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Existence of cell-to-cell communication strategies among 
bacteria (i.e., defined as inter-species, intra-species, and 
inter-kingdom crosstalk) reveals how genius they are (1,2). 
The common and well-studied language for bacterial 
communication is quorum sensing (QS), an informative 
signaling pathway within a bacterial population (3-5). 
Specifically, bacteria secrete signaling modules under QS 
regulation, known as autoinducers (AIs), to share quorum 
information and regulate group behaviours. QS modulates 
the expression of bacterial pathogenicity factors involved 
in the infection process, as a similar regulation could occur 
in the physiology of host cells. Detailed mechanisms are 
extensively reviewed (6,7).

Bacterial conversation enables them to feel the 
surrounding stimuli and coordinate their gene expression 
accordingly. This cooperation in sensing and responding to 
environmental changes could result in arrays of behaviour, 
ranging from symbiosis to virulence, biofilm formation, 
stress adaptation and natural product production, leading 
bacteria to live like multicellular organisms (8-10). 
Furthermore, bacteria need to manage competition for 
ecological niches and resources that favour their survival 
and genetic persistence. This strategy underlies mechanisms 
of complex interactions that occur among bacteria as well as 
bacteria-hosts. 

While the potency of QS has gained the interest of 
researchers for a long time, only recently QS-regulated 

pathways have been reported to be involved in membrane 
vesicles (MVs) or outer membrane vesicles (OMVs) 
biogenesis in Gram-positive and Gram-negative bacteria, 
respectively (11). OMVs have been recognized as an 
alternative vehicle for cell-to-cell signaling in bacteria. 
This spherical membranous structure can package cargoes 
such as virulence factors, biologically active proteins, DNA, 
RNA, as well as signaling molecules, playing an important 
role in bacterial adaptation and survival (2,12). Despite 
tremendous progress in the OMVs field (e.g., involvement 
in disease-related processes and delivery mechanisms into 
host cells), there is still some uncertainty in the biogenesis 
of OMVs and their precise sorting mechanisms within 
bacterial communities.

So far, there is enough evidence connecting QS and 
OMVs, indicating that either QS molecules could serve 
as OMVs cargo or they are able to control the release of 
OMVs in several nosocomial pathogens (i.e., Staphylococcus 
aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and 
Escherichia coli) (13). The latter mechanism could act either 
by stimulating OMVs secretion, a phenomenon evidenced 
in P. aeruginosa, Vibrio harveyi, Stenotrophomonas maltophilia, 
as well as in plant pathogens such as Xanthomonas oryzae and 
Xanthomonas campestris or vice versa by inhibiting its release 
as reported in Xylella fastidiosa (14-18). 

For instance, through a QS-regulated process, OMVs 
released by the environmental pathogen Chromobacterium 
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violaceum (C. violaceum) deliver the antimicrobial compound 
violacein to compete with other bacteria, exerting its 
toxicity in vivo even over far distances (19). As a QS 
metabolite produced by various bacterial species, the OMV 
cargo violacein contributes to a broad range of antimicrobial 
activities (20). Batista et al. showed that violacein of C. 
violaceum is not only toxic against Gram-positive bacteria, 
but also it induces OMV biogenesis for its own delivery and 
contributes to biofilm formation (19). Another example of 
bacterial usage of OMVs related to cope with nutritional 
challenges (i.e., iron-limited conditions) was reported by 
Lin et al. (21). They found that the type VI secretion system 
H3-dependent effector for iron uptake TseF is packed into 
OMVs. This finding suggested that TseF is incorporated 
into OMVs and interacts with the iron-binding P. aeruginosa 
quinolone signal (PQS); this interaction facilitates the 
delivery of the metal ion to its receptors on cell surface 
receptors (FptA or OprF) (21). Of note, for most bacterial 
pathogens, sensing, sequestering and uptaking efficiently 
environmental iron is critical to enable colonization and 
pathogenicity, and for this reason, this process involves 
multi-component complexes (22).

In a recent issue of Science of The Total Environment, 
Zhao et al. reported the isolation and purification of PQS-
containing OMVs (PQS-OMVs) produced by P. aeruginosa 
and evaluated the effects of this signaling molecules on 
the formation and structure of P. aeruginosa biofilm (23). 
Their study indicated that P. aeruginosa biofilm capacity 
is regulated by OMV-mediated PQS that promotes 
the increase of bacterial biomass, leading to biofilm 
formation. Subsequently, the authors quantified in detail 
the extracellular polysaccharides (PS) and proteins, the 
two main matrix components of biofilms. Their analyses 
revealed that proteins and PS have a synergistic effect, 
although the expression of proteins regulated by OMV-
mediated PQS played the dominant role with respect 
to PS in the formation of P. aeruginosa biofilms. Next, 
in a dual-species biofilm formed by P. aeruginosa and S. 
aureus, the research proved that OMV-mediated PQS 
exerted inhibitory effects on S. aureus growth, leading to a 
decrease in extracellular polymeric substances produced by  
S. aureus (23). These two major opportunistic pathogens, 
commonly co-isolated from cystic fibrosis patients, are 
often found growing together in biofilms in lungs and  
wounds (24). It should be noted that bacteria in diverse 
conditions (i.e., lab growth, hospital setting and during 
infection) behave differently as evidenced by phenotype 
changes as well as in exporting QS molecules and 

stimulating OMV biogenesis (25-29). For example, the traffic 
of PQS between the inner and outer membranes defines the 
yield of OMVs production. Florez et al. showed that OMVs 
production depends on PQS export rates rather than a defect 
in its production; therefore, the accumulation of PQS in the 
inner membrane resulted in a poor OMVs production due to 
early saturation of the export pathway (30).

