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Introduction

Milk contains abundant large extracellular vesicles (EVs) (1-5)  
and small nano-sized EVs (30–150 nm) known as milk 
exosomes (MEX), that transfer microRNAs (miRs), long 

noncoding RNAs (lncRNAs), circular RNAs (circRNAs), 
messenger RNAs (mRNAs) among others (6-22). MEX miRs 
are highly conserved between mammals (11,23), survive the 
harsh conditions of the gastrointestinal tract (24-26), are taken 
up by endocytosis (27,28), are bioavailable (29,30), reach the 
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systemic circulation (29,31) and enter cells and peripheral 
tissues (30,32-36).

Due to the possibility of high yield preparations of 
bovine MEX (37-39) and their ability to overcome tissue 
boundaries (30,32-35), MEX are regarded as an ideal 
nanoplatform for the transfer of either intrinsic miRs (40-55) 
or as carrier systems for drug or anti-sense RNA transfer to 
target tissues (34,56-61) (Table 1). 

Despite these opportunities, the question remains: 
Is the transfer of MEX miRs beneficial or do they exert 
adverse health effects? To answer this question, the original 
biological purpose of MEX miRs and their physiological 
functions during the breastfeeding period have to be 
examined in more detail.

Methods

Literature research was performed using the PubMed 
database between 1990 and 2022 selecting original research 
papers published in English language including the search 
items: human and bovine milk exosome, milk extracellular 
vesicle, microRNA (miRNA, miR), gene expression, gene 

regulation, beneficial health effects, adverse health effects. 
Original data of reported biological effects of miRs were 
extracted and provided in the corresponding disease section. 
Literature data of human and bovine MEX-derived miRs 
were inspected and related to their potential health effects 
(Table 2).

Outcome of literature research

Physiological versus artificial MEX miR signaling

The perception of milk as a food for infants (62) has changed 
to a complex maternal-neonatal signaling system promoting 
postnatal growth and appropriate metabolic, adipogenic, 
immunological and neuronal programming of the infant 
(12,63-72). MEX represent maternal signalosomes relaying 
gene-regulatory communication between the maternal 
lactation genome and the infant (69). They have an important 
impact on epigenetic postnatal programming (73,74) and 
early-life growth trajectories (75). Notably, miR-148a, the 
major miR of human and bovine MEX (7,23,76), exhibits 
an identical nucleotide sequence between Homo sapiens 

Table 1 Potential therapeutic effects of MEX in experimental models 

MEX source Disease—pathological condition Reference 

Bovine Amelioration of experimental arthritis (40)

Bovine Inhibition of catabolic and inflammatory processes in cartilage from osteoarthritis patients (41)

Bovine Osteoprotective effect by increasing osteocyte numbers and targeting RANKL/OPG system in 
experimental models of bone loss

(42)

Bovine Induction of proliferation and differentiation of osteoblasts and osteogenesis (43)

Porcine Protection against intestinal epithelial cell damage (44)

Porcine Inhibition LPS-induced intestinal epithelial cell apoptosis (45)

Bovine Enhanced goblet cell activity and prevention of the development of experimental necrotizing 
enterocolitis

(46)

Bovine Attenuation of experimental ulcerative colitis (47)

Bovine Attenuation of experimental colitis (48)

Human, bovine Attenuation of experimental colitis (49)

Bovine Amelioration of cardiac fibrosis (50)

Bovine Potential attenuation of hepatic fibrosis (51)

Bovine Regeneration and acceleration of cutaneous wound healing (52)

Bovine Modulation of scar-free wound healing (53)

Bovine Acceleration of angiogenesis and diabetic wound healing (54)

MEX, milk exosome; LPS, lipopolysaccharide.
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and Bos taurus (11). MEX miRs modify gene expression 
of MEX-receiving cells and tissues (11,33,50,77-81),  
although the life period and the magnitude of their gene-
regulatory impact is a matter of debate (30,82,83). During 
the postnatal period, MEX function as epigenetic regulators 
(82,84). MEX miR-148a targets DNA methyltransferase 
1 (DNMT1) and p53 (TP53), decreasing their expression 
(11,77,84-88). 

In all mammals except humans, MEX miR exposure is 
restricted to the breastfeeding period and declines after 
weaning. About 7,000 to 10,000 years ago, Neolithic 
humans started to exploit milk from other mammalian 
species (89), but consumed preferentially fermented milk 
(89,90), which compared to raw milk contains diminished 
quantities of bioactive MEX miRs (91). Bovine MEX miRs 
are conserved by pasteurization of cow milk (72–78 ℃, for 
>15 s), allowing their delivery into the human food chain 
(92,93). 

To evaluate the risk-benefit relation of MEX miRs, 
five constellations of MEX miR exposure during human 
life have to be analyzed: (I) the impact of bovine MEX 
miR exposure during pregnancy and fetal development; 
(II) the physiological action of human MEX miRs during 
breastfeeding; (III) the absence of human MEX miRs by 
artificial formula feeding; (IV) the long-term influence 
of bovine MEX miRs on consumers of pasteurized cow 
milk; and (V) the action of intrinsic bovine MEX miRs 
and MEX miR transfer via drug-loaded MEX for the 
treatment of human diseases. It is important to be aware 
that the regulation of gene expression by miRs is highly 
complex, as a specific miR may regulate or repress the 
expression of hundreds of different mRNAs, which may 
act in concert and either stimulate (e.g., repression of an 
inhibitor) or inhibit (e.g., repression of an activator) a 

given cellular process. 

Bovine MEX miR exposure during pregnancy

Consumption of unfermented milk during pregnancy 
is associated with fetal weight gain and higher birth 
weight (94-98), an indicator of fetal growth related to 
placental weight (99). In contrast to fermented milk 
with degraded MEX (93), raw and pasteurized milk 
deliver bioactive MEX including miR-21 and miR-148a 
(11,29,92,93,100,101). Following oral gavage of bovine 
MEX to mice, miR-21 and miR-30d accumulated in 
murine placenta and embryos (35). MIRNA30D knockout 
mice exhibit fetuses with smaller crown-rump length and 
fetal/placental weight ratio (102). Increased placental 
expression of miR-21 has been related with placental 
weight and fetal overgrowth (103,104). MEX miR-21 and 
miR-148a target phosphatase and tensin homolog (PTEN) 
and promote PI3K-AKT-mTORC1 signaling (77,105). 
Indeed, target gene prediction of human, bovine and 
porcine MEX miRs mainly concentrate on the PI3K-AKT-
mTORC1 pathway (30,73,106). Increased trophoblast 
mTORC1 activity determines placental-fetal transfer of 
amino acids and glucose promoting fetal growth and birth 
weight (107-112). Thus, oral exposure of pregnant women 
to bovine MEX miRs may over-stimulate placental and 
fetal mTORC1 activation enhancing fetal growth.

Breastfeeding: the physiological MEX miR 
exposure of the infant

Intestinal maturation

Human, bovine and porcine MEX and their miRs improve 
intestinal maturation and proliferation (113-117), protect 

Table 2 The search strategy summary

Items Specification

Date of search Jul 2022

Databases and other sources searched PubMed

Search terms used Milk exosome, extracellular vesicle, miR, gene regulation, gene 
expression, health effects

Timeframe 1990–2022

Inclusion and exclusion criteria Inclusion: original English research articles;  
Exclusion: articles repeating published data

Selection process First author conducted paper selection
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against epithelial damage (44,118-120) stabilize intestinal 
barrier function (46,121-123), exert anti-inflammatory 
(47-49,69,124,125) and anti-oxidative activities (126,127), 
stimulate intestinal and systemic immunity (6,7,64,128-130), 
antimicrobial defense (46,131), and appropriate conditioning 
of the gut microbiota (131,132). Notably, miR-148a inhibits 
TLR4/NF-κB and IL-6/STAT3 signaling (51,69,133-139) 
(Table 3). Experimental colitis models confirm that MEX 
attenuate TLR4 expression and NF-κB activation (45,118). 
Thus, MEX are of key importance for postnatal intestinal 
development and suitable agents for the prevention and 
treatment of necrotizing enterocolitis (46-49,69,86,140,141).

