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DodecaRNAs (doRNAs) are abundant in cow’s milk and 
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Background: Extracellular RNAs (exRNAs) are found in numerous extracellular fluids, including 
milk. Until recently, microRNAs were the focus of research in this area, leaving aside other exRNAs. 
Recently, a modified small RNA-sequencing (sRNA-seq) approach led to the discovery of very short, 12 
and 13 nucleotides (nt) ribosomal RNA (rRNA) fragments (rRFs), designated as dodecaRNAs (doRNAs), 
in reference to the number of core nucleotides (12 nt) they contain. Since milk is highly enriched in 
extracellular vesicles (EVs) and exRNAs, we inquired about the existence of doRNAs and other very short 
exRNAs in milk and milk EV (mEV)-enriched ultracentrifugation fractions.
Methods: We used sRNA-seq to explore exRNAs shorter than 16 nt in cow’s milk and milk fractions 
obtained by ultracentrifugation. Results were validated with high-specificity splint-ligated reverse 
transcription quantitative polymerase chain reaction (RT-qPCR) using high sensitivity locked nucleic acid 
(LNA) oligonucleotides.
Results: Cow’s milk was abundant in doRNAs and c-doRNAs, a doRNA derivative harboring an additional 
cytosine (C) at its 5' end. Together, these two sequences represented 66.5% of all 8- to 15-nt RNA species. 
The abundance of doRNAs in milk was 11 to 49 times higher than the most abundant microRNAs. These 
RNAs were differentially distributed in milk ultracentrifugation fractions; their concentration was highest in 
the lower speed fractions (12,000 and 35,000 g). We also observed an increased c-doRNA/doRNA ratio with 
centrifugation speed, suggesting a possible selective release of c-doRNA over doRNA in denser mEVs. RT-
qPCR quantification confirmed the presence of doRNAs in milk and supported the differential enrichment 
of doRNAs in different mEV subsets compared to that of the most enriched milk bta-let-7b, bta-miR-30a-5p 
and bta-miR-148a, yet not without discrepancies with the sequencing data.
Conclusions: These findings suggest that exRNAs might be more diverse in cow’s milk than previously 
thought. As doRNAs were found to be downregulated and to modulate cell proliferation/migration of 
prostate cancer cells, this could have health implications in adult and infant consumers which warrant further 
investigations.
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Introduction

Extracellular RNAs (exRNAs) are found in a diversity of 
biological fluids, but they are especially enriched in milk 
(1,2). Within this fluid, exRNAs are contained in small 
membranous extracellular vesicles (EVs), such as exosomes, 
that protect their labile cargo of exRNAs (3,4) from the 
degradative conditions that prevail during lactation (e.g., 
RNase found in milk, IgA hydrolases) (5,6) and digestion [(7) 
and reviewed in (8,9)]. 

For the last decade, most studies investigating milk 
exRNAs in different species focused on microRNAs (4,9-12), 
small non-coding RNAs (ncRNAs) implicated in a vast array 
of—if not all—physiological functions and pathologies, 
such as cancer and inflammatory diseases [reviewed in (13)]. 
However, our previous discovery of a plethora of milk EV 
(mEV) subsets (6,14), progress of small RNA sequencing 
technologies and democratization of their use initiated 
new lines of research unveiling the relative abundance and 
diversity of other non-coding exRNAs, such as ribosomal 
RNAs (rRNAs), small nucleolar RNAs (snoRNAs), tRNA 
fragments (tRFs), long non-coding RNAs (lncRNAs), 
circular RNAs (circRNAs) (10,15,16) and coding exRNA 
(i.e., mRNAs) (17,18). 

Recently, the discovery of very short [12–13 nucleotides; 
(nt)] functional dodecaRNAs (doRNAs) (19) challenged 
the belief that ncRNAs shorter than 16 nt were merely 
non-functional degradative byproducts that pollute 
sequencing results. Most probably derived from the 5.8S 
rRNA, doRNAs were found to be extremely abundant in 
the cells, organs and even EVs (i.e., platelet-derived EVs) 
that were analyzed. Found so far in humans, mice and 
flies (19), doRNAs displayed a species-specific enrichment 
and ratio of the two most abundant isomers of doRNAs: the 
12-nt doRNA and its 13-nt c-doRNA [a doRNA derivative 
harboring an additional cytosine (C) at its 5’ end] variant (19). 
Moreover, these very short ncRNAs were notably found 
to be more abundant than microRNAs in these samples. 
Interestingly, they were mainly cytoplasmic, interacted 
with heterogeneous nuclear ribonucleoproteins (hnRNP) A0, 
A1 and A2B1, and were found to regulate the expression of 
Annexin II receptor (AXIIR) (19). They were also differentially 
expressed in prostate cancer cells/tissues (vs healthy controls) 
and impacted cancer cell migration (19). Along with our 
previous report on semi-microRNAs (smiRNAs) (20), 
these results put in question the practice of systematically 
discarding sequencing data of RNAs shorter than the 
arbitrary threshold of 16 nt, oftentimes even before library 

construction (21).
While we previously reported the existence of different 

RNA biotypes, including canonical rRNA fragments (rRFs) 
longer than 16 nt in commercial dairy milk (16), whether 
shorter RNA species derived from rRNA, such as doRNAs, 
exist in milk remains unknown. Because (I) milk is highly 
enriched in exRNAs of various types, (II) milk exRNAs 
resist human digestion (7) and (III) milk exRNAs might 
exert biological functions (12,22) and impact consumers’ 
health upon ingestion [reviewed in (8,11)], we hypothesized 
that commercially available dairy cow’s milk might contain 
doRNAs or similar, very short exRNAs, in greater amount 
than microRNAs.

