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Introduction

In the last four decades, studies have shown that the 
significant increase in the prevalence of obesity has become a 
pandemic. It is expected that by 2030, in the USA up to 86% 
of adults will be overweight or obese. Conspicuously, the 
proportion of the Australian population who are overweight 
and obese were reached to 66% in 2017. All-cause mortality 
rates in obese individuals and obesity incidence in different 
countries and communities are almost similarly high. While 
obesity decreases life expectancy approximately by 3.3 to 

18.7 years, it largely increases healthcare expenditures 
(1,2). Compared with the metabolically healthy normal-
weight individuals, obese persons are at increased risk for 
adverse long-term outcomes even in the absence of obesity-
related diseases (3). In this context, up to 30% of obese 
patients are metabolically healthy like the healthy normal 
weight individuals (4). In unhealthy obese subjects, obesity-
related diseases are associated with subcutaneous adipose 
tissue remodeling characterized by adipocyte hypertrophy, 
as well as chronic inflammation, hypoxia, increased visceral 
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adipose tissue, and fatty liver. In contrast metabolically 
healthy obese individuals have a lower degree of ectopic fat 
accumulation, and visceral adipose tissue inflammation (5).  
Still, these obese individuals are at higher risk for 
cardiovascular diseases and type 2 diabetes compared 
with metabolically healthy normal weight individuals (4).  
Epidemiological data have shown that obesity is an 
important health problem worldwide and, in any case, 
it is characterized by an excessive increase in adipocyte 
hypertrophy and hyperplasia, as well as the inability to store 
excess fat into the lipid droplets (2,6). A pool of resident 
multipotent progenitor cells, which persists in adipose 
tissue throughout the life, differentiate to adipocytes and 
the adipocyte number increases. Because of hypertrophy 
and hyperplasia of adipocytes, adipose tissue enlarges. Thus, 
in widened fat mass in adipose tissue of obese individuals, 
both adipocyte size and numbers increase (7-10). Even 
after obese individuals undergo significant weight loss and 
regain a healthy appearance, elevated adipocyte number 
is maintained. In this context, adipogenesis, which is a 
permanent health problem in obese individuals, takes place 
in two stages; firstly, mesenchymal stem cells transform into 
preadipocytes. At second step, adipogenic stimuli induce 
terminal differentiation of these preadipocytes through 
the epigenomic activation of transcription factors (11). 
Transcription factors such as cytosine-cytosine-adenosine-
adenosine-thymidine (CCAAT)/enhancer-binding proteins 
(C/EBPs) and peroxisome proliferator-activated receptor-
gamma (PPARγ) play critical roles in the key events 
controlling the terminal differentiation of progenitor 
cells into adipocytes (12). Nonetheless, the mechanisms 
controlling the early steps of adipocyte progenitor cells 
differentiation to the adipocyte and molecular events 
regulating adipogenesis remain poorly understood. It is 
expected that functional analysis of adipocyte-derived 
microRNAs (miRNAs) can clarify the events that result in 
adipogenesis. Indeed, adipocyte-derived miRNAs have dual 
function in adipogenesis; while some of them stimulate the 
transcription factors that modulate adipocyte proliferation 
and differentiation, others block expression of master 
regulators of adipogenesis (13).

miRNAs are a subclass of regulatory, non-coding RNAs 
that properly adjust gene expression at a post-transcriptional 
level by affecting mRNA translation and stability (14). Up 
to 30% of human genes could potentially be regulated by 
miRNAs (15). In this context, the miRNAs involved in 
adipogenesis, are also part of the epigenetic mechanisms 
that regulate gene expression at a post-transcriptional level 

even in healthy obese individuals. The ability of a miRNA 
to share the same target while having diverse functions, 
constitute an increase in the complexity of the biological 
networks. The purpose of this review is to analyze the 
complex role of miRNAs in the regulation of adipogenesis.

Adipocyte-derived extracellular vesicles (AdEVs)

Induction of adipocyte stress and subsequent hypertrophy 
leads to the release of AdEVs that contain a unique cargo. 
As AdEVs release is significantly increased in hypertrophic 
adipocytes, properties, and the levels of circulating AdEV 
are accepted to be an important method to assess adipose 
tissue health. Therefore, proteomic analysis and miRNA 
sequencing of the cargo content of AdEV enables the 
identification of adipocyte-specific proteins and miRNAs 
that can be used as novel biomarkers (16,17). In fact, the 
cargo molecules of AdEVs are important messengers 
for intercellular communication involved in metabolic 
responses and have very specific signatures that direct the 
metabolic activity of target cells (18).

