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Background and Objective: Acute myocardial infarction (AMI) is a leading cause of morbidity and 
mortality worldwide, and survivors are at an increased risk of experiencing adverse left ventricular (LV) 
remodelling and major adverse cardiovascular events (MACE). As such, the development of non-invasive 
tools to predict risk following AMI remains a clinical priority. MicroRNAs (miRNAs) are small-noncoding 
RNAs that regulate gene expression and have come to prominence as a novel class of circulating biomarkers 
in AMI. In this narrative review, we summarise the current evidence that links circulating miRNAs with 
parameters of LV remodelling and MACE following AMI, and investigate clinical challenges that must be 
overcome to facilitate the translation of miRNAs into clinical use.
Methods: A literature search was conducted using PubMed and Web of Science for research articles 
that investigated circulating miRNAs as prognostic tools following AMI, with an emphasis on articles 
that examined LV remodelling and MACE as clinical outcome measures. Articles written in English and 
published prior to April 30th 2022 were included. 
Key Content and Findings: A number of novel candidate miRNA biomarkers have been linked to LV 
remodelling and MACE following AMI. Of these miRNAs, only a handful have been successfully reproduced 
in independent cohorts and some, but not all, have been identified as equal or superior to current prognostic 
tools. Measuring miRNAs in combination has proved promising and may be a superior approach when 
compared to single miRNA analysis. Heterogeneous strategies to measure miRNAs in human biological 
samples, generally smaller sample sizes and discordance in study design and clinical endpoints are just some 
of the clinical challenges that must be overcome to strengthen research in this field. 
Conclusions: Circulating miRNAs hold promise in patient risk stratification following AMI. Future 
studies should utilise standardised methodologies, prioritise larger multicentre studies, incorporate miRNA 
panels over single miRNA analysis and should routinely compare miRNA prognosis to current clinical tools. 
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Introduction

Coronary artery disease (CAD) remains a major health and 
economic priority worldwide. In 2019, CAD accounted 
for approximately 50% of all global cardiovascular disease 
(CVD) mortality and was responsible for an estimated nine 
million deaths (1). Acute myocardial infarction (AMI) is a 
common presentation of CAD. While survival following 
AMI has improved in recent decades due to advancements 
in revascularization strategies and medical therapies (2-5), 
population growth and aging has caused the net burden of 
CVD to remain high (1).

Survivors of AMI are at increased risk of experiencing 
major adverse cardiovascular events (MACE) when 
compared to the general population (6,7). Adverse left 
ventricular (LV) remodelling underpins the development of 
many cardiac conditions secondary to AMI and describes 
progressive geometric and functional changes to the 
myocardium in response to damage (8). Despite modern 
therapeutic management strategies that include timely 
revascularization and optimal pharmacotherapy, up to 
30% of patients will continue to experience adverse LV 
remodelling in the months and year following AMI (9,10). 
This persistence is of significant clinical concern, as patients 
with LV remodelling are at an increased risk of developing 
heart failure and poor health outcomes (9,11).

Heart failure is a complex pathophysiology that is 
associated with impaired ventricular filling and reduced 
cardiac output (12). The prevalence of heart failure is 
estimated as 1–2% of the global adult population (13). 
Importantly, heart failure diagnosis is associated with poor 
health outcomes in AMI patients (14), and is a common 
primary or composite endpoint for MACE. In addition 
to LV remodelling and subsequent heart failure, MACE 
also commonly comprises unplanned revascularization, 
reinfarction and all-cause or cardiac-specific mortality, 
which are all clinical pathologies elevated in patients 
following AMI (15). Thus, early identification of AMI 
patients at risk of developing adverse LV remodelling or 
MACE is of utmost importance for reducing the incidence 
of morbidity and mortality in this population.

Natriuretic peptides are the gold-standard biomarkers in 
heart failure diagnosis and management (13,16). Comprised 
of N-terminal pro-B-type natriuretic peptide (NT-
proBNP) and B-type natriuretic peptide (BNP), natriuretic 
peptides are elevated in response to ventricular wall stretch, 
dilation and pressure (17,18). While biomarker research 
has demonstrated that natriuretic peptides have prognostic 

potential following AMI (19,20), BNP and NT-proBNP 
are not routinely measured following hospitalisation. An 
important limitation of measuring natriuretic peptide levels 
is non-specific elevation in individuals due to differences 
in clinical features and presentation (21,22). In addition, 
natriuretic peptides cannot predict damage and are 
instead elevated as a consequence of irreversible cardiac 
remodelling processes (17).