To fill this gap in knowledge and after an extensive 
characterization of mEVs (6,7,14,16,23), we used small 
RNA-sequencing (sRNA-seq) to investigate the existence 
and abundance of 8- to 15-nt sRNAs, including doRNAs, 
in commercial dairy cow’s milk and validated these results 
using a new high-specificity reverse transcription quantitative 
polymerase chain reaction (RT-qPCR) method designed 
and validated for RNAs shorter than microRNAs (24). We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://exrna.amegroups.
com/article/view/10.21037/exrna-22-6/rc).

Methods

Cow milk samples

Commercial skimmed filtered dairy milk (PurFiltre, 
Lactantia, Toronto, Canada) was purchased in a local store 
in Québec City, Canada. Three packs of milk with different 
expiration dates were either processed for triplicate analyses 
(sequencing of unfractionated milk and qPCR validations) 
or were mixed into one milk solution used for sequencing 
analyses of milk fractions.

Differential ultracentrifugation

Milk was fractioned following our previously reported 
protocol (14). Briefly, to solubilize casein and prevent 
contamination of the mEVs-enriched fractions with this 
protein, 100 mL of dairy milk was mixed with 1 volume 
of 2% sodium citrate (in water, Sigma) filtered through 
0.22-µm pore microfilters (Corning, Corning, NY, USA) 
and kept on a rocking table for 20 min at 4 ℃ until milk 
clarified. The citrated milk samples were then subjected 
to successive ultracentrifugation at 12,000 (12K), 35,000 
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https://exrna.amegroups.com/article/view/10.21037/exrna-22-6/rc


ExRNA, 2022 Page 3 of 17

© ExRNA. All rights reserved.   ExRNA 2022;4:20 | https://dx.doi.org/10.21037/exrna-22-6

(35K), 70,000 (70K) and 100,000 (100K) g for 1 h each at 4 ℃ 
in a Sorvall WX TL-100 ultracentrifuge, equipped with 
either a SureSpin 630 or a T-1250 Rotor (Sorvall, through 
Thermo Fisher Scientific, Waltham, MA, USA). After each 
step, pellets were carefully suspended in 1 mL of 0.22-µm 
filtered sterile phosphate buffer saline (PBS), pH 7.4 and 
kept resuspending overnight at 4 ℃ before RNA isolation.

RNA isolation

For sequencing analyses, total RNA from milk or milk 
fractions was isolated using TRIzol LS (Thermo Fisher 
Scientific) following the manufacturer’s recommendations 
prior to resuspension in diethylpyrocarbonate (DEPC)-
treated, nuclease-free water (Invitrogen, Carlsbad, CA, 
USA). Total RNA was purified further using RNeasy mini-
kit and subjected to on-column treatment with DNase I, 
according to the manufacturer’s protocol (Qiagen, Hilden, 
Germany). Total RNAs was kept at −80 ℃ for a few days, 
after which it was shipped on dry ice to the ArrayStar 
sequencing platform (Rockville, MD, Canada).

For qPCR analyses, total RNA was isolated from  
250 µL of whole milk or resuspended mEVs after mixing 
with 750 μL TRIzol LS (Thermo Fisher Scientific) spiked 
with UniSp2 exogenous synthetic RNA oligonucleotide 
(Qiagen, MD, USA, Cat No. 339306, product number: 
YP00203950), used as an internal control, following the 
manufacturer’s recommendations. Isolated RNA was further 
treated with DNase I (M0303S, New England Biolabs, 
MA, USA), as per manufacturer’s protocol, to remove 
contaminating DNA. RNA was stored at −80 ℃ for a few 
days before reverse transcription.

Complementary DNA (cDNA) library preparation

Library preparations were performed following modified 
standard operating procedures (SOPs) at ArrayStar platform 
to allow for a larger RNA size window (8–35 nt). The purity, 
quality, and concentration of total RNA samples were 
determined with NanoDrop ND-1000 (Thermo Fisher 
Scientific) and 2100 Bioanalyzer (Agilent, Santa Clara, CA, 
USA). The miRNA sequencing library was prepared from 
total RNA through: (I) 3'-adapter ligation; (II) 5'-adapter 
ligation; (III) cDNA synthesis; (IV) PCR amplification, and 
(V) size selection of approximately 120 to 155 bp of PCR-
amplified fragments (corresponding to approximately 8 to 
35 nt of small RNA). The complete libraries were analyzed 
and quantitated by Agilent 2100 Bioanalyzer.

sRNA-seq

The cDNA library samples were then diluted to a final 
concentration of 8 pM and denatured as single-stranded 
DNA. Cluster generation was performed on the Illumina 
cBot using TruSeq Rapid SR cluster kit (#GD-402–4001, 
Illumina, San Diego, CA, USA) and sequenced for 51 cycles 
on Illumina HiSeq 2000, using TruSeq Rapid SBS Kits 
(#FC-402–4002, Illumina), following the manufacturer’s 
instructions.