Immune tolerance

MEX that entered the systemic circulation may stimulate 
thymic maturation inducing regulatory T-cells (Tregs) (64). 
Admyre et al. (6) showed a dose-dependent expression of 
Forkhead box P3 (FoxP3) in CD4+ T-cells after addition 
of human MEX. FoxP3 is the master transcription factor 
of regulatory T (Treg) cells. Its expression is controlled 
by a Treg-specif ic  demethylation region (TSDR) 
(142,143). DNMT1 and DNMT3B are associated with 
the FOXP3 locus in CD4+ T-cells. Whereas methylation 
of CpG residues represses FoxP3 expression, complete 
demethylation induces stable FoxP3 expression (144). Thus, 
MEX miR-148a-mediated suppression of DNMT1 and 
miR-29b-mediated suppression of DNMT3B may enhance 
Treg cell maturation that maintains immune tolerance, 
preventing allergy and autoimmunity (64,145,146). 

Neuronal development

After oral gavage of bovine MEX to mice, MEX accumulated 
in the brain (32). In mice, MEX cross the blood-brain-barrier 
and promote dendritic complexity in the hippocampus, 
whereas dietary depletion of bovine MEX impaired 

sensorimotor gating and cognitive performance (147). In 
early postnatal life, developmental processes are critical 
for establishing proper neuronal connectivity. One protein 
functionally important for postnatal synaptic plasticity is 
α-synuclein (148-150). Hypomethylation of the SNCA 
promoter increases α-synuclein expression, which is regulated 
by DNMT1 (151). MEX miR-148a-mediated suppression 
of DNMT1 in neuronal cells may thus promote α-synuclein 
expression enhancing neuronal connectivity and cognitive 
function.

Adipose tissue development

Preterm infants receive high amounts of MEX miR-148a and 
miR-22 (115). Oxytocin, which is released during birth and 
lactation (152), induces the expression of MEX miR-148a and 
miR-30 in colostrum (153). Intriguingly, maternal obesity is 
negatively associated with the content of MEX miR-148a, 
miR-29a, miR-20b, miR-30b and miR-32 in human milk 
after one month of lactation (154). MEX miR-148a was 
negatively associated with infant weight, fat mass, and fat free 
mass, while miR-30b was positively associated with infant 
weight, percent body fat, and fat mass at 1 month (154). 
In mothers with gestational diabetes, levels of MEX miR-
148a, miR-30b, let-7a and let-7d were also reduced (155).  
MEX miR-148a was negatively associated with infant weight, 
percentage of body fat, and fat mass, whereas MEX miR-30b 
was positively associated with infant weight and fat mass at  
1 month of age. MEX miR-148a was negatively associated 
with infant weight at 6 months of age (155). Unfortunately, 
both studies did not differentiate between white adipose tissue 
(WAT), beige (BET) and brown adipose tissue (BAT), which 
is a critical limitation because MEX miRs may influence both 
WAT and BET/BAT development (69). Overexpression 
of miR-30b/c induces the expression of thermogenic 
genes such as uncoupling protein 1 (UCP1) in beige/
brown adipocytes (156). MiR-30b/c target NRIP1, the gene 

Table 3 Anti-inflammatory targets of miR-148a

Target genes Regulators of inflammatory responses References

TLR4 Toll-like receptor 4 (133) 

CAMK2A Calcium/calmodulin-dependent protein kinase IIα (134,135)

CHUK Component of nuclear factor κ-B kinase complex (136)

IKBKB Inhibitor of nuclear factor κ-B kinase, subunit β (136-138)

IL6ST Interleukin 6 signal transducer (139)

miR, microRNA.
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encoding receptor-interacting protein 140 (RIP140) (156).  
RIP140 is essential for DNA and histone methylation to 
maintain gene repression and promotes the assembly of DNA 
and histone methyltransferases on the UCP1 enhancer (157).  
RIP140 directly interacts with DNMT1, DNMT3A, and 
DNMT3B and recruits H3K27me3 for the repression of 
UCP1. H3K27me3, which contains tri-methylation of lysine 
27 on histone H3 protein, is associated with downregulation 
of nearby genes via the formation of heterochromatic 
regions. RIP140 represses the “brown-in-white” adipocyte 
program (158). MEX miR-30b/c-mediated suppression of 
RIP140 (156), MEX miR-148a-mediated suppression of 
DNMT1 (11,77), MEX miR-29b-mediated suppression of 
DNMT3A and DNMT3B (159,160) may thus increase BAT. 
Among the top 50 miRs abundantly expressed in bovine 
whey MEX is miR-489 (161), which also targets NRIP1 (162). 
Apparently, MEX miRs coordinate thermogenic adipose 
tissue development, which is important for the infant’s energy 
homeostasis.

Transcriptional activity and chromatin remodeling 

The transcription factor p53, the guardian of the genome 
(163,164), interacts with approximately 1/10th of human gene 

promoters (165). p53 modifies the expression of target genes 
involved in cell cycle control (CDKN1A) (166), growth factor 
signaling (AR, IGF1R), translation and metabolism (PTEN, 
MDM2, mTORC1) (166-168), autophagy (ATG5, BECN1) 
(169,170) and apoptosis (FOXO1A, FOXO3A, TNFRSF10B, 
BIRC5) (166,171-173). Importantly, p53 is a direct target 
of human MEX miR-148a (86). Another highly conserved 
suppressor of p53 is miR-125b (174), which has been 
detected in human (7), bovine (24,175) and porcine MEX (9). 
Further negative regulators of p53 are miR-30d and miR-
25 (176), which have been detected in human and porcine 
MEX (7,8,21,100,175). Thus, a network of MEX miRs 
synergistically attenuates p53 expression (45,86) (Figure 1).  
Furthermore, MEX miRs activate AKT (11,105,171) via 
inhibition of PTEN and may enhance p53 degradation via 
AKT-mediated phosphorylation of mouse double minute 2 
(MDM2) (177,178). Mecocci et al. (79) identified MDM4 as 
a central node of transcriptomic regulation of cow, donkey 
and goat MEX RNAs. MDM4 restricts p53 transcriptional 
activity and facilitates MDM2’s E3 ligase activity toward  
p53 (179).

MEX miR-148a/miR-21/miR-29b-mediated suppression 
of DNMT1, DNMT3A and DNMT3B (11,77,159,160) 
may reduce DNA methylation-dependent silencing of 

Figure 1 MEX-derived miRs attenuate the expression of p53, DNMT1, DNMT3A and DNMT3B. p53 suppression enhances cell cycle 
progression, growth factor signaling stimulating mTORC1-dependent cell proliferation, but reduces apoptosis and autophagy. MiR-148a-
mediated suppression of p53 and DNMT1 and miR-30b-mediated suppression of RIP140 reduce HDAC activity opening chromatin 
structure enhancing transcription. MEX, milk exosome; miRs, microRNAs; DNMT1, DNA methyltransferase 1; HDAC, histone 
deacetylase.

p53
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developmental genes (180) that are critically involved in 
postnatal programming (181). Notably, p53 and DNMT1 
cooperate in gene silencing and interact on the promoter 
of BIRC5 with histone deacetylase 1 (HDAC1) (182) 
(Figure 1). MEX miR-mediated suppression of p53 and 
DNMT1 may disrupt the action of HDAC1 (182), thereby 
opening chromatin structure enhancing transcriptional 
activity (85,182). Functional analysis for the most abundant 
mRNAs of bovine MEX showed epigenetic functions 
such as histone modification, telomere maintenance, and 
chromatin remodeling (79). Liu et al. (106) identified 
methyl CpG binding protein 2 (MeCP2) as target gene 
of the most abundant miRs of porcine MEX. MeCP2 
induces a repressive state of chromatin by recruiting histone 
deacetylases (HDACs), methyltransferases and other 
chromatin-silencing factors, which increase chromatin 
condensation and prevent transcription (183-186). DNMT1 
directly associates with MeCP2 in order to perform 
maintenance of methylation in vivo (187). In addition, the 
methyl-CpG-binding domain of MeCP2 shows preferential 
interactions with H3K27me3 (188), which augments 
transcription repression (189,190). Of note, downregulation 

of H3K27me3 and upregulation of H3K27ac are involved 
in the activation of BAT thermogenic program (191,192).