AdEVs involved in the exchange of components between 
donor and recipient cells are classified as microvesicles and 
exosomes, although their sizes are not always different (19).  
Both are generally employed as vehicles to transfer 
miRNAs (20,21). However, the contents of adipocyte-
derived exosomes (AdEXs) mediate a diverse series of 
cellular responses, including adipogenic differentiation, 
also via other cargo molecules besides miRNA. Thus, in 
response to adipogenic stimuli, the endogenous lysosomal 
Ca2+ permeable channel transient receptor potential 
mucolipin 1 (TRPML1) expression in pre-adipocytes is 
increased in a time-dependent manner. Since the deletion 
of TRPML1 reduces expression of differentiation-
related genes, particularly, mature AdEXs are necessary 
for adipogenesis (22).  Thus, preadipogenic AdEX 
concentration is elevated prior to adipogenesis. Parent 
cells contain higher proportions of phosphatidylserine 
(PS) and show higher annexin V binding in comparison 
to recipient cell (23). These exosomes carry high levels 
of signaling fatty acids such as arachidonic acid, and the 
markers of adipogenesis such as PPARγ1 (Figure 1), as 
well as preadipocyte factor-1 (PREF1), which represses 
differentiation (23,24). Angiogenesis is expected to adapt 
to adipogenesis during the expansion of adipose tissue (25). 
However, in morbid obesity, angiogenesis is insufficient 
to achieve an appropriate level of vascularization for 
the expanded adipose tissue (26). Compared with lean 
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Figure 1 Mammalian miRNAs regulate target genes during adipogenesis. The exosomal miRNAs secreted from the hypertrophic adipocytes 
are transferred to small adipocytes to mediate the lipogenic information. However, co-transportation of miRNAs that have diverse function, 
within the same exosome elicits a complex effect on adipogenesis. The ability of a miRNA to share the same target but has diverse function 
constitute an increase in the complexity of biological networks. The different genomic location of miRNAs influences the transcription 
modality. miR, microRNA; C/EBPα, CCAAT/enhancer-binding protein alpha; PPRγ, peroxisome proliferator-activated receptor gamma; 
Wnt/βC, WNT/β-catenin signaling pathway; TGF-β, transforming growth factor-β; CtBP2, C-terminal binding protein 2; KLF, Krüppel-
like factor; TCF7L2, transcription factor-7-like 2; TCF, T-cell specific transcription factor.

subjects, adipose tissues of overweight/obese subjects 
have 44% lower capillary density and 58% lower vascular 
endothelial growth factor (VEGF). This is due to lower 
PPARγ1, and higher collagen VI mRNA expression, which 
correlates with the lower adipose tissue oxygen partial 
pressure (27). Although a total of 231 proteins have been 
identified in the AdEX, the total amount of proteins 
secreted from exosomes increases by three-four-fold under 
hypoxic conditions (28). It is known that hypoxia inhibits 
adipocyte differentiation from preadipocytes. Since the 
hypoxic AdEXs are enriched with enzymes related to  
de novo lipogenesis such as acetyl-CoA carboxylase, 
glucose-6-phosphate dehydrogenase, and fatty acid 
synthase (FASN), despite hypoxia, exosomal proteins 
derived from adipocytes can trigger lipogenic activity in 
neighboring preadipocytes (28,29). Obviously, miRNAs in 
AdEXs play a more important role in the circulation than 
the other cargo proteins. Therefore, this comprehensive 
review is focused on miRNA content of AdEXs. In 
fact, genes for adipocyte-derived exosomal miRNA are 
transcribed to a primary miRNA (pri-miRNA). The pri-
miRNA is processed within the nucleus of adipocytes to 
a precursor miRNA (pre-miRNA) by Drosha, a class 2 

Rnase III enzyme. The transport of pre-miRNAs to the 
cytoplasm is mediated by exportin-5. In the cytoplasm, 
pre-miRNAs are converted to mature miRNAs by Dicer 
Rnase III type protein (30). The generation of mature 
miRNAs critically depends on the Rnase-III enzyme, 
Dicer (31). Dicer coordinately regulates the inflammatory 
response and lipid metabolism in macrophages through 
enhancing fatty acid-fueled mitochondrial respiration. 
miRNA-10a promotes fatty acid oxidation, which mediated 
the lipolytic and anti-inflammatory effect of Dicer (32). 
The neuronal-deletion of the miRNA-processing enzyme 
Dicer leads to the development of rapid and transient 
obesity (33). Thus, deletion of Dicer in anorexigenic 
pro-opiomelanocortin-expressing cells results in obesity, 
characterized by hyperphagia, increased adiposity, 
hyperleptinemia, defective glucose metabolism and 
alterations in the pituitary-adrenal axis (34). Furthermore, 
loss of miRNA-103 and inactivation of Dicer gene in 
the adult neurons leads to chronic overactivation of the 
phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian 
target of rapamycin (mTOR) pathway and severe 
hyperphagic obesity. Although the Dicer genes are deleted, 
the continuous stimulation of PI3K-Akt-mTOR pathway 

TGF-β
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components by oligonucleotides mimicking miRNAs 
attenuates adiposity (35).

