluating variables such as 
age, gender, ethnicity, additional medication or the presence 
of comorbidities in large cohort studies are also essential 
steps for their clinical translation (227).

While a miRNA-based therapy that either restores or 
blocks miRNA expression and activity by using miRNA 
mimics or antagomirs is very appealing, the potential of 
miRNAs as an effective therapy has been limited so far 
to experimental models and two ongoing clinical trials 
(clinicaltrials.gov, NCT03373786, NCT04536688), mainly 
due to the lack of reliable organ- and cell-specific delivery 
methods and off-target effects on other genes. Some new 

synthesis and delivery methodology include locked nucleic-
acids (LNA) (228) coupled to lipid-based nanoparticles, 
FDA-approved poly-lactic-co-glycolic acid (PLGA)-based 
nanoparticles, cell and/or tissue-specific antibodies/peptides 
and ultrasound microbubble-mediated gene transference 
(229,230). EVs have also gained prominence as drug 
delivery vehicles. The process of loading EVs with specific 
cargos, including miRNA analogues, can be attained by 
manipulating parental cells (endogenous loading) or the 
isolated EVs (exogenous loading) themselves. Furthermore, 
to boost their delivery and biodistribution, EVs can be 
engineered to recognize specific cell surface receptors (231).  
How to obtain exosomes on a large scale for clinical 
treatment will also be a focus of future studies. In this line, 
several studies describe the renoprotective effect of EVs 
derived from multipotent mesenchymal stem cells (MSCs), 
emerging as a potential powerful cell-free therapeutic 
strategy. In some kidney diseases, content analysis of this 
MSC-derived EV identified that transported miRNAs 
can underlie this response (Table 3) (246). Future studies 

Table 3 Nephroprotective action of MSC-EVs containing miRNAs

MSC source In vivo model miRNA EV subtype Pathophysiological effects Target gene Reference(s)

Bone marrow UUO miR-144 Exosomes Tubular basement membrane integrity tPA (232)

Bone marrow UUO Let-7c Exosomes ECM accumulation TGFBRI (233)

Muscle UUO miR-29 Exosomes ECM accumulation TGFB3 (234)

Endothelium IRI miR-126, miR-296 Microvesicles Capillary rarefaction, glomerulosclerosis, 
tubulointerstitial fibrosis

SPRED1, VCAM1, 
PIK3R2, HGS

(235)

Epithelium Glycerol miR-10a, miR-
486, miR-127

Exosomes Necrosis Non-described (236)

Umbilical cord CLP miR-146b Exosomes Inflammation, apoptosis IRAK1 (237)

Bone marrow IRI miR-199a Exosomes Apoptosis SEMA3A (238)

Non-described Cisplatin miR-1184 Exosomes Inflammation, apoptosis FOXO4 (239)

hWJMSCs IRI miR-30b/c/d EVs Mitochondrial fission, apoptosis DRP1 (240)

ECFC IRI miR-486 Exosomes Apoptosis PTEN (241)

Placenta IRI miR-200a EVs Oxidative stress, mitochondrial 
fragmentation

KEAP1 (242)

Umbilical cord STZ miR-451 MVs Apoptosis, EMT, ECM accumulation P15, P19 (243)

Bone marrow STZ Let-7a Exosomes Apoptosis, oxidative stress, EMT, 
ECM accumulation

USP22 (244)

Adipose db/db miR-26 Exosomes Apoptosis TLR4 (245)

The treatment with MSC-EVs reduces the pathophysiological effects indicated in mouse models of chronic (UUO) and acute (IRI, glycerol, 
CLP, cisplatin) kidney disease and diabetic nephropathy (STZ, db/db transgenic mouse), respectively. MSC, mesenchymal stem cell; EV, 
extracellular vesicle; miRNA, microRNA; UUO, unilateral ureteral obstruction; ECM, extracellular matrix; IRI, ischemia reperfusion injury; 
CLP, cecal ligation and puncture; STZ, streptozotocin. MV, microvesicle; EMT, epithelial-mesenchymal transition.
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are directed to integrate circulating and renal miRNA 
expression data along renal cell types to generate a complete 
kidney expression atlas in injury and repair conditions 
coupled to ligand-receptor networks between EVs and 
kidney cells, as well as to develop new technology for 
single-vesicle analysis, which undoubtedly will unleash their 
full potential as therapeutic targets and biomarkers.
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