Bioinformatics analysis of sequencing data

Adapter sequences were then trimmed from the reads 
that passed the quality control filter (clean reads) leaving 
clean sRNA trimmed reads. All analyses displayed here 
were provided through the ArrayStar standard analysis 
pipeline and refined using R (R Foundation for Statistical 
Computing, Vienna, Austria). Only the reads that were 
identical, both in length and sequence, were considered as 
a unique read. Small RNA biotypes were determined by 
mapping trimmed reads against bovine noncoding RNA 
database [Bos_taurus.UMD3.1.ncrna, http://bovinegenome.
org/; Elsik et al., 2016 (25)] using Blastn tool (National 
Library of Medicine, National Center for Biotechnology. 
Information, https://blast.ncbi.nlm.nih.gov/Blast.cgi). 
For miRNA, trimmed reads were aligned to miRBase 
pre-microRNA database (miRBase release 22.1, http://
www.mirbase.org/). Sequences known to be contaminant 
confounders from RNA isolation procedures were discarded 
[Heintz-Buschart et al., 2018 (26)]. sRNA read counts were 
expressed as reads per million (RPM) sRNAs within the 
specified size windows. 

Adapter-ligated RT-qPCR

The splint bridging sequence and adapter used to 
quantify sRNAs were annealed together, as described in 
our previously published protocol (24). The annealed 
adapter/splint was added to 200 ng of total RNAs (10 µL) 
and 18 µL of ligation master mix containing 10 units T4 
RNA ligase (New England Biolabs, M0437M, Whitby, 
Ontario, Canada), 10% dimethyl sulfoxide (DMSO), 25% 
polyethylene glycol (PEG) 8000 (New England Biolabs, 
Whitby, Ontario, Canada), 1 mM adenosine triphosphate 
(ATP) (New England Biolabs, M0437M, Whitby, Ontario, 
Canada) and 20 units SUPERase•In RNase inhibitor 
(Thermo Fisher Scientific, AM2694, Waltham, MA, USA) 

http://bovinegenome.org/
http://bovinegenome.org/
https://www.journalofdairyscience.org/article/S0022-0302(19)30946-4/fulltext#bib24
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in T4 RNA ligase reaction buffer [50 mM Tris-HCl,  
10 mM MgCl2, 1 mM dithiothreitol (DTT), pH 7.5]. 
The ligation (in 31 µL) was allowed to proceed for 1 h at 
room temperature (RT), after which 17 µL of stop ligation 
buffer [1 M Tris-HCl, 0.1 M ethylene diamine tetraacetic 
acid (EDTA), pH 8.0] was added. This step lengthened 
doRNA and c-doRNA to 22 and 23 nt RNAs, respectively.  
Two µL of ligated total RNA, along with UniSp6 RT spike-
in, were used for RT using the miRCURY locked nucleic 
acid (LNA)-modified microRNA PCR Assay (QIAGEN 
Inc., Toronto, ON, Canada) and the oligo-d(T) primer with 
5’ universal tag included in the miRCURY LNA RT Kit 
(QIAGEN Inc., Toronto, ON, Canada; Cat. No. #339340). 
After cDNA 1/10 dilution, qPCR was performed using 
miRCURY LNA SYBR® Green PCR Kits (QIAGEN 
Inc., Toronto, ON, Canada) in 0.1 mL MicroAmpTM Fast 
Optical 96-Well Reaction Plate (Applied BiosystemTM, Cat. 
No. 4346907) StepOneTM Real-Time PCR System (Cat. 
No. 4376357) and specific Custom LNA Oligonucleotides 
for the doRNA (No. 339317, ad3-d-621278, Cat. No. 
YCP0054421, QIAGEN Inc., Toronto, ON, Canada) 
and c-doRNA (No. 339317, ad3-C-d-621381_1, Cat. No. 
YCP0054420, QIAGEN Inc., Toronto, ON, Canada) or 
the LNA PCR primer assays (QIAGEN Inc., Toronto, 
ON, Canada) for miR-30a-5p (No. 339306, miR-30a-5p, 
Cat. No. YP02104140), miR-148a-3p (miR-148a-3p, Cat. 
No. YP00205867) and Let-7b-5p (Let-7b-5p, Cat. No. 
YP00204750). We used the following thermal PCR cycle 
program: denaturation step at 95 ℃ for 2 min, followed by 
40 cycles of denaturation at 95 ℃ for 10 s and annealing/
elongation at 57 ℃ for 1 min. 

Standard curve for absolute doRNAs and miRNAs 
quantification

DoRNA, c-doRNA, miR-30a-5p, miR-148a-3p and Let-
7b-5p copy numbers were determined using a standard 
curve established using the corresponding synthetic RNA 
oligonucleotides (IDT, Coralville, IA, USA) serially diluted 
1/10th to obtain between 5.7×109 and 5.7×103 copies, 
covering a range of concentration of 6 logs (Figure S1). 
Diluted synthetic RNA was then subjected to adapter-
ligated RT-qPCR. For each standard curve, the cycle 
quantitation (Cq) values with the corresponding copy 
numbers were plotted, and the linear curve equation and 
correlation coefficient (R2) were calculated (Figure S2). 
doRNA and miRNA quantifications were normalized using 
internal spike-in controls to ensure comparable isolation 

efficiency (isolation and splint-RT-qPCR quality controls 
available in Figure S3).