More recently, microRNAs (miRNAs) have come to 
prominence as a novel class of circulating biomarkers that 
may have some potential at predicting outcomes in patients 
following AMI (23,24). miRNAs are short non-coding 
RNAs (~22 nt in length) that are transcribed as primary 
miRNAs mostly from the intronic regions of genes. These 
are then processed into precursor miRNAs and transported 
to the cytoplasm to be cleaved into mature miRNA 
[reviewed in Zhang et al., in 2020 (23)]. Mature miRNAs 
regulate the expression of multiple genes by binding 
to complementary 3’ untranslated regions of mRNA, 
resulting in suppression of translation or degradation of the  
mRNA (25). They can act as master regulators of cellular 
networks and have been implicated in the normal 
physiological functioning of cardiac tissue as well as 
the pathological processes related to AMI (26), adverse 
ventricular remodelling (27), and stroke (28). Importantly, 
miRNAs are also released from cells in the body and are 
stable in the circulation, due to their encapsulation within 
membrane-bound particles called extracellular vesicles 
(EVs) (29) or conjugation to lipoproteins or other protein 
complexes (e.g., Argonaute-miRNA complexes) (30). 
Circulating miRNAs can originate from virtually any 
cell in the body and can be taken up by recipient cells at 
distant sites where they have functional effects. Because 
miRNAs are directly involved in the pathogenesis of disease 
processes and are selectively released from cells (31), they 
are an ideal class of biomarkers that could potentially out-
perform traditional protein serum markers. Early research 
investigating miRNAs in AMI was focused on utility in 
acute diagnosis, and a recent systematic review and meta-
analysis by Zhai et al. (26) includes many of the seminal 
studies associated with this field of research. Findings from 
these early studies, particularly the identification of an early 
rise in some miRNAs following AMI onset and the cardiac-
specific origin of these miRNAs, became the foundation 
for researching the prognostic utility of circulating miRNA 
following AMI, which is the purpose of this review. 

This review outlines what is currently known about how 
miRNA perform as predictors of adverse events following 
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AMI (particularly LV remodelling and MACE), the current 
challenges for implementing miRNA biomarkers clinically, 
and recommendations for future research in this area. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://exrna.amegroups.
com/article/view/10.21037/exrna-22-21/rc).

Methods

PubMed and Web of Science databases were searched 
between March and April 2022 for all scientific publications 
relevant to the scope of this narrative review. Boolean 
expressions were searched to identify miRNA linked with 
LV remodelling and MACE outcomes in the context of 
acute coronary syndrome (ACS). More details regarding 
the search strategy and inclusion and exclusion criteria are 
outlined in Table 1. 

miRNAs for LV remodelling

LV remodelling is a complex and progressive pathology 

that spans across multiple physiological processes. It is 
initiated by infarct expansion, which describes the thinning 
and dilation of the infarcted myocardium (8). Subsequently, 
non-infarcted myocardium undergoes volume-overload 
hypertrophy to preserve stroke volume, which increases 
intra-chamber pressures and results in ventricular chamber 
enlargement (32). Myocardial fibrosis is also a key mechanism 
associated with the progression of LV remodelling (33), 
with excessive and reactive fibrosis causing stiffening of the 
ventricles and pathological changes to cardiac structure (34). 
Finally, an incomplete resolution of inflammatory responses 
to acute cardiac injury and a failure to progress to a reparative 
phase has more recently been highlighted as a contributor to 
adverse remodelling (35). 

Throughout these processes, miRNA can be released from 
the multiple cell types involved including cardiomyocytes, 
fibroblasts, endothelial cells, and immune cells (31). Multiple 
circulating miRNA have been linked to the development of 
LV remodelling following AMI (Table 2), many of which have 
also been linked to functional roles in the pathophysiology 
of LV remodelling. Differential expression of these miRNA 

Table 1 Summary of the search strategy

Items Specification

Date of search 4th March 2022 to 30th April 2022

Databases and other sources searched PubMed & Web of Science

Search terms used (microRNA OR miRNA OR miR) AND (“left ventricular remodel*” OR “LV remodel*)

(microRNA OR miRNA OR miR) AND (“major adverse cardi* outcome*” OR MACE)

(microRNA OR miRNA OR miR) AND (“heart failure” OR HF)

(microRNA OR miRNA OR miR) AND (mortality OR death OR “cardi* death”)

Timeframe Manuscripts published before April 30th 2022

Inclusion and exclusion criteria Inclusion criteria: 

Primary research manuscript

Research conducted in human participants

Examined parameters of LV remodelling and/or MACE outcomes in an ACS context

Exclusion criteria:

Published in a non-English language

Selection process Authors independently selected manuscripts based on the search strategy supplied. 
Manuscripts identified using the search strategy were further examined for additional 
references. Manuscripts were selected based on the robustness of their research. The final 
selection of manuscripts was agreed between authors