miRNA expression patterns in adipogenesis in 
animal and cell-line models 

miRNAs profiles of adipocyte differentiation phase and of 
persistence obesity phase are quite different. The expression 
pattern of miRNAs during 3T3-L1 cell adipogenesis 
using miRNA microarrays detecting 373 mouse mature 
miRNAs have been analyzed. Among the 41 miRNAs 
upregulated during the adipocyte differentiation, 31 of the 
miRNAs are decreased during obesity. Contrarily, among 
the 38 miRNAs downregulated during the adipocyte 
differentiation, 26 miRNAs are increased in diet-induced 
obese mice. Although miRNA-103 and miRNA-143 are 
found to be important for adipogenesis, the specific mRNA 
targets of these miRNAs could not be detected (36).  
Dysfunctional adipocytes dysregulate the assembly and 
sequence of biological components in exosomes, leading 
to obesity-related diseases. Increase in palmitate-induced 
hypertrophic 3T3-L1 adipocytes-derived exosomal 
miRNA-802-5p content result in various alterations in the 
metabolic pathways, by downregulating the heat shock 
protein 60 (HSP60), increasing the expression levels of 
C/EBP-homologous protein. Enhanced oxidative stress, 
phosphorylation of c-Jun NH(2)-terminal kinase (JNK) 
and insulin receptor substrate-1 (IRS1), eventuate to 
the development of insulin resistance (37). Interestingly, 
the exosomal miRNAs secreted from the hypertrophic 
adipocytes are transferred to small adipocytes in the adipose 
tissues to promote lipogenesis and adipocyte hypertrophy 
by mediating horizontal transfer of lipogenic information. 
This lipogenic signal is encoded by relevant miRNAs 
and glycosylphosphatidylinositol (GPI)-anchored protein 
species. Thereby positive feedback on hypertrophic growth 
of rat adipocytes is transferred in a paracrine manner (38). 
During adipogenesis miRNAs not only can accelerate or 
inhibit adipocyte differentiation but also by regulating the 
adipogenic lineage commitment in multipotent stem cells, 
govern fat cell numbers (39). 

Many miRNAs involved signaling pathways have 
differential effects on adipogenesis. Some miRNAs 
are employed to be negative regulators of adipocytes 
differentiation while others are capable of accelerating 
adipocyte differentiation (10). Therefore, co-transportation 
of miRNAs that activate or inhibit any of these signaling 
pathways within the same exosome elicits a complex effect 

on adipogenesis (40). Among the miRNAs whose expression 
levels change during differentiation of adipocyte, miRNA-
146b dramatically increases by nine-fold and this miRNA 
promotes the adipogenesis in 3T3-L1 cells via suppression 
of sirtuin 1 (SIRT1) (41). SIRT1 catalyzes NAD+-dependent 
protein deacetylation and hinders adipogenesis by inhibiting 
PPARγ and stimulating lipolysis (42,43). The miRNA-146 
family of miRNAs consists of two members, miRNA-146a 
and miRNA-146b. These two miRNAs are located on 
different chromosomes and conduct different functions in 
the body. Since the regulatory functions of miRNA-146a-5p 
and miRNA-146b are created by the sequence outside of the 
seed region, these miRNAs target different genes although 
they share the same seed region (44). miRNA-146a-5p  
suppresses adipogenesis (45). Whereas miRNA-146b 
inhibits the proliferation of visceral preadipocytes, while 
promoting their differentiation into mature adipocytes. Its 
binding site is in the 3' untranslated regions (3'UTR) of 
the Krüppel-like factor 7 (KLF7) gene, therefore miR-146b  
is a negative regulator of KLF7. In contrast, KLF5 is a 
transcription factor that activates the PPARγ2 promoter and 
regulates adipocyte differentiation (46). Ectopic expression 
of intergenic miRNA-27a in 3T3-L1 pre-adipocytes 
represses adipocyte differentiation by reducing PPARγ 
expression. In mature adipocyte fraction of obese mice, 
during the adipogenesis, the expression level of miRNA-27a 
is inversely correlated with that of adipogenic marker genes 
such as PPARγ and adiponectin. miRNA-27a suppresses 
adipocyte differentiation through targeting PPARγ. 
Contrarily, down-regulation of miRNA-27a is associated 
with adipose tissue enlargement in obesity (47). During 
adipocyte differentiation, changes in the miRNA profile 
of circulating AdEX precisely depend on obesity. Wnt/
β-catenin signaling is a negative regulator of adipogenesis, 
and Wnt1 expression decreases significantly during the 
progression of adipocyte differentiation (48). In this context, 
there are 18 miRNAs that might promote adipogenesis 
by repressing Wnt signaling, such as miRNA-210,  
miRNA-148a, miRNA-194, miRNA-322. In contrast, 
29 miRNAs show a negative effect on adipogenesis 
by activating Wnt signaling in 3T3-L1 cells, such as 
miRNA-344, miRNA-27 and miRNA-181 (49) (Figure 1). 
Following the induction of differentiation, increasing in 
the expression of miR-143 together with the miRNA-17 
and miRNA-21 enhance the adipogenic differentiation 
in 3T3-L1 pre-adipocytes, and in porcine bone marrow-
derived mesenchymal stem cells as in human preadipocytes. 
In all samples miRNAs stimulate the expression of 
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adipogenic transcription factor, C/EBPα mRNA (50-52). 
Although miRNA-145 is classified into the same cluster 
with miRNA-143, miRNA-145 is a potent inhibitor of 
adipogenesis that may function by reducing the activity of 
PI3K/Akt and mitogen-activated protein kinase (MAPK) 
signaling pathways (53). Like miRNA-143, miRNA-103 is 
also abundantly produced by adipocytes of obese animals. 
Expression of miRNA-103 is induced approximately nine-
fold during adipogenesis. Consequently, expression of 
adipogenic transcription factor, PPARγ2 is doubled by 
the expression of either miRNA-103 or miRNA-143. 
miRNA-103 increases the expression of fatty acid binding 
protein 4 (FABP4) and adiponectin approximately nine-
fold and four-fold, respectively. FABP4 coordinates 
lipid transport in mature adipocyte and its inhibition 
in obesity results in weight loss and restores insulin 
sensitivity. Initially, upregulation of miRNA-103 and 
miRNA-143 during adipogenesis and downregulation 
after permanency of obesity suggest that persistence of 
obesity leads to miRNA loss. This finding is a sign that 
the mature adipose tissues of leptin deficient ob/ob, and 
diet-induced obese mice consist of fully differentiated 
and metabolically active adipocytes during adipogenesis 
(36,54). As with miRNA-143, miRNA-17 and miRNA-21, 
miRNA-375 expression is increased after induction of 
adipogenic differentiation. Overexpression of miRNA-375 
accelerates adipocyte differentiation, via increasing mRNA 
levels of both C/EBPα and PPARγ2. Adipocyte FABP and 
triglyceride accumulation is simultaneously induced. The 
overexpression of miRNA-375 promotes the adipogenesis 
via 3T3-L1 adipocyte differentiation by suppressing 
phosphorylation of extracellular s ignal-regulated 
protein kinase (ERK1/2), which has opposing effect 
during adipogenesis (55). In the early phase of adipocyte 
differentiation, ERK is activated for a proliferative step, but 
later in preadipocyte differentiation, ERK needs to be shut 
off to prevent PPARγ phosphorylation (56). It is thought 
that increased expression of PPARγ2 and FABP is due to the 
inhibitory effect of ERK on PPARγ2. In this process, ERK 
activation is suppressed by miRNA-375 (55). 