Statistical analysis

All statistical analyses were performed using Prism 
9.2.0 (GraphPad Software Inc., La Jolla, CA, USA). 
Unfractionated milk and validation experiments were 
performed in biological triplicates (n=3). Statistical 
significance was determined by one-way ANOVA with 
Holm-Sidak’s post-hoc correction for multiple comparisons 
or Student’s t-test after validation of statistical assumptions 
and prerequisite for each test and with type error α set to 
0.05 (i.e., 5%, P value below 0.05 considered significant).

Illustrations

Figures were generated using R (R Foundation for Statistical 
Computing), Inkscape software (http://inkscape.org/), 
InteractiVenn (27) and Prism 7 (GraphPad Software Inc.).

Results

doRNAs are highly abundant in commercial cow’s milk

There was a higher abundance of sRNAs in the 8–15 nt 
compared to the 15–30 nt size window of our unfractionated 
commercial cow’s milk sRNA sequencing data, although 
this 1.4-fold difference did not reach statistical significance 
(Figure 1A). 

Analysis of size distribution of sRNAs in the 8–15 
window revealed a marked, and significant, 6- to 33-fold 
enrichment of 12-nt sRNAs and 3- to 17-fold enrichment 
of 13-nt sRNA, in comparison to the other fractions (P<0.05 
to P<0.0001, Figure 1B). The sRNA detection threshold 
in this experiment averaged 10.06 RPM (Figure 1C), with  
34±21 sRNAs representing 80% of the entire 49,612 
detected sequences (Figure 1C). Most of the sRNAs in 
these samples mapped to rRNAs (77.9%) and mRNAs 
(17.1%, Figure 1D). Among the 20 most expressed 
sRNAs,  two sequences (GACUCUUAGCGG and 
CGACUCUUAGCGG,  12  and  13  n t  in  l ength , 
respectively) represented 66.52% of all 8–15 nt sequences 
(Figure 1E). These two rRFs were designated as doRNAs, 
in reference to the number of core nucleotides (12 nt) they 
contain.

DoRNAs and c-doRNAs were respectively 25 to 49 and 
11 to 30 times more enriched in these milk sequencing data 

https://cdn.amegroups.cn/static/public/ExRNA-22-6-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ExRNA-22-6-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ExRNA-22-6-Supplementary.pdf
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Figure 1 Sequencing and identification of very-short RNAs in commercial cow’s milk. Total RNA from 100 mL of commercial cow milk 
was subjected to small RNA sequencing in the 8–30 nt size window (n=3 independent experiments). (A) Abundance of sRNAs in the 8–15 nt 
windows in comparison to the canonical 15–30 nt RNA sequencing window, expressed as RPM reads in the 8–30 nt size windows. (B) Size 
distribution of very-short RNAs, expressed as RPM in the 8–15 windows. (C) Number of different sRNAs detected in the 8–15 nt size window, 
expressed as RPM and defining average detection threshold. (D) Small RNA biotype abundance (in RPM). (E) The 20 most abundant sRNAs 
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miR-30a, bta-miR-148a and bta-miR-let7b) expressed in RPM in the 8–30 nt size window. (G) doRNA and c-doRNA sequences compared to 
the 5.8S rRNA from which they likely derive [adapted from (19)]. Data are displayed as average ± SD and analyzed as described in the Methods 
section. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. c-doRNA, doRNA derivative harboring an additional cytosine at its 5' end; doRNA, 
dodecaRNA; nt, nucleotide; RPM, reads per millions; sRNA, short RNA; ncRNA, non-coding RNA; mRNA, messenger RNA; tRNA, transfer 
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than bta-let-7b, bta-miR-30a-5p and bta-miR-148a; three 
of the most enriched milk microRNAs (28) from the same 
sequencing datasets (P<0.01 to P<0.0001, Figure 1F). These 
two sequences are the doRNA and c-doRNA we previously 
reported in other species (19) and derive most likely from 
the 5.8S rRNA (Figure 1F,1G). 

These results support the existence and high enrichment 
of the very short doRNAs in cow’s milk, less diverse but 
more abundant than the most abundant milk microRNAs. 

Milk ultracentrifugation fractions have specific 8–15 nt 
sRNA enrichment profiles

In our previous reports, we fully characterized the mEVs 
contained in the 12K, 35K, 70K and 100K g fractions 
obtained upon sequential ultracentrifugation of commercial 

cow’s milk (6,16,23). We replicated the above-described 
analysis on these isolated fractions, as described in the 
Methods sections (Figure 2).

In all fractions, and contrary to unfractionated milk, 
most sequences (51.3% to 83%) were in the 15–30 nt size 
window (Figure 2A). There was a fraction-specific ratio 
between 8–15 and 15–30 nt sRNAs, with an increasing 
proportion of 16–30 nt sRNAs in the later fractions (70K 
and 100K g, Figure 2A). Similarly, 12K and 35K g milk 
fractions had higher proportion of 12-nt sRNAs, while 
subsequent fractions were more enriched in 13-nt sRNAs 
(Figure 2B). 