The Polycomb repressive complex 2 (PRC2), composed 
of enhancer of zeste homolog 2 (EZH2), embryonic 
ectoderm development protein (EED), suppressor of zeste 
12 homolog (SUZ12), and Jumonji and ARID-domain-
containing protein 2 (JARID2) catalyzes the deposit of 
the repressive histone mark trimethyl lysine 27 of histone 
H3 (H3K27me3) at target gene promoters (193,194) 
(Figure 2). The methyltransferase EZH2 is the catalytic 
subunit of PRC2 (195). Importantly, the let-7 family, key 
miRs of human and bovine MEX (15,49), directly targets 
the 3'UTR of EZH2 and downregulate its expression 
(196,197). EZH2 directly regulates DNA methylation by 
serving as a recruitment platform for DNMT1, DNMT3A 
and DNMT3B through binding of DNMTs to several 
EZH2-repressed genes (198). In turn, EZH2 regulates the 
Lin28/let-7 pathway to restrict the activation of fetal gene 
signature in adult hematopoietic stem cells (199). 

MiR-29a/b/c and miR-30b/c target EED (200,201). An 
inverse relationship between the miR-30b expression and the 
amount of trimethyl H3K27 has been reported (201). SUZ12 

Figure 2 Illustration of predicted MEX miRs-mediated suppression of PRC2. The catalytically active enzyme of PRC2 is EZH2, which 
is a direct target of the let-7 family of miRs. The PRC2 activating component JARID2, which enhances HEK27me3 formation, is a target 
of miR-148a. Further suppressive effects of MEX miRs attenuate the interaction of MeCP2-DNMTs and EZH2-DNMTs, thus enhance 
transcription via reduced DNA and histone methylation. MEX miRs operate under control of the maternal lactation genome programmed 
to open chromatin structure and enhancing transcription, a reasonable support for cell growth and epigenetic programming of the newborn 
infant. Continued exposure of adult human cells to lactation signaling via MEX miRs is of critical concern with regard to the initiation 
and progression of cancer. MEX, milk exosome; miRs, microRNAs; PRC2, polycomb repressive complex 2; JARID2, JUMONJI, AT-rich 
interactive domain; DNMT, DNA methyltransferase; EZH2, enhancer of zeste homolog 2. 
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is a predicted target gene of miR-21 (202), another key 
miR of MEX. PRC2 forms a stable complex with JARID2, 
which binds to more than 90% of Polycomb group target  
genes (203). JARID2 methylated by PRC2, triggers allosteric 
activation of PRC2’s enzymatic activity (204). Inhibition of 
JARID2 expression leads to a major loss of Polycomb group 
binding and to a reduction of H3K27me3 levels on target 
genes (203). Remarkably, miR-148a, miR-155 and miR-
29, pivotal miRs of MEX, are among the predicted miRs 
targeting JARID2 (205-207). EZH2-mediated H3K27me3 
allows polycomb repressive complex 1 (PRC1) recruitment 
to chromatin, which establishes a higher repressive state of 
chromatin (193). Chromobox 2 (CBX2), a major subunit 
of canonical PRC1 recognizes H3K27me3 (208,209) 
and is a direct target of let-7 and miR-30 (210-212). The 
accumulation of let-7 in Lin28a–/– mice resulted in the 
reduction of PRC1 occupancy at the HOX cluster loci by 
targeting CBX2 (212). It is thus conceivable, that signature 
MEX miRs inhibit the activities of both PRC2 and PRC1 
attenuating H3K27me3-mediated gene silencing (Table 4).

RIP140 is  essential  for both DNA and histone 
methylation to maintain gene repression (157,213). 
RIP140 mediates H3K9, H3K27 and DNA methylation 
for silencing of Polycomb group pre-marked genes (157). 
RIP140 directly recruits HDACs for gene silencing 
(214,215).  MEX miR-30b/c mediated suppression 
of RIP140 may thus relieve RIP140-mediated gene 
silencing.

MEX miRs synergistically reduce the action of 
transcriptional repressors (p53, DNMTs, MeCP2, RIP140, 
EZH2, EED, JARID2, CBX2, H3K27me3) enhancing 
transcription and opening of chromatin structures, a 
meaningful epigenetic action of the lactation genome 
activating transcription for proliferation and infant 

growth.

Absence of MEX miRs during artificial formula 
feeding 

Compared to raw cow milk, formula powdered milk for 
infants exhibits significant deficiencies in signature miRs, 
such as miR-148a, miR-30d and miR-21 (100). Leiferman 
et al. (216) reported that MEX miRs are not detectable in 
formulas. The levels of miR-148a and miR-125b levels in 
infant formula were only 1/500th and 1/100th of those in 
mature human milk, respectively (217). There is substantial 
concern that the absence of MEX miRs in artificial infant 
formula negatively affects appropriate postnatal epigenetic 
programming (84,85). 

Pancreatic β-cell mTORC1/AMPK balance

Neonatal β-cells are immature and unable to secrete insulin 
appropriately in response to a glucose challenge (218).  
Adult β-cells repress a small set of housekeeping genes—
such as those encoding lactate dehydrogenase A (LDHA), 
monocarboxylate transporter 1 (MCT1), and hexokinase 
1 (HK1)—that would otherwise interfere with normal 
β-cell function. Dhawan et al. (219) elucidated a molecular 
mechanism involved in β-cell-specific repression of LDHA 
and HK1 that is mediated by induction of DNMT3A 
during the first weeks after birth. Failure to induce 
DNMT3A-dependent methylation disrupts normal 
glucose-induced insulin secretion (GSIS) in adult life. 
Recent evidence indicates that mTORC1 upregulates β-cell 
DNMT3A levels via translational control (220). MEX miRs 
may support appropriate mTORC1 signaling for postnatal 
β-cell maturation and mass expansion (221). Signature 
miRs of MEX enhance mTORC1 signaling via targeting 
PTEN [miR-148a, miR-155, miR-21 (77,222,223)], 
phosphatidylinositol 3-kinase-interacting protein 1 
(PIK3IP1) [miR-148a (224)], PRKAA1 [miR-148a (225)], 
the catalytic subunit α1 of AMP-activated protein kinase 
(AMPK) and PRKAG2 [miR-148a (226)], the regulatory 
subunit γ2 of AMPK. Jaafar et al. (227) reported that 
the control of cellular signaling in β-cells fundamentally 
changed after weaning and switched from the nutrient 
sensor mTORC1 to the energy sensor AMPK, which was 
critical for functional β-cell maturation and GSIS. 

Another signature miRNA of human milk is miR-375 (11),  
which was significantly more abundant in the colon of 
mice treated with human MEX (49). Bovine miR-375 

Table 4 Potential inhibitory impact of MEX miRs on formation of 
repressive H3K27me3

Target genes MEX miRNAs References

MECP2 porcine MEX miRs (106)

EZH2 let-7 family (196,197)

EED miR-29s, miR-30b, miR-30c (200,201)

SUZ12 miR-21 (202)

JARID2 miR-148a, miR-155, miR-29 (204,206,207)

CBX2 let-7, miR-30 (210-212)

MEX, milk exosome; miR, microRNA.
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also belongs to the most highly expressed miRs of bovine 
whey exosomes (161). Intriguingly, miR-375 is one of the 
most abundant miRs expressed in pancreatic β-cells and 
its overexpression suppresses GSIS, whereas its inhibition 
enhances insulin secretion (228). Importantly, miR-375 
regulates the expression of genes involved in the control of 
β-cell mass and identity (229). Mice with genetic deletion 
of miR-375 exhibit decreased β-cell mass and function 
(230,231). 