Any additional considerations, if applicable Additional manuscripts were included in this review based on Reviewer suggestions

LV, left ventricular; MACE, major adverse cardiovascular events; ACS, acute coronary syndrome. 

https://exrna.amegroups.com/article/view/10.21037/exrna-22-21/rc
https://exrna.amegroups.com/article/view/10.21037/exrna-22-21/rc
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has been observed at acute (<24 hours: miR-1, miR-24, miR-
29a, miR-34a, miR-126, miR-133, miR-185, miR-208b, miR-
320) (36,38,44,45), sub-acute (1–10 days: miR-1, miR-29a, 
miR-29b, miR-150, miR-155, miR-185) (37,39,42-44), and 
chronic (>1 month: miR-320a) (45) timepoints. These time-
points will reflect different stages of the pathophysiological 
process, with acute time-points potentially more reflective 
of the extent of initial tissue damage. The timing of 
miRNA measurement should therefore be considered 
when assessing the potential of these miRNA as prognostic 
biomarkers, with preference given to markers that have 
been identified as independent predictors in multivariate 
analyses that include current clinical prognostic indicators 
(which are indicative of initial tissue damage). 

There is currently a lack of concordance between 
studies investigating individual miRNA biomarkers for 
LV remodelling that is likely due to methodological 
differences in source material (plasma vs serum), timing of 
measurement, and chosen endpoints for LV remodelling. 
However, two miRNAs have been shown in multiple 
studies to have a significant relationship with parameters of 
remodelling and are described in more detail below. 

miR-1

miR-1 is highly expressed in muscle tissue and is one of 
the most abundant miRNAs in the adult murine (46),  
rodent (47) and human (48) heart. Experimental studies 
using knockdown models have shown an important role 
for miR-1 in embryonic cardiovascular development and 
adult heart function (46,49). Additionally, experimental 
models of MI have demonstrated that circulating miR-
1 levels are negligible in healthy rodents and are rapidly 
upregulated following coronary ligation (47,50). These 
findings are supported by several clinical studies that have 
demonstrated elevated circulating miR-1 levels in AMI 
patients when compared to healthy volunteers (47,50,51). 
These findings suggest that miR-1 may be upregulated as a 
consequence of myocardial damage and support its use as a 
potential prognostic biomarker following AMI. Grabmaier  
et al. (37) has previously demonstrated the relationship 
between miR-1 and infarct size when measured in 44 
patients using cMRI 6-month following AMI. However, 
the correlation was weak, and the absolute change in 
left ventricular end-diastolic volume (LVEDV), which 
is a more common LV remodelling endpoint, was not 
associated with miR-1 levels. This contrasts with a more 
recent study conducted by Ma et al. (36), where miR-1 was 
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identified as an independent predictor of LV remodelling 
when measured 6-month following AMI in 80 ST-segment 
elevation myocardial infarction (STEMI) patients. While 
levels were significantly elevated in LV remodelling patients 
when compared to non-LV remodelling patients, receiver 
operator characteristic (ROC) curve analysis demonstrated 
no significant improvement in prognostic utility when 
compared to peak-logNT-proBNP. However, when added 
to a multiple logistic regression model including cardiac 
magnetic resonance imaging (cMRI) parameters and key 
biochemical measures (peak CK-MB, logNT-proBNP, peak 
TnT), miR-1 levels significantly increased the predictive 
power from an area under the curve (AUC) 0.81 [95% 
confidence interval (CI): 0.71–0.89] to AUC 0.89 (95% CI: 
0.80–0.95). These findings suggest that miR-1 measurement 
alone may not be superior for predicting risk when 
compared to current clinical tools. However, when used 
in combination with LV function testing and biochemical 
measures, it may slightly improve prognostication in 
patients. 

miR-29a

MiR-29a is a non-cardiac specific miRNA that has been linked 
to cardiac (52), liver (53), and pulmonary fibrosis (54). van Rooij 
et al. (52) has shown that the main source of miR-29a in the 
heart is cardiac fibroblasts, which are important effector 
cells in myocardial fibrosis. In this study, downregulation 
of miR-29a expression in mice using oligonucleotide 
inhibition was associated with increased collagen synthesis 
in vivo (52). Liu et al. (55) showed an opposite effect in 
which transforming growth factor-beta (TGF-β)-induced 
collagen expression by cardiac fibroblasts was inhibited 
by the introduction of a miR-29a mimic in vitro. These 
findings suggest an important role for miR-29a in biological 
mechanisms associated with fibrosis. 