Detection thresholds and total sRNA count in these 
samples were comparable (Figure 2C). In 12K and 100K g 
fractions, 19 and 20 sequences represented 80% of 8–15 nt 
reads, respectively (Figure 2C). In 35K and 70K g fractions, 
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this proportion accounted for 562 and 230 sequences, 
respectively, suggesting a higher diversity of sequences 
in these two intermediate fractions (Figure 2C). As for 
unfractionated milk, biotype analysis revealed that most of 
the 8–15 nt sRNAs, as in all fractions, mapped to rRNAs 
(73–77%) and mRNAs (16–25%) (Figure 2D). 

Further comparison of the four milk fractions revealed 
that each contained between 21,008 to 37,204 specific 
sequences and shared over 8,326 common reads (Figure 3A). 
Enrichment distribution of the 200 most enriched 8–15 nt 
sRNAs in milk (~80% of all sequences) revealed that those 
were most enriched in the 12K and 35K g fractions (Figure 
3B). Clustering by these sRNAs confirmed 12K and 35K 
g fractions were more closely related to each other (Figure 
3B). Similar observation was drawn for 70K and 100K g 
fractions (Figure 3B). 

These results suggest 8–15 nt sRNAs, a high proportion 
of which is around 12–13 nt in size, distribute differentially 
between milk ultracentrifugation fractions, distinguishing 
and clustering these in two subsets (12K–35K and 
70K–100K g groups).

The majority of 8–15 nt sRNAs in milk fractions are 
doRNAs that are more abundant than most abundant milk 
microRNAs

Like unfractionated milk, doRNA (GACUCUUAGCG,  
12 nt) and c-doRNA (CGACUCUUAGCGCC, 13 nt) 
accounted for 56% to 67% of all 8–15 sRNAs (Figure 4A-4D). 

When looking specifically at these two doRNAs, 12K 
and 35K g fractions were more closely related to each 
other, with their most abundant sequence being the  
12-nt doRNA (Figure 4A,4B). In subsequent fractions (70K 
and 100K g), the most abundant 8–15 sRNA was the 13-nt  
c-doRNA (Figure 4C,4D). These findings translated in a 
c-doRNA/doRNA ratio of 0.42, 0.56, 1.99 and 2.85 in 12K, 
35K, 70K and 100K g fractions, respectively, which tended 
to increase with ultracentrifugation speeds (Figure 4A-4D). 
A closer inspection of the distribution profiles of c-doRNA 
and doRNA (Figure 4E) revealed that the c-doRNA/doRNA 
ratio is increasing mainly because doRNA sequences 
sediment at lower speeds, leaving less of these sequences for 
the subsequent fractions, while c-doRNA remains constant 
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Figure 3 Comparison of sRNA profile between milk ultracentrifugation fractions. (A) Venn diagram displaying the number of 8–15 nt 
sRNAs shared or not between cow’s milk ultracentrifugation fractions. Interactable version providing all shared sequences is available as 
supplementary file. (B) Heatmap and clustering of milk ultracentrifugation fractions based on the 200 most enriched 8–15 nt sRNAs in milk 
(Spearman’s rank, expressed as row Z-scores). nt, nucleotide; sRNA, short RNA.
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Figure 4 Identification of the most abundant 8–15 nt sRNAs in milk fractions and comparison with most abundant microRNAs. Twenty 
most abundant 8–15 nt sRNAs in 12,000 g (A), 35,000 g (B), 70,000 g (C) and 100,000 g (D) milk ultracentrifugation fractions. (E) 
Enrichment of doRNA, c-doRNA, and microRNAs bta-let-7b, bta-miR-30a and bta-miR-148a in milk ultracentrifugation fractions, 
expressed as RPM 8–30 nt reads. c-doRNA, doRNA derivative harboring an additional cytosine at its 5' end; doRNA, dodecaRNA; nt, 
nucleotide; RPM, reads per millions; sRNA, short RNA.
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across all the fractions (Figure 4E). Therefore, these 
observations suggest a specific enrichment of doRNA in 
the lower speed fractions and potential association with the 
large exRNA-enriched mEVs it contains (6).

When compared to milk’s most enriched microRNAs 
(i.e., bta-let-7b, bta-miR-30a-5p and bta-miR-148a), 
doRNA and c-doRNA were systematically more abundant 
(Figure 4E). Twelve-nt doRNA was 16 to 194 times more 
enriched in these fractions than these three microRNAs, 
while 13-nt c-doRNA reached 12- to 553-fold higher 
abundance compared to bta-let-7b, bta-miR-30a-5p and 

bta-miR-148a (Figure 4E).
These sequencing results suggest that 12- and 13-nt 

doRNAs (I) are possibly more abundant than the most 
abundant milk microRNAs, (II) are specifically distributed 
across milk ultracentrifugation fractions, and (III) might be 
associated to the specific milk mEV subsets that sediment at 
the indicated speeds.

qPCR validation and comparison to the most enriched milk 
microRNAs

As sequencing data often trade large spectrum of detection 
for precision in quantification, we aimed to confirm these 
results using a complimentary and previously validated 
splint-ligation LNA-based RT-qPCR method designed to 
detect sRNA shorter than 15 nt (24).

We first looked at the enrichment of doRNA and c-doRNA 
in unfractionated pasteurized milk, and compared those 
to the most enriched commercial milk microRNAs (16), 
namely bta-let-7a, bta-miR-30a-5p and bta-miR-148a 
(Figure 5). Both doRNA and c-doRNA were detectable 
in unfractionated commercial milk at a concentration of 
106 to 107 copies per 1 mL milk (Figure 5). While doRNA 
and c-doRNA were slightly, yet not significantly, more 
enriched than bta-miR-148a, their levels were not higher 
than bta-miR-30a-5p and significantly lower than bta-let-7b  
(Figure 5). 