Exosomal miR-155 derived from adipose tissue 
macrophages of obese mice also exerts profound regulation 
on β-cells, leading to impaired GSIS and increased β-cell 
proliferation by repressing MAF bZIP transcription factor 
B (MAFB) (232). MAFB is a direct target of miR-155 (233), 
miR-148a (234) and miR-29 (235). It is thus conceivable 
that MEX miR-148a/miR-155/miR-29 via targeting 
MAFB enhance β-cell proliferation but impair GISIS, a 
meaningful mechanism during the breastfeeding period 
characterized by low variations in external glucose challenge 
and predominant dependence on amino acids for insulin 
secretion.

Thus, during breastfeeding, MEX miRs apparently 
maintain β-cells in a functionally immature state with 
restricted GSIS to use the developmental period of lactation 
for adequate mTORC1- and MEX miR-dependent β-cell 
growth and mass extension. The disappearance of MEX 
during weaning may be the critical signal for switching 
β-cells to functional maturation and GSIS. Absence of MEX 
miRs in the setting of artificial formula feeding may thus 
compromise adequate β-cell growth and mass extension 

increasing the risk for type 2 diabetes mellitus (T2DM) 
later in life.

Fat mass and obesity gene-dependent pathologies

Another critical gene involved in the development of 
adipogenesis and T2DM is the fat mass and obesity-
associated gene (FTO), which encodes a mRNA N6-
methyladenosine (m6A) demethylase (236-238). FTO 
targets key regulatory checkpoints enhancing adipogenesis 
(239-248) (Table 5). It is of critical concern that the levels 
of FTO expression in peripheral blood mononuclear cells 
(PBMCs) of formula fed infants is significantly higher 
(89.2±19.3) compared to breastfed infants (3.39±1.1) (249). 
Tews et al. (250) showed that FTO-deficient adipocytes 
exhibit a 4-fold higher mitochondrial expression of UCP1 
compared with controls. 

MEX miRs appear to be critically involved in balancing 
appropriate levels of FTO expression. In fact, miR-21, 
miR-22, miR-30b, miR-150 and miR-155, which represent 
miR components of milk and MEX (7,9,15,18,100,115,251), 
directly target FTO mRNA (252-255). Intriguingly, miR-
30b targets both RIP140 (156) and FTO (255), thus 
synergizes with different regulatory checkpoints known 
to enhance the expression of UCP1 and development of 
BAT. Suppression of miR-30b upregulates FTO expression 
resulting in aberrant FTO-mediated m6A methylation 
levels promoting lipid accumulation (255). Thus, deficient 
MEX miR signaling during formula feeding may explain 
the significant exacerbation of FTO expression in blood 

Table 5 FTO-mediated effects promoting adipogenesis

FTO targets Adipogenic functions References

SREBP1c FTO erases m6A marks on pre-mRNA of SREBP1c enhancing its expression (239,240)

Pre-adipocytes Differentiation of preadipocytes to adipocytes (241)

C/EBPβ Upregulation of C/EBPβ reducing UCP1 expression and formation of brown adipose tissue (242)

RUNX1T1 Generation of alternative splice variant of RUNX1T1 stimulating adipogenesis (243)

MIR130A Downregulation miR-130a enhancing PPARγ expression augmenting adipogenesis (244)

ANGPTL4 Reduction of angiopoietin-like protein 4 protein accelerating lipoprotein lipase release and 
extracellular triacylglycerol hydrolysis promoting triacylglycerol synthesis and formation of lipid 
droplets in adipocytes

(245,246)

IRX3 Downregulation of hypothalamic IRX3 and inhibition of lipolysis in peripheral adipocytes (247)

CUX1 Interaction with CUX1 increasing retinitis pigmentosa GTPase regulator-interacting protein-1-like 
expression, which reduces leptin signal transduction and leptin-induced lipolysis in adipocytes

(248)

FTO, fat mass- and obesity-associated gene.
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mononuclear cells of formula-fed infants compared to 
breastfed infants (249,256). 

Increased expression of FTO is not only involved in the 
pathogenesis of obesity (236-241) but also of T2DM (257-259). 
Notably, m6A mRNA methylation plays a key role in human 
β-cell biology in physiological states and in T2DM (260).  
Recent transcriptome and m6A methylome analyses provided 
evidence for m6A-dependent mechanisms in regulating 
cell identity, insulin secretion, and proliferation in neonatal 
β-cells (261). Wang et al. (261) found an essential role of 
RNA methyltransferase-like 3/14 in neonatal murine β-cell 
development and functional maturation, both of which 
determined functional β-cell mass and glycemic control in 
adulthood. In addition, increased FTO expression is also 
associated with hypertension (262), cancer (239,263-265) and 
osteoporosis (266).

Insufficient MEX miR-mediated inhibition of DNMT1 
and FTO via MEX-deficient formula feeding may negatively 
affect the maturation of Treg cells, as stable FoxP3 
expression and T-cell homeostasis is epigenetically and 
epitranscriptionally controlled at the appropriate methylation 
level of DNA and mRNA (145,146,267-269). These 
epigenetic modes of action further support the association 
between formula feeding and increased risk for obesity 
and allergy, which is also related to increased mTORC1  
activity (270). Recent evidence shows that Mettl3f/f; 
Foxp3Cre Treg cells lost their suppressive function over T 
cell proliferation (271). Obviously, m6A mRNA methylation 
sustains Treg cell suppressive functions (271). Formula-
induced FTO overexpression may thus impair m6A-
dependent Treg cell suppressive functions enhancing the 
risk of allergy and autoimmunity. Wood et al. (272) recently 
showed that breastfeeding compared to formula resulted in a 
twofold higher early neonatal Treg cell expansion.

Health risks associated with persistent bovine 
MEX miR exposure

Consumers of pasteurized cow milk are persistently exposed to 
bovine MEX miRs. During the last century, pasteurization of 
milk has been introduced to improve the microbial safety and 
quality of milk (273,274). At that time, the presence of MEX 
and their miRs in pasteurized milk were unknown. Recently, 
the bioavailability of bovine MEX miRs in pasteurized 
commercial milk has been confirmed (92,93,275,276). 
Potential adverse health effects of milk’s MEX and their 
intrinsic miRs are a matter of medical concern (277),  
because bovine MEX miRs can enter the human body and 

affect human gene expression (11,30,78-81,277). 

Cancer risk

Bovine MEX transfer oncogenic miRs such as miR-21 
(29,100), which is identical with human miR-21 (278). 
Common cancers of industrialized societies such as breast 
cancer (BCa) and prostate cancer (PCa), which show a 
risk association with milk consumption (279-282), exhibit 
exosomal overexpression of miR-21 in the circulation and 
tumor tissues (283-290). Thus, persistent bovine MEX miR-
21 exposure may enhance mTORC1 signaling promoting 
tumor initiation and progression (291-296). Furthermore, 
MEX miR-mediated destabilization of p53 (86,88,174,176) 
may promote cancer development and disturb tumor 
immunity (297-299). 

