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Introduction 

One of the first lines of defense against invading pathogens 
begins when the pattern-recognition receptors (PRRs) 
of the innate immune system detect pathogen-associated 
molecular patterns (PAMPs), leading to initiation of 

protective responses (1,2). Toll-like receptors (TLRs) are the 
most extensively studied PRRs, and are expressed in both 
innate immune cells (e.g., macrophages and dendritic cells) 
and non-immune cells (e.g., epithelial cells and fibroblast 
cells) (2-4). Among the 10 TLRs characterized in humans, 
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TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 localize to 
the cell surface (surface TLRs), while TLR3, TLR7, TLR8, 
and TLR9 localize to endosomes and other intracellular 
compartments (endosomal TLRs). Each TLR specifically 
recognizes a different PAMP, ranging from polysaccharides 
and lipopeptides to nucleic acids (2-4). Endosomal TLRs 
are nucleic acid-sensing TLRs, and among those, TLR7 
and TLR8 recognize single-stranded RNAs (ssRNAs) as 
their ligands (2-5). ssRNA recognition by these TLRs 
results in the recruitment of the adaptor protein MyD88, 
leading to NF-κB-mediated transcription and downstream 
induction of interferon and cytokine production (2-4). 
While “foreign” ssRNAs from bacteria or viruses have been 
extensively studied as the ligands recognized by TLR7 and 
TLR8 (5-10), “endogenous” ssRNA ligands from host cells 
have not been fully characterized yet, and indeed the idea 
of endogenous ligands of PRRs remains controversial, as 
it complicates the traditional view of the role of PRRs in 
distinguishing self from non-self (11).

Once endogenous ssRNA molecules are packaged into 
extracellular vesicles (EVs), they can be delivered into the 
endosomes of recipient cells, where they can be sensed 
by TLR7 or TLR8. This has been observed with certain 
extracellular (ex-) microRNAs (miRNAs), which, upon 
delivery to recipient cell endosomes, become ligands for 
TLR7 and TLR8 and activate the downstream pathway 
(12,13). This miRNA-mediated TLR7/TLR8 activation is 
relevant not only to immune response (14,15) but has also 
been demonstrated to play roles in neurodegeneration (12), 
tumor growth and metastasis (16,17), autoimmunity (18), and 
pathobiology of various other diseases (19). Because miRNAs 
are the best-studied short non-coding RNAs (sncRNAs), 
it is natural that they have dominated current research 
on both ex-sncRNAs and endogenous ssRNA ligands of 

TLRs. However, recent advances in our understanding of 
“previously-hidden” sncRNAs have widened the pool of 
candidate ssRNA molecules that could act as endogenous 
ligands of ssRNA-sensing immune receptors, exemplified 
in the recent finding that transfer RNA (tRNA)-derived 
sncRNAs can function as endogenous ligands of TLR7 (20). 
We present this article in accordance with the Narrative 
Review reporting checklist (available at https://exrna.
amegroups.com/article/view/10.21037/exrna-22-22/rc).  

Methods

To identify articles suitable for this review, we conducted 
a literature search via PubMed using search terms that 
included “tRNA”, “tRNA half”, “tRF”, “tsRNA”, “exRNA”, 
“circulating RNA”, “immune response”, “TLR”, “TLR7”, 
“TLR8”, “neurodegeneration”, and “cancer”. Articles 
written in English and published prior to August 31, 2022 
were considered. These details are compiled in Table 1.

Most ex-sncRNAs are uncaptured by standard 
RNA-seq 

Cellular sncRNA molecules generally possess either a 
hydroxyl group (OH), a monophosphate (P), or a 2',3'-cyclic 
phosphate (cP) at their termini (Figure 1A), and the terminal 
states of each sncRNA are determined by the catalytic 
machinery underlying the RNA cleavage that produces 
them (21,24). Although next-generation sequencing of 
RNA molecules (RNA-seq) has become a common tool 
to characterize RNA expression profiles, most sncRNA 
sequencing studies to date have relied on a standard small 
RNA-seq method in which 5'- and 3'-adaptors (AD) can be 
ligated only to 5'-P and 3'-OH ends of RNAs, respectively. 