We observed similar results in milk fractions, with bta-
let-7b systematically being the most enriched of the five 
small RNAs surveyed in all fractions (Figure 6). In the first 
two fractions (12K and 35K g), doRNA ranked second, 
followed by bta-miR-30a-5p, c-doRNA and, finally, bta-
miR-148a (Figure 6A,6B). In the latter fractions, bta-miR-
30a-5p ranked second, while doRNA was relocated to 
the third position and c-doRNA to the last, translating a 
difference in enrichment pattern between the fractions 
(Figure 6C,6D). When looking at distribution patterns 
across the fractions (Figure 7), distribution profiles of 
milk microRNAs matched our previous reports (6,16), 
with the bulk of bta-let-7b and bta-miR-148a significantly 
concentrating within the 12K and 35K g, while bta-miR-
30a was distributed more evenly across the fractions (Figure 
7A-7C). Similarly, doRNA and c-doRNA were more 
enriched within the first two milk fractions (Figure 7D,7E), 
confirming a differential enrichment of doRNA between 
milk fractions and associated mEVs.

The trend of increasing c-doRNA/doRNA ratio with 
increasing ultracentrifugation speeds observed in our 
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c-doRNA existence in milk and their proportion relative to most 
abundant milk microRNAs. Total RNA isolated from milk was 
subjected to splint-ligation LNA-based qPCR for the detection of 
doRNAs and most abundant milk microRNAs in unfractionated 
milk. Copy number of each RNA was calculated using a standard 
curve produced by a serial dilution of the synthetic form of each 
RNA. Data are displayed as means ± SD (n=3) and statistically 
compared as described in the Methods section. *, P<0.05. ns, not 
significant; c-doRNA, doRNA derivative harboring an additional 
cytosine at its 5' end; doRNA, dodecaRNA; LNA, locked nucleic 
acid; RT-qPCR, reverse transcription quantitative polymerase 
chain reaction; SD, standard deviation.
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Figure 6 Validation by LNA-based RT-qPCR of doRNA and c-doRNA existence in milk fractions and their proportion relative to most 
abundant milk microRNAs. Total RNA isolated from milk fractions was subjected to splint-ligation LNA-based RT-qPCR for the detection 
of doRNAs and most abundant milk microRNAs in 12,000 g (A), 35,000 g (B), 70,000 g (C) and 100,000 g (D) milk fractions. Copy number 
of each RNA was calculated using a standard curve produced by a serial dilution of the synthetic form of each RNA. Data are displayed as 
means ± SD (n=3) and statistically compared, as described in the Methods section, either by parametric or nonparametric tests depending 
on prerequisite validation. *, P<0.05; ****, P<0.0001. ns, not significant; c-doRNA, doRNA derivative harboring an additional cytosine at its 
5' end; doRNA, dodecaRNA; EV, extracellular vesicle; LNA, locked nucleic acid; RT-qPCR, reverse transcription quantitative polymerase 
chain reaction; SD, standard deviation.
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Figure 7 Distribution of doRNA and c-doRNA in milk fractions compared to most abundant milk microRNAs. Total RNA isolated from 
milk fractions was subjected to splint-ligation LNA-based RT-qPCR for the detection of bta-let-7b (A), bta-miR-30a-5p (B), bta-miR-148a 
(C), doRNA (D), and c-doRNA (E) across milk fractions, and calculation of the doRNA/c-doRNA ratio in those fractions (F). Copy number 
of each RNA was calculated using a standard curve produced by a serial dilution of the synthetic form of each RNA. Data are displayed 
as means ± SD (n=3) and statistically compared as described in the Methods section. *, P<0.05; **, P<0.01. ns, not significant; c-doRNA, 
doRNA derivative harboring an additional cytosine at its 5' end; doRNA, dodecaRNA; LNA, locked nucleic acid; RT-qPCR, reverse 
transcription quantitative polymerase chain reaction; SD, standard deviation.

sRNA-seq data was not confirmed by RT-qPCR data  
(Figure 7F). There was, however, a significant difference in 
the c-doRNA/doRNA ratio between the 12K and 70K g 
fractions, supporting the potential specific loading of certain 
doRNAs within certain EV subsets (Figure 7F).

Discussion

Canonical sRNA sequencing pipelines rely on an arbitrary 
minimal length threshold of 16 nt for library preparation 
and subsequent bioinformatics analysis (21). This threshold 
was initially set to ensure higher depth of analysis for longer 