Intriguingly, bovine MEX orally administered to mice 
implanted with colorectal and BCa cells reduced the 
primary tumor burden but accelerated metastasis in BCa 
and pancreatic cancer mouse models (78). Upon treatment 
with MEX, epithelial-to-mesenchymal transition (EMT) 
has been observed in cancer cells (78). Increased expression 
of miR-148a has been detected in PCa tissue correlating 
with increased Gleason score (300). The androgen-
responsive miR-148a promoted LNCaP prostate cell growth 
by repressing cullin-associated neddylation-dissociated 
protein 1 (CAND1) (301) and DNMT1 (11,77). Reduced 
expression of DNMT1 was associated with EMT induction 
and cancer stem cell phenotype, enhancing tumorigenesis 
and metastasis of PCa (302). PCa-derived exosomes, which 
contain oncogenic miR-21, miR-155 and miR-125b promote 
PCa progression (303). Notably, exposure of human breast 
cells with human MEX enhanced EMT-associated proteins 
related to transfer of MEX-derived TGF-β2 (304), a known 
inducer of EMT-promoting miR-155 (305-308). Bovine 
MEX transport TGF-β (288) and miR-155 and increase 
intracellular levels of miR-155 (126). Exosomal miR-
125b was upregulated in highly invasive pancreatic cancer 
cells with increased migration, invasion, and EMT (309).  
Melanoma-secreted exosomal miR-155 can induce a 
proangiogenic switch of cancer-associated fibroblasts (310). 
Exosomal miR-21 has been shown to promote melanoma 
development and progression (311). Mastitis, a common 
chronic health problem of dairy cows, has been associated 
with increased expression of MEX miR-223 (312), another 
oncogenic miR associated with human cancers (313). 
Thus, persistent MEX miR exposure via consumption of 
pasteurized cow milk may synergize with cancer-derived 
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exosomes enhancing the total burden of oncogenic exosome-
mediated miR signaling.

Adipogenesis and satiety control

In adipose tissues from obese individuals and mice fed a 
high-fat diet, the expression of miR-148a is increased and 
silences the endogenous inhibitors of adipogenesis WNT1 
and WNT10B (314-316). Increased expression of miR-
148a via suppression of DNMT1 enhances adipocyte 
differentiation and precociously promoted adipocyte-
specific gene expression and lipid accumulation (317). 
Inhibition of DNA methylation at late stage of pre-
adipocyte differentiation promotes lipogenesis and adipocyte 
phenotype in 3T3-L1 cells. This is mediated by promoter 
demethylation of SREBF1c, which is upregulated during 
adipogenesis (318). MIR148A represents a domestication 
gene of dairy cows increasing milk yield (319,320) but is also 
an obesity risk gene in humans (321-323). Persistent transfer 
of bovine MEX miR-148a may thus enhance adipogenesis 
and SREBF1c-mediated lipid accumulation in adipocytes. 

In addition, miR-148a directly inhibits the mRNA of the 
low density-lipoprotein (LDL) receptor (LDLR) (324,325), 
the pivotal regulator of cholesterol homeostasis and hepatic 
LDL clearance (326). Importantly, miR-148a also inhibits 
ATP-binding cassette transporter 1 (ABCA1) (324), the key 
player for HDL-mediated reverse cholesterol transport 
(326-328), thus promoting hypercholesterolemia and 
atherosclerosis.

Adipocyte-derived exosomes can regulate proopiomelanocortin 
(POMC) expression through hypothalamic mTORC1 
signaling, thereby affecting body energy intake. Adipocytes 
of obese mice secreted MALAT1-containing exosomes, 
which increased appetite and weight when administered 
to lean mice (329). It is thus conceivable that MEX, which 
reach the brain (32,147), may also have an impact on 
hypothalamic appetite and satiety control. One of the gut 
hormones sending satiety signals to the hypothalamus is 
cholecystokinin (CCK), which is secreted from intestinal 
mucosa cells when the duodenum is filled with food (330). 
CCK binds to the CCK A receptor (CCKAR) and the CCK 
B receptor (CCKBR). CCKBR knock out mice developed 
obesity associated with hyperphagia (331). As shown in 
rodents, hypothalamic CCKBR mediates inhibition of food 
intake (331,332). CCKBR deletion was associated with 
increased body weight and hypothalamic neuropeptide Y 
content, explaining the increased food intake in CCKBR 
knockout mice (333). Notably, the gene expressing CCKBR 

is a direct target gene of miR-148a (334) exhibiting four 
different target sites for miR-148a on the mRNA of  
CCKBR (335). Further predicted miRs that target CCKBR 
are miR-29b, miR-30a, miR-30d, miR-223 (335), which 
are all miR components of MEX. Hypothalamic MEX miR 
signaling may thus attenuate satiety signals. This mode of 
action may be of advantage for postnatal growth and weight 
gain of the infant, but could promote obesity in adults 
persistently exposed to bovine orexigenic MEX miRs.

MiR-21 is another important miR which contributes to 
adipocyte differentiation (336-339) and promotes human 
adipose tissue-derived mesenchymal stem cell (MSC) 
differentiation towards adipocytes (336). Overexpression 
of miR-21 in MSCs enhances the expression of PPARγ 
and modulates ERK-MAPK activity by repressing Sprouty 
2 (337), a known negative regulator of receptor tyrosine 
kinase pathways involved in ERK-MAPK signaling during 
MSC differentiation (337). Notably, miR-21 expression was 
twofold higher in WAT of patients with T2DM (339).

MiR-29b is another abundant miR of cow milk and 
MEX (27,275), which is detectable after pasteurization 
and homogenization of milk (276) and exhibits increased 
expression in plasma and PBMCs after milk consumption (275).  
MiR-29b promotes adipogenic differentiation of human 
adipose tissue-derived stromal cells (340). In bovine 
mammary epithelial cells, miR-29s enhance lactation 
performance and lipogenesis via suppression of DNMT3A 
and DNMT3B, whereas inhibition of miR-29s increased the 
methylation levels of promoters of lactation-related lipogenic 
genes, reducing the expression of PPARG and SREBF1 (341).

Overexpression of miR-155 in mice has been shown to 
reduce BAT mass (342), whereas thermogenic miR-30b 
promotes UCP1 expression and BAT formation (156).

Obviously, MEX miRs may synergize with key miRs 
involved in the regulation of adipogenesis (343).

T2DM 

Only few epidemiological studies compared the risk of milk 
consumption versus fermented milk/products in relation to 
the risk of T2DM (344). The Lifeline Cohort Study identified 
positive associations of full-fat dairy products, non-fermented 
dairy products and milk with newly diagnosed T2DM (345). 
Unfortunately, no study related pasteurized versus ultraheat-
treated (UHT) milk with a T2DM risk analysis. This is 
of importance because consumers of pasteurized milk are 
exposed to bioactive MEX, while MEX miRs are reduced 
by UHT (92,93). Kleinjan et al. (92) showed that UHT of 
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milk resulted in a loss of EVs, whereas EV numbers after 
pasteurization were not affected. Although pasteurization 
and homogenization of commercial  milk reduced 
total milk-EV-associated RNAs [from 40.2±3.4 ng/μL  
in raw milk to (17.7±5.4)–(23.3±10.0) ng/μL in processed 
milk], miR-148a, miR-21, miR-30d, although reduced, were 
still detectable in pasteurized and homogenized milk (92). 
Zhang et al. (93) recently confirmed that bioactive miRs in 
raw milk were lost after ultraheat treatment but not after 
pasteurization. 

Observed exosome crosstalk between pancreatic β-cells 
and exosomes derived from different cell types (lymphocytes, 
adipocytes, and muscle cells) supports the concept that 
exosomal miRs communicate with β-cells (346-350). For 
instance, human T lymphocyte-derived exosomes, which 
transfer miR-155, induced apoptosis in β-cells and promoted 
type 1 diabetes mellitus (T1DM) in mice (348). Exosomes 
from insulin-resistant muscles influenced gene expression 
and proliferation in murine β-cells (349). Exosomes from 
obese adipose tissue were harmful for human β-cells (350). 
Exosomes of inflammatory adipocytes exhibited a fourfold 
increased expression of miR-155 (351). 