Table 1 Search information

Items Specification

Date of search August 31, 2022

Databases and other sources searched PubMed

Search terms used tRNA, tRNA half, tRF, tsRNA, exRNA, circulating RNA, immune response, TLR, TLR7, TLR8, 
neurodegeneration, cancer

Timeframe 1986–2022

Inclusion and exclusion criteria Research and review manuscripts written in English were included, and articles written in a 
language other than English were excluded

Selection process Both authors performed the search for suitable articles

https://exrna.amegroups.com/article/view/10.21037/exrna-22-22/rc
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While this standard method is suitable for efficient 
amplification and sequencing of 5'-P/3'-OH-containing 
sncRNAs, such as miRNAs, it cannot capture RNAs 
with other terminal structures (i.e., 5'-OH, 3'-P, or cP) 
(Figure 1B). Due to this limitation, non-miRNA-sncRNAs 
lacking the 5'-P/3'-OH ends have been significantly 
underrepresented in many of the current sncRNA analyses, 
and thus comprise a largely unexplored component in the 

transcriptome.
This notion is especially important when it comes to the 

sequencing analyses of ex-sncRNAs. Human plasma samples 
contain many ex-sncRNAs which lack 5'-P or 3'-OH 
and are therefore uncaptured by standard RNA-seq (25). 
To sequence ex-sncRNAs with any given set of terminal 
phosphate states, Giraldez et al. developed Phospho-RNA-
seq (25) (Figure 1B), which begins with the treatment of 

Figure 1 Infection-induced ex-5'-tRNA halves activate TLR7. (A) Chemical structures of general sncRNA termini [modified from our 
previous review (21)]; (B) targeted sncRNAs in standard RNA-seq, Phospho-RNA-seq, and cP-RNA-seq; (C) surface TLR stimulation 
culminates in activation of NF-κB, leading to upregulation of ANG, which cleaves the anticodon-loops of tRNAs. The resultant 5'-tRNA 
halves are secreted into EVs, and then the ex-5'-tRNA halves are delivered into endosomes in recipient cells and activate TLR7. Following 
TLR7 activation, signal transduction proceeds through MyD88, leading to activation of a protein complex that includes members of the 
IRAK family and the TRAF family, along with IKKα (22). Activation of IRAKs, particularly IRAK1 and IRAK2, and of TRAF6 leads to 
activation of IRF7 and its subsequent translocation into the nucleus, where it promotes transcription of IFN (23). Formation of a protein 
complex including TRAF6 and the TAK1 leads to downstream activation of NF-κB via degradation of its inhibitor. Liberated NF-κB can 
then migrate to the nucleus, where it induces expression of inflammatory cytokines and promotes cellular immune response. TLR, Toll-
like receptor; IRAK, IL-1R associated kinase; TRAF, tumor necrosis factor receptor-associated factor; IKKα, IκB kinase α; IRF7, interferon 
regulatory factor 7; IFN, type I interferon; TAK1, transforming growth factor-β-activated kinase 1.
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RNA samples with T4 polynucleotide kinase (T4 PNK). 
Because T4 PNK possesses both 5'-phosphorylation 
(convert 5'-OH to 5'-P in the presence of ATP) and 
3'-dephosphorylation (convert 3'-P/cP to 3'-OH) activities, 
the T4 PNK treatment leaves all RNA species with the 
5'-P/3'-OH-ends, thus rendering them available for 5'- and 
3'-AD ligation in subsequent small RNA-seq procedure. 
Phospho-RNA-seq has been successfully used to profile the 
expression of ex-sncRNAs in human plasma samples and 
their tissue specific signatures (25). Other human plasma 
sequencing studies also showed that the addition of T4 
PNK treatment to the sequencing procedure significantly 
altered the proportion of the reads of the sncRNAs derived 
from tRNAs, messenger RNAs (mRNAs), ribosomal 
RNAs (rRNAs), and other non-coding RNAs (26,27), 
corroborating that standard RNA-seq without T4 PNK 
treatment cannot fully capture these ex-sncRNAs. Our 
study on EVs secreted from human monocyte-derived 
macrophages (HMDMs) further confirmed the necessity 
of T4 PNK treatment in ex-sncRNA sequencing (20). T4 
PNK treatment was required to amplify the majority of 
the cDNAs derived from the EV ex-sncRNAs. Treatment 
with a mutant T4 PNK, which lacks 3'-dephosphorylation 
activity, resulted in dramatic reduction of cDNA yield, 
suggesting that most ex-sncRNAs in HMDM EVs are 3'-
P- or cP-containing RNAs, and miRNAs and other 3'-OH 
containing RNAs comprise only a small part of those ex-
sncRNA species packaged into the EVs (20). Based on these 
findings, recent ex-sncRNA sequencing studies have been 
utilizing T4 PNK treatment to make terminal formation of 
RNA molecules consistently 5'-P and 3'-OH, allowing for 
the capture of the full range of ex-sncRNAs.