sRNA, improve the signal-to-noise ratio and normalize 
the downstream computational analyses. It was chosen 
on the premise that RNA species shorter than 15 nt may 
not be specific, might not be mapped with confidence to 
the genome and would not have biological significance, 
being most likely degradation products, artifacts or noise 
“polluting” the sequencing data. While better depth of 
analysis is indeed of importance in sRNA sequencing, 
such reasoning follows the same flawed paradigm of “junk 
short RNA” that hindered the discovery of microRNAs, 
piwi-interacting RNAs (piwiRNAs), tRFs and other small 
ribosomal RNAs (srRNAs) in the past (29,30). 
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The serendipitous discovery of 12-nt smiRNAs, as 
potentially competing with the function of the microRNA 
from which they derived, was among the first evidence 
questioning the relevance of that 16-nt threshold (20). 
Subsequently, we reported the discovery of other subsets of 
very-short RNAs, such as doRNAs, in animals (human cells 
and mouse cells and tissues), plants, yeasts and bacteria, 
further challenging this paradigm (19). Our experiments and 
controls confirmed that doRNAs were not mere processing 
artifacts, but rather biologically relevant and active 
short rRNAs implicated in cell proliferation and mRNA 
translation (19). By unveiling the existence of doRNAs in 
cow’s milk and fractions, along with a large array of RNAs 
shorter than the canonical sRNA-seq threshold of 15 nt, 
the evidence that we gathered here further supports this 
paradigm shift and extends the reach of doRNAs to the 
realm of exRNAs.

In addition, the focus on microRNAs in milk trended in 
the last decade because of their known important functions 
and because it was embedded within the larger “nutritional 
microRNAs” trend in research, leaving aside numerous 
biologically relevant exRNAs [reviewed in (1,11,28)]. 
However, mounting evidence suggests the existence of 
more than microRNAs in biological fluids, with several 
papers reporting the existence of other exRNAs, such as 
mRNAs, tRNAs, circRNAs and rRNAs in milk and mEVs 
(4,10,16,31-35). The results of the present study are in 
accordance with these reports and further emphasize on 
the importance of looking at the bigger picture rather than 
focusing on a single RNA species (36-38).

Interestingly, in this work, milk fractions and the mEVs 
they contain, were shown to be highly enriched in the 12- 
and 13-nt doRNAs, which constituted the vast majority 
of all 8–15 nt exRNAs, while this was not the case for the 
platelet EVs that we studied and reported in our previous 
work (19). Along with this observation, the distribution 
pattern of doRNAs and specific c-doRNA over doRNA 
ratios across milk fractions suggest that these 12- and 13-nt 
exRNAs might be specifically secreted within certain mEV 
subsets, as reported previously for tRNAs, microRNAs 
and iso-miRNAs (16,39-41). However, because of their 
length, further research is needed to clarify if these very 
small RNAs are bound by the same rules that guide other 
small RNAs with specific motives towards EVs or if it 
is their potential association with certain RNA-binding 
proteins that make doRNAs differentially enriched in milk  
fractions (19,42,43).

It was previously suggested that ultracentrifugation 

might be a degradative process (44,45). We cannot exclude 
the possibility that the observed impoverishment of doRNA 
within the last two fractions might be due to the loss of 
mEVs protecting these very-short RNAs from degradation 
by milk ribonucleases (46,47). Therefore, investigation of 
doRNAs in the different mEV subsets isolated through 
less disruptive methods (e.g., tangential filtration or size-
exclusion chromatography) is warranted before drawing 
definitive conclusions about the specific loading of milk 
doRNAs within the larger mEVs found in the 12K and 
35K g ultracentrifugation fractions (6). Moreover, as there 
is a possibility for exRNAs to be associated with more than 
simply EVs, including exosomes, there is a possibility that 
doRNAs in milk are associated with non-vesicular particles 
and ribonucleoproteins (48-50). Accordingly, further 
exploration of doRNA resistance to digestion and the exact 
mechanism of their secretion and transport in milk remains 
to be fully elucidated. 

As exRNAs in milk have been previously found to resist 
digestion and potentially impact the health status of the 
“consumer”, be it cells, mice or humans (18,22,51,52), 
one might speculate that these new exRNAs in milk 
also contribute to the bioactivity of mEVs [reviewed in 
(8,10,28,53)]. In this line, we previously reported that 
doRNAs might be involved in prostate cancer progression, 
in which they are underexpressed in patient’s cells (19). 
These doRNAs also seemed to limit cell proliferation 
and regulation of the expression of AXIIR, which is 
an important receptor involved in the etiology of this  
disease (19). Overexpression of the doRNA-binding protein 
hnRNP A2/B1 in prostate cancer (54), its importance in 
the progression of this malignancy and for the resistance 
to apoptosis (55) would make of this protein a “hub”—
and association with doRNAs (19)—potentially linking 
doRNAs and prostate cancer. While the link between milk 
consumption and prostate cancers remains controversial, 
with inconsistent evidence in the general population of 
men (56-58), milk and its bioactive components, including 
exRNAs, might affect the etiology of prostate cancer, 
more likely in those with digestive tracts more permeable 
to mEVs, as seen for bacterial lipopolysaccharide (LPS)-
bearing EVs (59,60). This link, although speculative, calls 
for further investigations.

DoRNAs might a lso impact  the maturat ion or 
degradation of rRNAs by binding to the 5’ end of 28S 
rRNA (1). This could interfere with the proper assembly 
and integrity of the nucleolus, affecting the accurate 
synthesis and processing of rRNAs and, if leading 28S 
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rRNA to degradation or edition, potentially modulating 
the diversity of rRNAs (2). In turn, this could impact the 
function of ribosomes and disrupt mRNA translation. 
Therefore, doRNAs may have an impact on cell viability by 
modulating rRNA biogenesis (3).

To our knowledge, our study is the first to explore such 
very short exRNAs in milk, any other biological fluid 
and mEV-enriched ultracentrifugation fractions. Our 
sequencing results were supported by complementary high 
sensitivity, high specificity, LNA-based RT-qPCR, further 
confirming the existence of these extracellular doRNAs 
along with other very short exRNAs in commercial dairy 
cow’s milk. 