Postnatal β-cell maturation is associated with islet-specific 
miR changes induced by nutrient shifts at weaning (352). 
It is thus conceivable that MEX miRs may participate in 
exosomal β-cell interactions supporting postnatal β-cell 
proliferation and mass expansion but suppress GSIS, which is 
activated after weaning (221). Pancreatic β-cells differentiate 
during fetal life, but only postnatally acquire the capacity 
for GSIS. Jaafar et al. (227) found that the control of cellular 
signaling in β-cells fundamentally switched from the nutrient 
sensor mTORC1 to the energy sensor AMPK, which 
was critical for functional maturation. Notably, T2DM 
is associated with a remarkable reversion of the normal 
AMPK-dependent adult β-cell signature to a more neonatal 
one, characterized by mTORC1 activation (227). Allowing 
mice to continue assimilating milk fat throughout their entry 
into adulthood was sufficient to maintain neonatal levels of 
β-cell mTORC1 activity, which was otherwise completely 
repressed in control mice (227). Recent evidence confirms 
that the shift from amino acid- to glucose-stimulated 
insulin secretion after birth is mediated by a transition in 
nutrient sensitivity of the mTORC1 pathway, which leads to 
intermittent mTORC1 activity (353).

The switch from mTORC1 to AMPK signaling is 
important to shift β-cell mitochondrial biogenesis to 
oxidative metabolism and functional maturation (227). 
AMPK is regarded as guardian of metabolism and 

mitochondrial homeostasis (354). AMPK upregulation 
inhibits β-cell apoptosis (355). AMPK is activated by the 
action of metformin (356), which inhibits mTORC1 (357) 
and suppresses miR-21 (358). The suppression of miR-
21 enhances the expression of critical upstream activators 
of the AMPK including calcium-binding protein 39-like 
protein and sestrin-1 (358-361) leading to AMPK activation 
and inhibition of mTORC1 (358). Thus, metformin-
induced mTORC1 inhibition and AMPK activation 
simulate the switch of mTORC1 to AMPK activation, a 
comparable mechanism found after weaning associated with 
the physiological termination of MEX miR signaling.

Importantly, human and bovine milk fat as well as 
human and bovine MEX are a rich source of miR-148a 
(11,101,362,363), which targets key regulatory components 
of AMPK (225,226,364), thereby attenuating AMPK’s 
inhibitory function on mTORC1 via AMPK-mediated 
phosphorylation of TSC2 and Raptor (365,366). Milk 
fat and MEX miR-148a may stimulate β-cell mTORC1 
activity promoting β-cell growth and mass expansion (367). 
The disappearance of MEX miR-148a after weaning may 
induce the critical switch to enhanced AMPK activity 
promoting β-cell mitochondrial function and GSIS to 
respond to dietary challenges of varying glucose intake. 
Persistent exposure of humans to bovine MEX miR-148a 
may dedifferentiate β-cells back to postnatal conditions 
characterized by overactivated mTORC1, which promotes 
β-cell proliferation and in the long run induces early β-cell 
apoptosis (221,341). 

This concept is further supported by the regulatory 
events of MAFB, which is required for the generation of 
functional β-cell populations by directly activating insulin 
gene transcription and key regulators of β-cell differentiation 
and function (368). Importantly, MAFB increases the 
expression of MAFA, which is important to maintain β-cell 
function in adults (369). MAFB is a direct target of miR-
148a (234). Reduced expression of MAFB in murine and 
human β-cells has been associated with decreased GSIS (370). 
Loss of MAFB is associated with β-cell dedifferentiation. 
Loss of MAFA and/or MAFB represents an early indicator of 
β-cell inactivity and the subsequent deficit of more impactful 
NKX6.1 (and/or PDX1) resulting in overt dysfunction 
associated with T2DM. Notably, MAFA, MAFB, NKX6.1, 
and PDX1 expression levels are compromised in human 
β-cell in T2DM (371). The significance of MAFB to primate 
β-cells is supported by suppressed GSIS in the human 
EndoC-βH1 β-cell line by MAFB knockdown (372). Both, 
MAFA and MAFB mediate GSIS in human β-cells (373).  
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The primary glucose transporter of human β-cells is 
GLUT1 (SLC2A1) (374,375). GLUT1 expression is 
activated by MAFB (372), which is required for formation 
of glucose-responsive β-cells (376). Remarkably, GLUT1 
(SLC2A1) and MAFB are targets of miR-148a (234,377).

It has recently been demonstrated that overexpression 
of miR-21 in β-cells markedly reduced GSIS and led to 
reductions in mRNA expression of MAFA, NKX6.1, INS1, 
INS2 and GLUT2 associated with a loss of β-cell identity 
and increased markers of β-cell dedifferentiation (378). 
Increased expression of miR-21 reduced the expression 
of TGFB2 and SMAD2, direct targets involved in β-cell 
commitment (379). TGF-β signaling plays a key role for 
adult β-cell function and maturity (380). Induction of miR-
21 in human islets was also associated with a dedifferentiated 
phenotype and reduced expression of miR-21 target 
mRNAs linked to β-cell identity (378). Furthermore, 
lentiviral overexpression of miR-21 in the β-cell line INS-
1, increased proliferation, but also induced apoptosis, 
questioning the potential of miR-21 as a therapeutic agent 
to increase β-cell survival (381).

Metformin, which reduces the expression of miR-21, may 
thus counteract β-cell dedifferentiation (358). Bai et al. (382)  
reported that miR-21 acts as a bidirectional switch in the 
formation of insulin-producing cells by regulating the 
expression of target and downstream genes (SOX6, RPBJ 
and HES1).

In analogy to miR-21, miR-148a also targets TGFB2 and 
SMAD2 (383-386). Increased serum levels of miR-148a and 
miR-21 have been reported in patients with T1DM (387). 
Of note, SMAD2 deficiency impaired insulin secretion 
in response to glucose (388,389). SMAD2 disruption in 
mouse pancreatic β-cells leads to islet hyperplasia and 
impaired insulin secretion due to an attenuation of KATP 
channel activity (389), which plays a critical role in glucose 
homeostasis by linking glucose metabolism to electrical 
excitability and insulin secretion (390). TGFBR-SMAD2/3 
signaling sustains functional maturation of neonatal 
β-cells (391). TGFBR–SMAD2/3 inhibition counteracted 
upregulation of CDKN2A, NEUROD1, UCN3 and 
ABCC8, the ATP-sensitive component of the KATP  
channel (391). Of note, TGFBR–SMAD2/3 signaling 
repressed aldolase B (ALDOB), a disallowed gene in mature 
β-cells and a marker of functionally immature as well as 
of diabetic β-cells (391). Inhibition of TGF-β signaling 
promotes human β-cell replication, whereas TGF-β 
signaling induces CDKN2A (INK4A) expression leading 
to replicative decline in β-cells through the recruitment 

of SMAD3 as a part of the recruitment of histone 
methyltransferase Mll1 complex (392). Furthermore, 
TGF-β has been reported to stimulate insulin secretion 
(393), insulin gene transcription, and islet function (394). 
TGF-β/SMAD pathway enhances the transcription of 
miR-375, miR-26a, and NGN3, thereby promoting β-cell 
differentiation (395). Notably, a fasting-mimicking diet 
in mice reduced PKA and mTORC1 activity and induced 
SOX2 and NGN3 expression and insulin production (396). 
MiR-375 and miR-26a induced insulin-producing cell 
differentiation from nestin-positive umbilical cord-derived 
MSCs by suppressing target genes including MTPN, SOX6, 
BHLHE22 and CCND1 (397).

Let-7 family members, major components of MEX 
(15,49), also suppress TGF-β signaling and decrease mRNA 
expression of TGFBR1, TGFBR3 and SMAD2 (398-400).  
Notably, the lncRNA H19, a sponge of let-7 (401), is 
profoundly downregulated during the postnatal period (402).  
It has been shown that let-7 promotes the expression of IRS2 
and mTOR in β-cells (403), whereas suppression of let-7 
expression in endothelical cells increased the expression of 
TGF-β and TGF-βR1 (404). Glucose-responsive genes are 
highly regulated by TGF-β signaling (405). 

It is conceivable that MEX miR-148a/miR-21/let-7 
signaling during the breastfeeding period via suppressing 
TGF-β signaling may promote β-cell proliferation and 
delays β-cell differentiation and GSIS, a physiological 
mechanism that fades after weaning. 