It is thought that in adipose tissue, forkhead box 
protein O1 (FOXO1) inhibits adipocyte differentiation 
by suppressing lipogenesis through PPARγ, which is 
a prerequisite for adipocyte differentiation. This anti-
lipogenic effect of FOXO1 is controlled by insulin signals 
(57-59). miRNA-144 targets FOXO1, thus reducing 
its expression and inhibiting its promotional effect on 
adiponectin, thereby alleviating the inhibitory effect of 

adiponectin on adipogenesis in porcine pre-adipocytes (60).  
On the other hand, miRNA-146b facilitates adipocyte 
differentiation through the inhibition of SIRT1/FOXO1 
cascade.  The miRNA-146b/SIRT1 axis  mediates 
adipogenesis through increased acetylation of FOXO1 in 
3T3-L1 cells (41,61). It is claimed that both transcriptional 
and translational levels of several novel lipogenic genes 
are upregulated by overexpression of miRNA-15a/ba in 
the preadipocytes. Thereby, adipogenesis are promoted 
in pre-adipocyte via suppression of FOXO1. Although  
miRNA-15a/b expression that suppresses FoxO1 is 
relatively high in the early phase of adipocyte differentiation 
in porcine pre-adipocytes, it decreases later due to the 
dynamic change in FOXO1 expression (62). 