Owing to the ability of OMVs to distribute widely PQS 
in an aqueous environment, it is reasonable to think that 
they can enable long distance transport of this essential 
element, thus allowing trans-feeding of bacteria at distant 
sites of the host during infection. In addition, the effective 
biofilm dispersion is dependent on the production of PQS-
induced OMVs, which likely act as delivery vehicles for 
matrix-degrading enzymes. Accordingly, OMVs represent 
promising bacterial-derived molecules that could operate as 
an alternative for antibiotics for the treatment or inhibition 
of biofilm-forming species. 

The studies connecting QS to OMVs in P. aeruginosa 
opened up new perspectives on other clinically relevant 
nosocomial pathogens such as multidrug-resistant (MDR) 
Acinetobacter spp (28,29). Previous studies have shown that 
Acinetobacter spp. can successfully release OMVs carrying 
plasmids containing resistance genes (i.e., blaOXA-24) to 
recipient cells through horizontal gene transfer (31,32). 
To this point, Chatterjee et al. reported that A. baumannii 
strain ST 1462 releases OMVs capable to transfer an 
intact plasmid harbouring a carbapenem resistance gene 
(blaNDM-1) during in vitro growth (33). Notably, these OMVs 
carrying blaNDM-1 were found in an active form allowing 
high frequency of transformation and transmittable abilities 
not only intra-species (A. baumannii) but also inter-species 
(E. coli) (33). Carbapenem-resistant A. baumannii, i.e., 
extensively drug-resistant or pandrug-resistant isolates, are 
responsible for substantial life-threating hospital-acquired 
infections in patients with severe underlying diseases, 
mainly in intensive care units, often related to invasive 
procedures or indwelling devices (10,34,35). A recent 
study reported by Huang et al. showed an increase in the 
production of OMVs under antibiotic stress (36). Under 
stimulation by different antibiotics, A. baumannii releases 
OMVs at different levels of efficiency; compared to other 
tested antibiotics, levofloxacin was the strongest OMVs 
inducer both in particle number, protein level and particle 
diameter. Moreover, the stress induced by levofloxacin 
led to the encapsulation of large amounts of intracellular 
components into OMVs by activating efflux pumps 
proteins; AdeB, AdeA and AcrB were identified as the most 
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expressed proteins. Both in vitro and in vivo experiments 
showed that bacteria are able to pack pumped antibiotics 
into OMVs; this excellent drug-resistance ability becomes 
a strategy to kill other bacteria (36). Moreover, the orally 
administration of the antibiotic-loaded OMVs could kill 
pathogenic bacteria in the intestine as demonstrated by the 
effective killing of enterotoxigenic E. coli in a mouse model 
of intestinal infection (36).

More recently, Dhurve et al. reported that A. baumannii 
DS002 releases OMVs carrying proteins associated with 
cell wall/membrane biogenesis, inorganic ion transport 
and metabolism through QS signalling (37). The OMVs 
cargo content underlies the prominent role of OMVs in 
cell physiology, signaling activities, transport functions and 
pathogenesis, as well as in the defence mechanisms against 
host immunity (37). Interestingly, OMVs were selectively 
enriched in TonB-dependent transporters (TonRs), outer 
membrane proteins that capture and transport iron chelated 
by siderophores into A. baumannii DS002 cells. Thus, the 
OMV-associated TonRs appeared to play a critical role in the 
survival of A. baumannii in certain conditions such as nutrient-
limiting polymicrobial environments (37). Despite only 
some pathogenicity properties in A. baumannii have been 
shown to be under QS control such as surface-associated 
motility and biofilm formation (38), the potential linkage 
between OMVs production mediated by QS remains to 
be investigated. In our opinion, OMVs biogenesis in A. 
baumannii could be induced through QS signaling and their 
role warrants extensive examinations.

Conclusion and future perspective

Overall, Zhao et al. provided new insights into the role 
of OMV-mediated PQS on biofilm formation, structure 
and composition of EPS in P. aeruginosa as well as inter-
specific inhibitory effects of PQS in the context of mi-
crobial community. We learned that bacterial pathogens 
during their growth and metabolism excrete OMVs with 
biologically active proteins as well as transmissible DNA 
sequences associated with diverse functions. The multiple 
advantages of OMVs as drug delivery carriers, biofilm 
inhibitor or anti-bacteria adhesion will broaden effective/
alternative therapeutic approaches. Due to the increased 
rates of antibiotic resistance as well as biofilm-associated 
infections, OMVs delivery could potentially direct us to 
explore innovative tools (i.e., development of artificial 
OMVs or the engineering of the natural ones) for clinical 

application in order to better control intestinal, pulmonary 
or even systemic infections caused by MDR pathogens. The 
intracellular trafficking of OMVs can be studied in detail 
using advanced in vitro models such as human tissue-derived 
organoids.
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