Mice with specific inactivation of ABCA1 in β-cells 
exhibited impaired insulin secretion (406,407). Lack of β-cell 
ABCA1 leads to impaired exocytosis of insulin granules (408). 
ABCA1 as well is a direct target of miR-148a (324).

Another important target of MEX miR-148a is TP53 (86). 
Suppression of p53 activates mTORC1 (167) and inhibits 
CDKN1A, accelerating cell cycle progression (409). Loss 
of p53 function decreases lysosomal TSC2 and increases 
lysosomal Rheb, resulting in hyperactive mTORC1 (410). 
Survivin (BIRC5), which is inhibited by p53 (173), is critically 
involved in the regulation of β-cell mass after birth (411). 
Targeted deletion of survivin in the pancreas resulted in a 
significant decline in β-cell mass throughout the perinatal 
period, leading to glucose intolerance in the adult. Survivin-
deficient islets showed decreased cell proliferation as a result 
of a delay in cell cycle progression with perturbations in cell 
cycle proteins (412). MEX miR-mediated suppression of p53 
may thus promote survivin-induced β-cell mass expansion 
(Figure 3). 

Peroxisome proliferator-activated receptor-γ coactivator 
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A

B

Figure 3 Illustrated β-cell model showing a β-cell exposed to MEX miR-148a signaling (A) during postnatal breastfeeding and (B) absent 
MEX miR-148a signaling after weaning. (A) MEX miR-148a suppresses TGFB2, SMAD2, p53, MAFB, GLUT1, PTEN, AMPK, PGC-
1α and ABCA1 increasing mTORC1- and surviving-dependent β-cell proliferation but suppressing β-cell differentiation and GSIS. (B) 
After weaning, disappearance of MEX miR-148a enhances TGF-β signaling promoting β-cell differentiation with increased expression of 
MAFB, GLUT1, AMPK, ABCA1, ABCC8 activating GSIS but attenuating mTORC1-driven β-cell proliferation. Lack of MEX miR-148a 
in artificial formula compromises miR-148a-mediated β-cell proliferation and mass expansion. However, persistent exposure of humans 
with MEX-miR-148a/miR-21/let-7 of pasteurized cow milk may dedifferentiate the β-cell back to the postnatal hyperproliferative state 
with overactivated mTORC1, impaired AMPK and TGF-β signaling promoting ER stress and early β-cell apoptosis, key mechanism in 
the pathogenesis of type 2 diabetes mellitus. MEX, milk exosome; miR, microRNA; GSIS, glucose-stimulated insulin secretion; TGF, 
transforming growth factor. 
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(PGC)-1α, a transcription coactivator that plays a central 
role in the regulation of cellular energy metabolism, 
stimulates mitochondrial biogenesis (413) and controls β-cell 
homeostasis (414). Of note, the susceptibility of β-cells to 
environmental programming continues into the neonatal 
period (415). Overexpression of PGC-1α in β-cells during 
fetal life in mice is sufficient to induce β-cell dysfunction 
in adults, leading to glucose intolerance (416,417). Ling  
et al. (418) demonstrated that downregulation of PPARGC1A 
expression in human islets by siRNA, reduced insulin 
secretion. Remarkably, key signature miRs of milk and MEX 
including the let-7 family and miR-148a target PPARGC1A 
(364,419,420) and may thus restrain insulin secretion during 
the breastfeeding period. Increased plasma levels of miR-
148a have been associated with T2DM progression, increased 
HbA1c, HOMA-IR, and hyperinsulinemia (421) (Table 6). 
Melkman-Zehavi et al. (422) reported that miR-148 acts as a 
positive regulator of insulin transcription.

In accordance with miR-148a, miR-375 is overexpressed 
in T2DM (423-425). MiR-375 reduces GISIS and enhances 
β-cell proliferation (228-231,426,427) and plays a critical 
role for the differentiation of human embryonic stem cells 
into insulin-producing cells (428). Upregulation of miR-375 
is associated with T2DM and apoptosis of pancreatic islet 

β-cells (429,430). Dietary exposure of adult milk consumers 
with MEX miR-375 may thus stimulate β-cell proliferation 
promoting early β-cell apoptosis.

MEX deliver miR-29s (27,275), which are considered as 
diabetogenic miRs promoting insulin resistance (431-435). 
Elevated plasma levels of branched-chain amino acids 
(BCAAs), crucial activators of mTORC1 (105), correlate 
with an increased risk of insulin resistance and T2DM 
(433-440). Intriguingly, miR-29b is critically involved in 
the regulation of cellular BCAA homeostasis (441). MiR-
29b inhibits branched chain α-ketoacid dehydrogenase 
(BCKD) via targeting its core protein dihydrolipoamide 
branched-chain acyltransferase (441) thereby decreasing 
BCAA catabolism. This is a meaningful metabolic 
regulation for the newborn mammal protecting BCAAs 
from catabolism and saving them for the synthesis of 
functional and structural proteins as well as for BCAA-
mediated mTORC1 activation (442,443), which is 
important for postnatal β-cell proliferation (221,341). 

However, persistent overactivation of mTORC1 induces 
endoplasmic reticulum (ER) stress, which in the long run 
impairs β-cell autophagy, promotes β-cell apoptosis and 
β-cell failure (444,445). Notably, mTORC1 activity is 
markedly increased in islets from patients with T2DM 

Table 6 Potential regulatory effects of MEX miR-148a on postnatal β-cell maturation

miRNA-148a targets Predicted regulatory effects of MEX miRNA-148a References

TP53 Increased expression of survivin (BIRC5) and suppression of p21 (CDKN1A) stimulates 
β-cell proliferation; decreased expression of TSC2 activates mTORC1; reduced sestrin 
(SESN1, SESN2) expression attenuates AMPK activity enhancing mTORC1 activation

(86,166,167,173,360,382)

PTEN Reduced expression of PTEN activates PI3K and thus AKT-mTORC1 (77)

PIK3IP1 Reduced expression of PIK3IP1 activates PI3K and thus AKT-mTORC1 (224)

PRKAA1 Reduced expression of PRKAA1 reduces the catalytic activity of AMPK promoting 
mTORC1 activation and suppressing mitochondrial activity

(225)

PRKAG2 Reduced expression of PRKAG2 reduces the activity of AMPK promoting mTORC1 
activation and suppressing mitochondrial activity

(226)

PPARGC1A Reduction of mitochondrial biogenesis and GSIS (364,392)

MAFB Reduced expression of the GLUT1 attenuates glucose sensing of β-cells; reduced 
expression of MAFA impairs the MAFA/MAFB-dependent maintenance function of 
β-cells

(234,235,376)

SLC2A1 Reduced expression of GLUT1 attenuates glucose sensing of β-cells (377)

ABCA1 Impaired insulin granule function and insulin secretion (324,378-380)

TGFB2 Increased β-cell proliferation with decreased GSIS, delayed differentiation (381-384)

SMAD2 Increased β-cell proliferation with decreased GSIS, delayed differentiation (381-384)

MEX, milk exosome; miR, microRNA.
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(227,446).
Recent evidence indicates that β-cells control glucose 

homeostasis via the secretion of exosomal miR-29 family 
members (447). Notably, intravenous administration of 
exosomal miR-29a/b/c attenuated insulin sensitivity (447). 
In fact, β-cell-specific transgenic miR-29a/b/c mice are 
predisposed to develop glucose intolerance and insulin 
resistance when fed a high-fat diet (448). Expression of miR-
29 in pancreatic β-cells promotes inflammation and diabetes 
via targeting tumor necrosis factor (TNF) receptor-associated 
factor 3 (TRAF3) to promote CCXL10 release from β-cells, 
which then attracts nearby circulating monocytes (448). 
Furthermore, miR-29 targets MAFB (235). 

Taken together, key miRs donated via MEX promote 
β-cell proliferation and reduce GSIS, a meaningful 
metabolic regulation during the breastfeeding period 
to support β-cell mass expansion for insulin demands in 
adulthood. In contrast to the importance of MEX during 
the lactation period, in adult life MEX miRs may exert 
diabetogenic effects promoting β-cell dedifferentiation and 
loss of function (Figure 3).