AdEXs interact with the adipose tissue-derived stem 
cells (ADSCs) and macrophages to maintain the balance 
of metabolism and immunity. Consequently, they drive 
a vicious cycle creating immunometabolic imbalance 
between hypertrophic adipocytes and inflammatory  
macrophages (63). 3T3-L1 adipocytes’ AdEXs contain 
approximately 7,000 mRNAs and 140 miRNAs and 
mediate transport of adipokine gene transcripts into 
macrophages (64). Hypertrophic adipocyte-derived 
chemotactic monocyte chemoattractant protein-1 (MCP-
1)/C-C chemokine receptor 2 (CCR2) pathway and 
hypoxia along with higher concentrations of free fatty acids 
are the main mechanisms for adipose tissue macrophage 
(ATM) accumulat ion  and  macrophage-media ted 
inflammation in obesity. Consequently, the ratio of M1-
to-M2 macrophages is increased in obesity (65). Obesity 
induces imbalance in the M1-to-M2 macrophage ratio in 
adipose tissue. Adipocyte-derived exosomal miRNAs from 
obese mice induce M1 macrophage polarization (66). M1 
polarization of ATMs is characterized by production of pro-
inflammatory cytokines, whereas M2 polarized macrophages 
is linked to immunosuppression. miRNA-9, miRNA-127, 
miRNA-155, and miRNA-125b have been shown to 
promote M1 polarization while miRNA-124, miRNA-223, 
let-7c, miRNA-132, miRNA-146a, and miRNA-125a-5p 
induce M2 polarization in macrophages by targeting various 
transcription factors and adaptor proteins (67). Like obese 
mice, in obese patients, the elevated level of miRNA-155 
in the AdEXs also induces pro-inflammatory M1-
macrophage phenotype by activating signal transducer and 
activator of transcription 1 (STAT1) and repressing STAT6  
expression (66). Contrarily, over-expressed miRNA-223 
induces M2 macrophages polarization in mouse (68). 
Furthermore, transported miRNA-34a with the AdEXs 
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from visceral adipocytes into macrophages suppresses 
M2 macrophage polarization by repressing KLF4, while 
inducing obesity-related adipose tissue inflammation in 
obese mice (69). Co-culture of adipocyte stem cells with 
ATMs of mice promote brown adipocyte gene expression 
upon differentiation. miRNAs derived from ATMs are 
transferred into adipocyte stem cells to facilitate beige 
adipogenesis, via exosomal transfer. Overexpression of 
ATM-derived miRNA-10a-5p effectively suppresses pro-
inflammatory polarization of ATMs and promotes brown/
beige differentiation of adipocyte precursor cells of mice. 
The ability to reduce levels of crown-like structures while 
promoting adipogenesis indicates that miRNA-10a-5p 
enhances tissue restoration and supports healthy adipose 
tissue remodeling (70). 

De novo lipid biosynthesis is controlled by sterol 
regulatory element-binding proteins (SREBPs), which 
are also an important regulator of the PPARγ gene and 
promote the expression of important adipocyte-specific 
mRNAs 3T3-L1 cells (71). Some miRNAs, which are 
critical mediators in lipid metabolism and adipogenesis, are 
located in the SREBP-1 or SREBP-2 gene in humans (72). 
The primary transcript of SREBP2 contains an intronic 
miRNA-33 that increases lipid synthesis and prevents export 
and degradation of newly synthesized lipids in HepG2  
cells (73). miRNA-33b is induced, along with SREBP-1, 
dur ing  d i f ferent ia t ion  o f  human pread ipocytes . 
Overexpression of miRNA-33b causes reduced preadipocyte 
prol i ferat ion and impaired dif ferentiat ion,  while 
inhibition of miRNA-33b enhances lipid accumulation in 
differentiating adipocytes (74). If miRNA-33 inhibits the 
expression of cyclin-dependent kinase 6 (CDK6) and cyclin 
D1 (CCND1), cell proliferation and cell cycle progression 
are reduced after partial hepatectomy in mice (75). The 
chromatin-remodeling factor, high-mobility group AT-hook 
2 (HMGA2), is upregulated during the clonal-expansion 
phase of adipogenesis but downregulated following terminal 
differentiation of 3T3-L1 cells (76). HMGA2, which 
has 3'-UTR, contains three predicted binding sites of  
miRNA-33a (77). Overexpression of miRNA-33b decreases 
both the protein and mRNA levels of HMGA2 in mouse. 
HMGA2 deficiency impairs adipocyte differentiation and 
the induction of PPARγ target genes in a manner like that 
observed with miRNA-33b overexpression (74). On the 
other hand, HMGA2, as a transcription factor that regulates 
the growth and proliferation, is inversely correlated with 
let-7 levels during adipogenesis (76).

The C/EBPα is an important transcription factor 

and regulator of adipogenesis involved in promoting 
the activation of PPARγ and its downstream targets. 
Immortalized line of fibroblasts lacking PPARγ have no 
ability to promote adipogenesis (78). As expression of C/
EBPα is downregulated both prior to and after adipocyte 
differentiation, targeting of C/EBPα by miRNA-33b 
may play an important role in mediating the effects 
of miRNA-33b on adipogenesis and the induction 
of PPARγ targets (74). miRNA-20a-5p is a positive 
regulator of adipocyte differentiation and lipogenesis. 
C/EBPα transcriptionally activates miRNA-20a-5p 
expression via binding to the promoter of miRNA-20a-
5p and induces adipocyte differentiation from 3T3-L1 
preadipocytes (79). Overexpression of miRNA-144-3p 
suppresses the expression of cell cycle regulatory factors 
and inhibits pre-adipocytes proliferation in obese mice. 
Besides, overexpression of miRNA-144-3p accelerates 
lipid accumulation in adipocytes and positively regulates 
adipogenesis. miRNA-144-3p targeting KLF3/carboxy-
terminal binding protein 2 (CtBP2) induces C/EBPα 
activity by releasing corepressors (KLF3 and CtBP2) 
from its promoter region (80). Ectopic overexpression of 
miRNA-182 in human adipocytes suppresses the formation 
of lipid droplets and the expression of adipogenic genes. 
miRNA-182 belongs to the miRNA-183 cluster and 
SREBP2 activates miRNA-182 transcription. miRNA-182 
targets the 3'-untranslated sequence of C/EBPα directly. 
miRNA-182 as a novel negative regulator of adipogenesis, 
may be a potential therapeutic target for obesity in 
mice with high-fat diet-induced obesity, ob/ob mice, or 
obese individuals (81). miRNA-200b regulates adipocyte 
differentiation in 3T3-L1 cells by directly targeting 
KLF4, and it suppresses the expression of KLF4 in both 
mRNA level and protein level. All transcription factors are 
decreased by miRNA-200b overexpression (82). miRNA-
144-3p, miRNA-182 and miRNA-200b are thought to be 
future targets for therapeutic intervention in obesity and 
metabolic syndrome. 