While original, our work is, however, limited in several 
aspects. First, these experiments were conducted on a 
specific milk brand that is pasteurized and ultrafiltered. 
In accordance with previous reports [reviewed in 
(8,37,61,62)], milk processing for consumption highly 
impacts the exRNA content (63), with marked differences 
between ultra-high temperature (UHT) processing and 
pasteurized fluids (64). Even though we detected such very 
short exRNAs in other milks during our investigations 
and protocol developments (data not yet published), 
the results we report here might not be inferable to all 
cow milks around the globe, UHT milks, pascalized  
fluids (65) or milks from other species. Additionally, as 
for other exRNAs in milk, their transfer to recipient cells 
remains to be fully demonstrated, despite reports supporting 
this hypothesis (8,28,51).

In addition, because of their novelty, so far, the discovery 
and exploration of doRNAs in various tissues and conditions 
remains monocentric and requires replication from 
independent research groups worldwide, which we call for. 

Slight modifications to any sRNA sequencing pipeline, 
aimed to allow for the detection of sequences shorter than 
16 nt, might easily allow replication of these results and 
exploration of other very short exRNAs in other bodily 
fluids. Additional methods and information on how to 
explore these very small RNAs were also reported in our 
latest work and could serve as a guideline for exploring 
such small RNAs by sequencing across species, including 
bacteria, yeast and plants (43). However, one should 
exercise caution when analyzing sequencing data because 
of the discrepancies we report in this study between the 
sequencing data and quantitative analyses. Indeed, because 
classic RT-qPCR would not differentiate between these 
doRNA and 5.8S rRNA (or longer rRFs), we set, validated, 
and shared the protocol of a splint-ligation LNA-based RT-

qPCR method which allows the highly specific, absolute 
quantification of doRNAs in any sample and under any 
condition of health and disease (24). Using this method, we 
confirmed that doRNAs were highly enriched in milk (at 
levels comparable to the most enriched milk microRNAs), 
but their concentration did not seem to be above that of 
microRNAs, as suggested by the initial sequencing analysis. 
Moreover, the important differences in doRNA/c-doRNA 
ratio observed in sequencing data were less pronounced 
when assessed by LNA RT-qPCR. 

These differences might have risen from RNA isolation 
procedure necessarily different for each method. Indeed, 
while on-column isolation is more suitable for RNA 
sequencing, TRIzol LS is known to provide with different 
total RNA yields than columns (66), and both isolation 
techniques have been reported to have selectivity biases 
based on GC content (66-68). Also, our splint-ligation 
RT-qPCR method is reinforced with two internal spike-in 
controls for extraction and RT-qPCR efficiency estimation, 
two normalization tools that cannot be used for sequencing 
purposes. Therefore, while our sequencing analyses led 
to the discovery of doRNAs as a new kind of exRNAs, we 
believe our qPCR validation data to be more reliable. Our 
robust and easily applicable splint-ligation LNA-based RT-
qPCR methodology may facilitate replication of our work 
and allow further exploration of doRNA and very short 
exRNA biology in different model organisms, biological 
fluids and contexts. 

Conclusions

In this work, we report the discovery of very short 
exRNAs, most of which were rRNA-derived doRNAs, 
in commercially available cow’s milk and their specific 
distribution across EV-enriched ultracentrifugation 
fractions. The existence of such short exRNAs in milk 
further challenges arbitrary size paradigms in the molecular 
biology of sRNAs, which does not go without reminding 
of the micropeptide paradigm shift in the last decade  
(69-71). The existence of very short exRNA, such as 
doRNAs in milk, suggests their potential enrichment 
in other biological fluids, such as plasma, cell culture 
mediums, intercellular or amniotic fluid; a possibility to 
consider when exploring the involvement of exRNAs in 
physiological processes, pathological conditions or even 
for basic in vitro research (72). Further investigations 
are warranted to unveil the origin of milk doRNAs, 
their functions in different conditions, their potential as 
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biomarkers of diseases, especially during lactation disorders 
and mammary gland infections, their transmission between 
cells, organs and possibly their bioactivity after transmission 
between individuals during breastfeeding or species through 
ingestion of cow’s milk.
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Supplementary

Figure S1 DNA and RNA oligonucleotides used in this study. c-doRNA, doRNA derivative harboring an additional cytosine at its 5' end; 
doRNA, dodecaRNA.

Figure S2 Standard curves were established using synthetic doRNA, c-doRNA, miR-148a, Let-7b-5p or miR-30a-5p RNA oligonucleotides. 
c-doRNA, doRNA derivative harboring an additional cytosine at its 5' end; doRNA, dodecaRNA.



© ExRNA. All rights reserved. https://dx.doi.org/10.21037/exrna-22-6

Figure S3 Raw cycle of quantification data for the two exogenous RNA spike-ins used in the different triplicate samples. UniSp2 is an 
exogenous RNA oligonucleotide added at the homogenization step with TRIzol to enable RNA isolation quality control. UniSp6, included 
in the miRCURY LNA RT Kit, is added to the RT reaction to control for cDNA synthesis and PCR efficiency. The numbers 1, 2 and 3 
refer to each of the biological triplicate sample (n=3).