tRNA-derived sncRNAs as a component of the 
expanding sncRNA world 

It is well established that tRNAs, canonically understood 
as adaptor molecules of translational machinery, are also a 
source of abundant functional sncRNAs (28-31). The tRNA-
derived sncRNAs are generated from mature tRNAs or their 
precursor transcripts, not as random degradation products 
but as specific functional molecules, and can be classified into 
two groups: tRNA halves and tRNA-derived fragments (tRFs) 
(28-31). The 30–35-nt tRNA halves are generally much more 
abundant than tRFs and are produced by endonucleolytic 
cleavage of the tRNA anticodon-loop. In mammalian cells, 
angiogenin (ANG), a member of the RNase A superfamily, 
is one of the major enzymes responsible for the anticodon 

cleavage (32,33). Because ANG-mediated cleavage leaves a 
cP and 5'-P in 5'- and 3'-cleavage products (34), respectively, 
5'-tRNA halves contain a 5'-P (from mature tRNAs) and a 
cP, while 3'-tRNA halves possess a 5'-OH and an amino acid 
(AA) at the 3'-end (from mature tRNAs), which has been 
experimentally validated (35). These terminal formations 
make tRNA half molecules the aforementioned “hidden 
class” of sncRNAs that are uncaptured by standard RNA-
seq. Due to the presence of a cP in 5'-tRNA halves, a specific 
sequencing method for cP-containing RNAs, termed cP-
RNA-seq (Figure 1B), has been utilized for the expressional 
characterization of 5'-tRNA halves (20,35-39). ANG-
mediated tRNA cleavage can be induced by various biological 
factors/phenomena such as stress stimuli (32,33,38) and sex 
hormone signaling pathways (35). Although ANG is bound 
by its inhibitor ribonuclease/angiogenin inhibitor 1 (RNH1) 
in the cytoplasm, under stress conditions, degradation of 
RNH1 and/or translocation of ANG to stress granules, 
where it dissociates from RNH1, enable ANG-mediated 
tRNA cleavage (40-42). tRNA halves function in stress 
granule formation (43), regulation of translation (32,44), and 
promotion of cell proliferation (35); they are also associated 
with various disorders such as neurodegeneration (45,46). 
tRNA halves can further serve as direct precursors for shorter 
sncRNAs such as Piwi-interacting RNAs (piRNAs) (36,39).

tRFs are generally shorter than tRNA halves and can 
mainly be subclassified into 5'-tRFs, 3'-tRFs, and internal 
(i)-tRFs (28-31). While 5'- and 3'-tRFs are derived from 
5'- and 3'-parts of mature tRNAs, respectively, i-tRFs 
are derived wholly from internal parts of mature tRNAs. 
Although Dicer and ANG are known to be involved in 
the biogenesis of some tRFs (47,48), detailed regulatory 
mechanisms and other biogenesis factors for tRFs 
remain elusive, leaving terminal phosphate states of tRFs 
undefined. This further emphasizes the importance of 
inclusive sequencing methods such as Phospho-RNA-seq 
for the comprehensive profiling of tRNA-derived sncRNAs. 
While many tRFs have been shown to function as miRNAs 
or piRNAs by binding to AGO or PIWI proteins (29,36,39), 
tRFs further have various functions, such as regulating 
mRNA stability or translation, preventing cell apoptosis, 
and promoting viral infection, and their dysregulation is 
involved in various diseases (28,30,31,49).

tRNA-derived sncRNAs as abundant ex-RNAs

tRNA-derived sncRNAs are increasingly recognized as 
an abundant class of ex-RNAs, released from cells under 
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diverse conditions and packaged into EVs (50-52) or bound 
to RNA-binding proteins (RNPs) (53) or lipoprotein 
particles (LPPs) (54). Functional roles of some of these 
tRNA-derived ex-sncRNAs have also been identified. For 
example, ex-5'-tRNA halves and ex-5'-tRFs contained 
in the vesicles deriving from the epididymis, termed 
epididymosomes, are transferred to maturing sperm (55) 
and regulate gene expressions in embryonic stem cells 
and embryos (55-57). tRNA derived ex-sncRNAs further 
appear to have potential as biomarkers in various disease 
contexts (58). For example, tRNA-derived ex-sncRNAs 
are differentially accumulated in breast cancer (59), 
prostate cancer (60), lung cancer (61), and chronic kidney 
disease (62), compared to healthy individuals. For further 
discussion of tRNA-derived ex-sncRNAs, we recommend 
a review from Tosar and Cayota (63). Experimental 
results on tRNA-derived ex-sncRNAs have continuously 
accumulated; more recent studies have provided further 
evidence that tRNA-derived ex-sncRNAs could be useful 
prognostic and diagnostic biomarkers in breast cancer  
(64-66), and have also shown their differential accumulation 
in metastatic hypopharyngeal cancer (67), systemic lupus  
erythematosus (68), and ischemic kidney injury (69).