One locus encoding two miRNAs, 378/378*, contained 
within the intron of PPARγ coactivator 1beta (PGC-1β) is 
highly induced during adipogenesis in 3T3-L1 cells and 
ST2 mesenchymal precursor cell lines. miRNA378/378* 
specifically increases transcriptional activity of C/EBPα and 
C/EBPβ on adipocyte gene promoters (83). Tumor necrosis 
factor α (TNF-α) is known to inhibit adipogenesis. TNF-α 
up-regulates the miRNA-155 through the NF-κB pathway 
in 3T3-L1 preadipocytes. Thereby, overexpression of 
miRNA-155 inhibits the expression of C/EBPβ and CREB 
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by directly targeting their 3'UTRs (84). As mentioned 
above, miRNAs are released into body fluids by adipocytes 
and can be transported via exosomes to other organs, 
where they promote ectopic fat deposits by regulating 
adipogenesis. 

Alteration of exosomal miRNA profiles in 
adipogenesis of human adipose-derived stem 
cells (hASCs)

Adipogenic stimuli promote cell turnover and synchronized 
cell division in human multipotent mesenchymal stem cells. 
This process depends on the stimulation of transcription 
factors, which are members of the C/EBP family. On 
the one side adipogenic differentiation is promoted by 
the major transcriptional inducers of adipogenic gene 
expression, on the other side inhibitors of adipogenic 
differentiation, Wingless (Wnt)/β-catenin and the 
transforming growth factor-β (TGF-β) are repressed. 
miRNAs are released by adipose tissue, and they are closely 
associated with the differentiation of adipocytes and are 
dysregulated in obesity (85). miRNAs regulate this critical 
signaling pathways related to adipogenesis. They are located 
within coding DNA sequences such as exons/introns, 
and across a splice site or in intergenic regions. Just as 
different miRNA location affects the transcription modality, 
different miRNAs in the same localization may have 
opposite effects. Intronic miRNAs use their own promoter, 
while miRNAs in intergenic regions use the host gene 
transcriptional machinery and could be transcribed with 
their host gene, sharing common regulatory patterns (86).  
Changes in the composition and levels of circulating 
adipocyte-derived exosomal miRNAs are suggested to be 
a cause, not a consequence, of obesity in humans with no 
other health problems. Clinical evidence has shown that 
AdEXs are present at low levels in the circulation of healthy 
individuals, in contrast to individuals with obesity (19).  
Since adipocytes of obese subjects have hypertrophic 
growth, its cargo content of newly released AdEXs in obese 
individual reflect the obesity-related metabolic alterations. 
Number of circulating AdEX is associated with insulin 
resistance (16). 

In a global miRNA expression microarray of 799 
miRNAs, 50 miRNAs are significantly differed between 
either preadipocytes or mature adipocytes, obtained from 
lean and obese subjects. Seventy miRNAs are highly and 
significantly up or down-regulated in mature adipocytes 
as compared to preadipocytes (87). Sixty-five per cent 