Parkinson’s disease (PD)

Epidemiological studies associate consumption of 
unfermented milk with an increased risk of PD (449-456).  
PD is an α-synucleinopathy associated with deficient 
lysosomal clearance and aggregation of misfolded α-synuclein 
(456-458). Accumulating evidence supports a gut-brain 
axis in PD pathogenesis involving α-synuclein synthesis in 
intestinal enteroendocrine cells (EECs) and retrograde traffic 
of α-synuclein via the vagal nerve to the brain (459-462).  
Hypomethylation of the SNCA promoter increases 
α-synuclein expression, which is controlled by DNMT1 
(151,351). In the chronic MPTP mouse model of PD 
increased expression of miR-148a reduced the expression of 
DNMT1, diminished α-synuclein methylation resulting in 
increased α-synuclein expression (463).

Uptake of MEX miR-148a by intestinal EECs may 
thus enhance intestinal α-synuclein synthesis increasing 
its retrograde transneuronal traffic to the brain and 
pancreatic islets (351). Although the major aggregating 
peptide in β-cells of T2DM patients is islet amyloid 
polypeptide (IAPP), α-synuclein in β-cells interacts with 
IAPP (464). Mucibabic et al. (465) showed that α-synuclein 
is a component of amyloid extracted from the pancreas 
of transgenic mice overexpressing human IAPP (denoted 
hIAPPtg mice) and from islets of T2DM individuals. 

Notably, α-synuclein promotes IAPP fibril formation 
in vitro and enhanced β-cell amyloid formation in vivo, 
whereas β-cell amyloid formation was reduced in mice on 
a SNCA−/− background (465). As bovine MEX are able to 
cross the blood-brain barrier and reach the brain (32,147), 
MEX miR-148a may stimulate neuronal α-synuclein in 
the substantia nigra, whereas MEX miR-21 may suppress 
lysosome-associated membrane protein type 2A (LAMP2A) 
(466,467), a critical effector protein of chaperone-mediated 
autophagy clearing neurotoxic α-synuclein (349).

Limitations

This narrative review focuses on MEX miRs and their 
potential beneficial and adverse effects on human health. 
However, it is important to consider that milk contains a 
large spectrum of EV subtypes whose components may 
exhibit a differential resistance to digestion and may have 
differential impacts on health (1,14,24). Furthermore, MEX 
contain a wide spectrum of very small, small, medium and 
long non-coding RNAs in addition to miRs (19,468), that 
may also contribute to biological effects. It has recently 
been discussed that exosomes provide unappreciated 
carrier effects that assist transfers of their miRs to targeted  
cells (130). In addition, MEX deliver other biomolecules 
such as lipids and proteins that may also determine 
biological outcomes of MEX-derived signaling (55), 
which are beyond the scope of this review. As long as risk 
assessments on a statistical basis are not yet available, 
statements of the potential hazardous nature of cited miRs 
based on translational and indirect evidence have to be 
judged with caution. 

Conclusions

To approximate risks and benefits of MEX and their miRs, 
it is mandatory to appreciate their physiological inherent 
nature. MEX are signalosomes generated under control 
of the lactation genome to support growth and tissue 
maturation during the breastfeeding period. MEX miRs 
apparently interfere with p53-mediated transcriptional 
activity, DNMT-regulated gene silencing, histone 
methylation and chromatin remodeling. MEX miR-
dependent effects are not provided by formula feeding 
potentially resulting in overexpression of FTO. The time 
period and dose of MEX miR exposure appears to be of 
critical importance for MEX miR-induced desired and 
adverse gene-regulatory effects. The persistent transfer of 
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Table 7 Potential effects of bovine MEX miRs and related adult human pathologies

Target tissue Potential MEX-mediated effects Potential mode of action

Intestine Anti-inflammatory action of miR-148a in inflammatory 
bowel diseases (Crohn disease, Colitis ulcerosa); 
reduction of inflammation-induced colon cancer;  
Stimulation of intestinal α-synuclein synthesis 
promoting Parkinson disease

miR-148a-mediated suppression of TLR4 and NF-κB 
signaling; 
miR-148a/DNMT1-mediated stimulation of 
α-synuclein synthesis

Liver Attenuation of liver fibrosis and fibrosis-related liver 
cancer; stimulation of liver cancer

Transfer of anti-fibrotic miR-148a and miR-29b; 
Transfer of oncogenic miR-155 and miR-21

Pancreatic islet Increased β-cell proliferation resulting in early onset of 
β-cell apoptosis promoting type 2 diabetes mellitus; 
Impaired TGFB2/SMAD2 signaling promoting β-cell 
dedifferentiation

miR-148a/miR-21/miR-375-mediated stimulation of 
β-cell proliferation and mTORC1 activity; MEX miR-
mediated suppression of p53, MAFB, GLUT1; AMPK, 
PGC1α, ABCA1, TGFB2, SMAD2 and GISIS

White adipose tissue Promotion of white adipogenesis promoting obesity miR-148a-mediated inhibition of WNT1 and 
WNT10B; miR-21-mediated stimulation of adipocyte 
differentiation; miR-148a-mediated suppression 
of LDLR and ABCA1 compromising cholesterol 
homeostasis

Brown adipose tissue Promotion of beige/brown adipogenesis reducing 
obesity

miR-30b/c-mediated stimulation of UCP1 expression

Hypothalamic centers Hyperphagia promoting obesity miR-148a-mediated suppression of CCKBR reducing 
satiety signaling

Brain Over-expression of α-synuclein and reduced CMA 
promoting neurodegenerative diseases

miR-148a-DNMT1-mediated overexpression of 
α-synuclein, miR-21-mediated suppression of 
LAMP2A-dependent CMA

Malignant tumors Promotion of tumor growth and epithelial-
mesenchymal transition 

miR-148a/miR-125b/miR-30-mediated suppression 
of p53; transfer of oncogenic miR-155 and miR-21; 
miR-30b/c-mediated suppression of RIP140;  
MEX miR-mediated suppression of MeCP2, 
H3K27me3, opening of chromatin structure; 
increased permission of transcription 

MEX, milk exosome; miR, microRNA; CMA, chaperone-mediated autophagy.

bioactive MEX miRs via consumption of pasteurized cow 
milk beyond the breastfeeding period is a recent insight 
(92,93), which has been neglected in all epidemiological 
studies correlating cow milk intake with human pathologies 
(90,277). The use of concentrated MEX either native or 
uploaded with drugs will expose the recipient to increased 
amounts of intrinsic MEX miRs that may exert desired 
gene-regulatory effects in the target tissue but may 
adversely affect other non-target tissues. Bovine MEX 
showed beneficial effects in inflammatory bowel diseases 
and states of fibrosis (47-51,469), but may promote 
hyperphagia, obesity, T2DM, cancer and neurodegeneration 
(88,90,221,277,296,351) (Table 7). Certainly, human MEX 
are supportive for the newborn infant and contribute to the 
superiority of breastfeeding compared to formula. However, 

long-term bovine MEX miR exposure via pasteurized cow 
milk may enhance the risk for diseases of civilization and 
should be terminated. MEX miR-mediated suppression 
of TGF-β signaling may be beneficial for the treatment of 
fibrosis (50-54), but may be deleterious for adult pancreatic 
β-cell homeostasis (386-393). Thus, there is no clear-
cut answer to judge the benefit/risk evaluation of MEX 
miRs in general. Before systemic administration of bovine 
MEX miRs—either native or combined with uploaded 
drugs or anti-sense RNAs—is employed, long-term safety 
studies have to be performed, including tissues, which 
are not direct targets for therapeutic intervention. Future 
experimental investigations are required that determine 
bovine MEX miR delivery to cells and tissues of human 
cow milk consumers and their effects on gene expression 
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not only in short term but especially in long-term studies to 
evaluate their physiological and pathological effects.
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