Infection-induced ex-tRNA halves activate TLR7

We recently identified a novel role of ex-tRNA halves as 
activators of endosomal TLR (20). We demonstrated that 
infection of HMDMs with Mycobacterium bovis BCG and 
surface TLR activation by treatment with lipopolysaccharide 
(LPS) or peptidoglycan (PGN) upregulate the NF-κB-
mediated transcription of ANG, leading to accumulation of 
tRNA half molecules in HMDMs and their secreted EVs. 
In sequencing data of T4 PNK-treated RNAs from the 
EVs, 5'-tRNA halves comprised over 96% of tRNA-derived 
reads [in EV #1 library (20)], while 3'-tRNA halves (1.3%), 
5'-tRFs (0.87%), 3'-tRFs (0.63%), and i-tRFs (0.99%) were 
minor species. The mechanisms underlying the specific 
and selective packaging of tRNA-derived sncRNAs into 
EVs are unknown, but specific RNA binding proteins, 
such as YBX1 that binds to 5'-tRNA halves (44) and 
functions in RNA sorting into EVs (70), could be involved 
in the mechanisms. Most ex-5'-tRNA halves were derived 
from a focused subset of cytoplasmic tRNAs, including  
tRNAValCAC/AAC, tRNAGlyGCC, tRNAHisGUG, and tRNAGluCUC, 
which in aggregate were the sources of approximately 
90% of the identified ex-5'-tRNA halves. One of the most 
remarkable characteristics of ex-tRNA halves is their 

abundance. The ex-5'-tRNAHisGUG half was >210 times 
more abundant than miR-150, one of the most abundant 
miRNAs in HMDM-derived EVs (20). While it has 
been demonstrated that ex-miRNAs can act as ligands 
for endosomal TLRs, the much greater abundance of ex-
tRNA halves suggests that they might constitute a more 
significant, biologically relevant class of endogenous ligands 
of these immune receptors. Indeed, the EV-contained 
ex-tRNA halves were experimentally confirmed to be 
delivered into endosomes in recipient HMDMs where 
the 5'-tRNAHisGUG half strongly activates TLR7 (20). The 
activity of the 5'-tRNAHisGUG half is as high as that of HIV-
derived ssRNA40, a widely used positive control ssRNA 
known as a strong activator of endosomal TLRs (5), 
suggesting that 5'-tRNAHisGUG half could have the capacity 
to produce an immune response. 

Expressional induction and secretion of tRNA halves are 
not limited to cell culture settings but have been further 
observed in actual pathological situations. By developing 
a sensitive multiplex tRNA half quantification method, we 
revealed an approximately 1,000-fold enrichment of plasma 
ex-5'-tRNA halves in patients infected with Mycobacterium 
tuberculosis (20,71). A dramatic increase in the levels of serum 
ex-5'-tRNA halves has also been observed in LPS-injected 
mice and monkeys and in patients experiencing active, 
but not quiescent, hepatitis B virus infection (72). Because 
upregulation of 5'-tRNA half expression has been reported 
upon infection with respiratory syncytial virus (73,74), 
Rickettsia (75), and hepatitis B and C viruses (76), it seems 
possible that induction of 5'-tRNA halves and their secretion 
as ex-5'-tRNA halves could be a universal phenomenon 
among infectious diseases. These studies suggest a novel 
role of ex-5'-tRNA half molecules as “immune activators,” 
but further studies are required to fully unveil the immune 
response pathways mediated by tRNA-derived ex-sncRNAs.