of these differentially expressed miRNAs are located in 
obesity related chromosomal regions (88). Twenty-three 
circulating miRNAs are significantly downregulated 
in diet-induced obesity but upregulated with weight 
reduction achieved through low-fat diet. These genes 
are predominantly involved in adipocytokine signaling 
pathways that are directly associated with obesity and 
weight reduction (89). Differential expression of 5018 
different mRNA probe sets and 15 miRNAs after 
weight loss indicates that impaired miRNA target gene 
expression in obese adipose tissue is closely associated 
with obesity-related inflammation and both recover 
after weight loss (90). The expression differences have 
been detected between obese and lean visceral adipose 
tissue originated exosomes. Thus, lean visceral AdEXs 
concentration is higher than obese visceral AdEXs (91). 
Among the miRNAs located in chromosomal regions 
related to obesity, hsa-miR-15a-5p, hsa-miR-106b-5p,  
hsa-miR-181a-5p, hsa-let-7 family, hsa-miR-27a-3p, 
hsa-miR-130b-3p, hsa-miR-152/148a-3p and hsa-miR-
26b-5 are particularly important in adipogenesis (92). 
As mentioned above, the expression levels of miRNAs 
during the differentiation phase of adipocytes changes 
after obesity becomes permanent. Furthermore, the 
miRNA types expressed in adult obesity and prepubertal 
obesity are different. Thus, Ortega et al. showed that, 
the expression of 40 miRNAs in preadipocytes and 
31 miRNAs in adipocytes are significantly changed in 
obese individuals. Particularly miRNA-221, miR-222, 
miR-100 and miR-125b are down-regulated during 
adipogenesis and proportional with body mass index. 
In persistent obesity,  miRNA-221, miRNA-125b,  
miRNA-34a, and miRNA-100 are up-regulated, while 
miRNA-130b, miRNA-210, and miRNA-185 are down-
regulated (87). In prepubertal obesity, miRNA-221 and 
miRNA-28-3p decrease, whereas miRNA-486-5p, miR-
486-3p, miR-142-3p, miR-130b, and miR-423-5p increase. 
Alterations of these miRNAs are significantly correlated with 
body mass index, as well as other measures of obesity (93).  
On the other hand, morbidly obese patients show a 
marked increase in miRNA-140-5p, miRNA-142-3p  
and miRNA-222. In contrast, the levels of miRNA-532-5p,  
miRNA-125b, miRNA-130b, miRNA-221, miRNA-15a,  
miRNA-423-5p, and miRNA-520c-3p decrease (94).  
Among 30 circulating miRNAs from 155 morbidly 
obese patients, the most pronounced rise is observed 
for miRNA-122, miRNA-885-5p, miRNA-148a and 
miRNA-210, whereas miRNA-150 are markedly decreased. 
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Analysis of relationship between baseline miRNAs levels 
and clinical variables revealed that the levels of these 
miRNAs were positively correlated with body mass index 
and percentage fat mass (95). 

Some miRNAs are found in both persistently obese 
individuals and in adipogenesis. But the functions of these 
circulating miRNAs have not been fully determined. 
However, miRNAs that are upregulated in persistent 
obesity are downregulated during adipogenesis. Moreover, 
some of the down-regulated miRNAs in obese individuals 
are up-regulated in mature adipocytes. These findings 
emphasize that the maturation of undifferentiated 
adipocytes and adipocyte hypertrophy are different stages of 
the development of adiposity. In adipose tissue biopsies, the 
expression of 40 miRNAs in pre-adipocytes and 31 miRNAs 
in mature adipocytes significantly differ. The difference 
between the miRNA profiles of human pre-adipocytes 
and mature adipocytes indicates a close crosstalk between 
miRNAs and adipogenesis (87). 

Visceral adipose tissues of obese and lean individuals 
differentially express 55 miRNAs, which are related to 
TGF-β and Wnt/β-catenin signaling pathways, and target 
7,789 mRNAs. The expression differences have been 
detected between obese and lean visceral exosomes for  
7 miRNAs. Of these, miRNA-148b and miRNA-4269 are 
downregulated, while miRNA-23b and miRNA-4429 are 
upregulated, in the obese subjects. Upregulated miRNAs 
activate both TGF-β and Wnt/β-catenin signaling pathways 
in recipient cells (91). Thus, visceral obese adipocytes 
release the exosomes that contain mediators capable of 
activating inflammatory and fibrotic signaling pathways. 
In this regard, visceral adipose tissue sheds exosomes 
primarily of adipocyte, not macrophage, origin (91). In 
fact, the overexpression of KLF7 in human preadipocytes 
suppresses adipogenesis via inhibiting the expression of the 
adipogenic transcription factors C/EBPα and PPARγ and 
adipocyte-marker genes. In contrast, inhibition of KLF7 
expression like SIRT1, by miR-146b enhances adipogenesis 
in human visceral adipocytes (96). Kinoshita et al. found 
that tryptophan hydroxylase-1 (TPH1) is a rate-limiting 
enzyme for the synthesis of serotonin [5-hydroxytryptamine  
(5-HT)], and the signaling of its receptors 5-HT2A 
receptor (5-HT2A R) and 5-HT2C R is involved in 
adipocyte differentiation. miRNA-448 is encoded in an 
intronic sequence of the serotonin Htr2c and is in located 
in the fourth intron of Htr2c. miRNA-448 targets KLF5, 
which is the binding site of 3'-UTR. Thus, miRNA-448 
inhibits adipocyte differentiation by translational repression 

of KLF5 (97) (Figure 1). 
Like miRNA-146b, miRNA-148a, miRNA-26b and 

miRNA-335 expressions are also dysregulated during the 
adipocyte differentiation. The levels of miRNA-148a, 
miRNA-26b, miRNA-30, and miRNA-199a increase 
during the differentiation of human mesenchymal stem cells 
(hMSCs)-adipocyte. Among these miRNAs, miRNA-148a 
exhibits a significant increase in adipogenesis via directly 
inhibiting the expression of its target gene, Wnt1. There 
is a positive correlation between adiposity and miRNA-
148a expression (98). One of the functional miRNAs 
during adipogenesis in humans, miR-26b as an intronic 
one, localizes in the intron of carboxy terminal domain, 
RNA polymerase II, polypeptide A, small phosphatase 
1 (CTDSP1) of human adipose-derived mesenchymal 
stem cell (hADMSC) and is gradually upregulated during 
adipocyte differentiation. Bioinformatics analyses showed 
that the target of this miRNA is the Wnt/β-catenin pathway 
component T cell factor 4. Adipogenesis is effectively 
suppressed as Wnt/β-catenin is activated when miRNA-26b 
is inhibited (99). 

miRNA-27a i s  an intergenic  miRNA, whereas  
miRNA-27b is an intronic miRNA. During the adipogenic 
differentiation of hASCs, miRNA-27a which is extracted 
from the human adipose tissues, is more abundantly 
expressed, miR-27b expression is down-regulated. 
miRNA-27b increases adipogenesis of hASCs, whereas 
miRNA-27a inhibits adipogenesis by decreasing the 
expression of two key transcription factors, PPARγ 
and C/EBPα (47,100). Another miRNA that changes 
during adipocyte differentiation is miRNA-335, which 
affects both fatty acid metabolism and lipogenesis. If 
human mature adipocytes are exposed to adipokines, 
increases in miRNA-335 expression leads to adipocyte  
differentiation (101). Pri-miRNA-21 is located within the 
intronic region and is independently transcribed by its 
own promoter regions. Processed miRNA-21 expression 
is transiently increased after induction of adipogenic 
differentiation of hASCs, peaked at initial phase. The 
level of miRNA-21 expression is 10-fold higher than 
that of miRNA-143 expression. Increased expression of 
miRNA-21 decreases both protein and mRNA levels 
of miRNA-21 targets genes. Thus, TGF-beta-induced 
inhibition of adipogenic differentiation is significantly 
decreased in miRNA-21 expressing cells (102). 

Overexpression of miRNA-17-5p in response to high 
fat diet activates adipogenesis via increasing adipogenic 
transcription factors and repressing the Wnt signaling 
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pathway. Thus, miRNA-17-5p is among the central 
switches of adipogenic differentiation (103). However, 
expression of miRNA-17-5p is significantly different 
between obese and nonobese omental fat (104). Highly 
induced miRNA378/378* during adipogenesis increases 
transcriptional activity of C/EBPα and C/EBPβ on 
adipocyte gene promoters in cell lines and enhances 
adipogenesis (83). In the same way, brown adipocyte-
derived exosomal miRNA-378 is a positive regulator of 
adipogenesis in constitutive brown adipose tissue (cBAT) 
of human. Its overexpression leads to cBAT expansion, 
resulting in increased energy expenditure, and protects 
against genetically determined diet-induced obesity (105). 
Levels of this miRNA is also significantly over-expressed 
during the normal adipogenesis in humans and directly 
correlated with adipogenic transcription factors (87). 

Like miRNA-27b, miRNA-138 is significantly down-
regulated during adipogenic differentiation. Human 
miRNA, hsa-miRNA-138 inhibits  the adipogenic 
differentiation of hAD-MSCs. While overexpression 
of miRNA-138 in hAD-MSCs effectively reduces lipid 
droplets accumulation, miRNA inhibits expression of 
both key adipogenic transcription factors C/EBPα and  
PPARγ (106). Adipogenic differentiation of human 
mesenchymal stromal cells is impaired by miRNA-369-5p  
whereas it is highly increased by miRNA-371. This is 
accompanied by respective gene expression changes 
of adiponectin and FABP4 (107). Obese women have 
significantly lower miRNA-130 and higher PPARγ mRNA 
levels than that from nonobese women. miRNA-130 
strongly affects adipocyte differentiation and reduces 
adipogenes i s  by  repress ing PPARγ  b iosynthes i s . 
Interestingly, repression of miRNA-130 on PPARγ 
expression happen via targeting both the PPARγ mRNA 
coding and 3'UTR (108).

Conclusions

In obesity, adipogenesis is controlled by coordinated 
actions of transcription factors and epigenomic regulators. 
In the last decade, an increasing number of studies have 
identified novel transcriptional factors and epigenomic 
regulators of adipogenesis. Of these “key epigenomic 
regulators”, miRNAs play opposing roles in the regulation 
of adipogenesis. Thus, miRNAs can accelerate or inhibit 
adipocyte differentiation by affecting transcription factors 
and regulating signaling pathways related to adipogenesis. 
Therefore, differential expression of miRNAs during 

adipogenesis and permanent obesity allows their use as 
biomarkers or therapeutic targets. It is expected that 
miRNA-based therapeutics targeting obesity will be a tool 
for the methods to be developed in the treatment of obesity. 
However, the ability of a miRNA to interact with many 
targets, combined with the possibility for several miRNAs 
sharing the same target, constitute diverse regulatory 
mechanisms that tremendously increase the complexity of 
biological networks (Figure 1). Thus, the broad-spectrum 
and redundancy of miRNA-target interactions constitute 
a major challenge in the development of miRNA-targeted 
therapeutics.
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