Future perspectives

The study of endogenous ex-sncRNA ligands of immune 
receptors is still at an initial stage and remains an area 
of some controversy. Likewise, we are just beginning to 
appreciate the previously hidden classes of sncRNAs not 
detected by standard RNA-seq methods. We expect that the 
5'-tRNAHisGUG half is just the first example of an immune 
receptor-simulating tRNA-derived ex-sncRNA, and other 
tRNA halves and tRFs could be found to be similarly 
immunostimulatory through the TLR7 or TLR8 axis. 
The 5'-tRNAHisGUG half strongly activates TLR7, but not  
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TLR8 (20), probably because of differences in ligand 
specificity for TLR7 and TLR8 (6,77,78). Future 
exploration of immune stimulatory tRNA-derived 
sncRNAs should include review of studies looking into the 
characteristics of ssRNA ligands of TLR7 and TLR8.

Beyond tRNA-derived sncRNAs, our first genome-wide 
identification of cP-containing sncRNAs revealed abundant 
expression of rRNA- and mRNA-derived sncRNAs in various 
tissues (37), and, indeed, not only mature rRNAs (79) but 
also rRNA- and mRNA-derived sncRNAs have been shown 
to be abundantly secreted as ex-RNAs (26,80,81). These 
other unexplored classes of ex-sncRNAs should further be 
investigated as potential activators of TLR7 and TLR8. 

Endosomal TLR3 also recognizes RNA molecules, 
but it binds to double-stranded RNAs (dsRNAs) (82). 
Although ssRNAs containing partial stem structures can 
also be TLR3 ligands, at least 40–50-base-pairs (bp) length 
of dsRNA molecule is required to ensure stable complex 
formation with TLR3 (83,84), and more than 90-bp length 
of dsRNA is required to activate TLR3 signal transduction 
in dendritic cell maturation (85). Therefore, ex-sncRNAs 
shorter than mature tRNAs are unlikely to participate in the 
TLR3 signaling. However, exRNAs more broadly should 
be considered as potentially major endogenous ligands 
of TLR3, as exemplified in a study showing that dsRNAs 
released from necrotic polymorphonuclear neutrophils 
induce inflammatory response in macrophages (86).

Although mature tRNAs have been reported to be 
incorporated into EVs (70,87), unlike the 5'-tRNAHisGUG 
half, the full-length tRNAHisGUG was incapable of stimulating 
endosomal TLR (20), possibly due to its rigid secondary 
and tertiary structures. Therefore, shortening mature 
tRNAHisGUG into less-rigid 5'-half molecules by anticodon-
cleavage is crucial to produce immunostimulatory sncRNAs. 
ANG is highly enriched in the EVs derived from aggressive 
brain tumor cells (52), while another RNase A superfamily 
member, RNase 1, has recently been shown to cleave 
non-vesicular tRNAs (88). Further research on immune 
responsive ribonucleases which cleave tRNAs, rRNAs, 
mRNAs, or other substrate RNAs to produce immune 
responsive ex-sncRNAs is necessary to fully understand the 
regulation and functional consequences of immune response 
mediated by these ex-sncRNAs. 

TLR7 and TLR8 are involved in various biological 
processes and diseases (89). The symptom severity of 
COVID-19 is associated with TLR7 mutations (90-92). 
The genetic polymorphisms in TLR7 and TLR8 genes, 
which reduce the TLR activity, increase susceptibility to 

Mtb infection (93), and upregulation and stimulation of 
TLR7 in macrophages suppress Mtb growth (94,95). TLR7 
and TLR8 have been implicated in the progression of 
Parkinson’s disease (96) and in Alzheimer’s disease (12,97,98), 
possibly playing a role in promoting neuroinflammation 
and autoimmunity. A recent study also linked a specific 
gain-of-function mutation in TLR7 with severe systemic 
lupus erythematosus (99). Furthermore, missense mutations 
in TLR7 have been reported in the tumors of a subset of 
esophageal adenocarcinoma patients (100), and cellular 
immune response through activation of TLR7 and TLR8 
can be directed against tumors (101). Despite these known 
linkages between TLR7/TLR8 and pathobiology of 
diseases, the endogenous ligands of these ssRNA-sensing 
TLRs remain poorly understood. The growing evidence 
of TLR7 and TLR8 involvement in the pathogenesis of 
non-infectious diseases highlights the need for a better 
understanding of the endogenous ligands of these receptors. 
Further research into tRNA-derived ex-sncRNAs, aided by 
upgraded sequencing methods, is necessary to identify these 
ligands and to gain a fuller understanding of the interplay 
between ex-RNAs, TLRs, and the immune system in the 
body’s response to diverse pathologies.  
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