Indeed, a recent study has demonstrated that miR-
29a levels are positively correlated with measures of 
hypertrophy and myocardial fibrosis in hypertrophic 
cardiomyopathy (HCM) patients (56). This review includes 
two studies that have linked levels of miR-29a to elements 
of LV remodelling. Lakhani et al. (38) demonstrated that 
miR-29a levels were decreased in AMI patients with low 
left ventricular ejection fraction (LVEF) values when 
compared to healthy participants or patients with normal 
LVEF values. However, this study did not define what 
LVEF thresholds were used to determine low versus 
normal values, so it is difficult to determine what severity of 

remodelling this miRNA is associated with. In comparison, 
a further study demonstrated a positive correlation between 
miR-29a levels and LVEDV measures when recorded  
90 days following AMI (39). This creates a complicated 
picture for both the expression levels of miR-29a following 
AMI and the relationship of this miRNA with LV 
remodelling, as these two studies oppose each other. 

miRNAs for MACE

MACE is a composite endpoint used to describe adverse 
outcomes that commonly proceed AMI. There is no gold-
standard definition for MACE and instead it encompasses 
multiple outcome measures that can include: all-cause death, 
cardiac-specific mortality, unplanned revascularisation, 
hospitalisation with unstable angina, non-fatal MI, stroke, stent 
thrombosis and development of heart failure (15). MACE is a 
popular endpoint in clinical research as it summarises important 
cardiovascular outcomes that adversely impact patient quality 
of life. Multiple miRNAs have been linked to short- and long-
term MACE outcomes following AMI (Table 3), some of which 
overlap with reported biomarkers for LV remodelling (miR-
133a, miR-155, and miR-208b). Similar to LV remodelling 
studies, the timing of biomarker and outcome measurements 
vary across studies and a significant number of miRNA are 
reported in single studies only. However, four miRNA have 
been reproducibly linked to MACE, including three from 
the myomiR family (miR-208a, miR208b and miR-499), 
named as a consequence of their location and co-expression 
with the myosin gene, in addition to the muscle-enriched  
miR-133a. 

miR-208a

miR-208a is encoded by the α-cardiac muscle myosin heavy 
chain gene 6 (α-MHC, MYH6) on chromosome X (72). 
miR-208a is considered a cardiac-specific miRNA, with 
experimental studies demonstrating exclusive expression in 
the myocardial tissue of small animals and humans (50,73). 
A number of experimental studies have demonstrated 
increased miR-208a levels following myocardial injury 
(50,74). In rats subjected to coronary artery ligation, 
Wang et al. in 2010 (50) demonstrated a rapid increase in 
miR-208a levels that peaked 3 hours following ligation 
and returned to baseline within 24 hours. A similar 
kinetic profile has been observed in STEMI patients (75). 
Combined, these findings indicate that miR-208a may be a 
specific biomarker of myocardial injury. However, despite 
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Table 3 miRNAs associated with MACE

exRNA 
ACS 
population

Sample measurement Outcome measurement

Findings Ref.
Source Timepoint(s)†

Quantification 
method

Timepoint(s)† Primary endpoint
% of population 
with primary 
endpoint 

miR-19a 430 ACS Serum Admission RT-qPCR 4-year post-AMI Cardiac mortality 43/430 (10.0%)‡ ↑ (57)

miR-19b 430 ACS Serum Admission RT-qPCR 4-year post-AMI Cardiac mortality 43/430 (10.0%)‡ ↑ (57)

miR-21 210 STEMI Serum Admission [S] Illumina 
sequencing

2-year post-AMI Cardiac mortality, 
hospitalization for 
HF or non-fatal AMI

70/210 (33.3%) ↓ (58)

[V] RT-qPCR

184 AMI Plasma Admission RT-qPCR 30-day post-AMI All-cause mortality 35/184 (19%) ↓ (59)

miR-26a 210 STEMI Serum Admission [S] Illumina 
sequencing, 
[V] RT-qPCR

2-year post-AMI Cardiac mortality, 
hospitalization for 
HF or non-fatal AMI

70/210 (33.3%) ↓ (58)

miR-30d 138 AMI Plasma Pre-
angiogram

RT-qPCR 1-year post-AMI Development of HF 46/138 (33.3%) ↑ (60)

miR-132 430 ACS Serum Admission RT-qPCR 4-year post-AMI Cardiac mortality 43/430 (10.0%)‡ ↑ (57)

miR-133a 216 STEMI Serum Angiogram RT-qPCR 6-month post-
AMI

All-cause mortality, 
non-fatal AMI, 
development of 
congestive HF

33/216 (15.3%) ↑ (41)

444 ACS Plasma Admission RT-qPCR 6-month post-
AMI

All-cause mortality 34/444 (7.7%) ↑ (61)

miR-134 359 AMI Plasma Admission RT-qPCR 176 days (IQR: 
121–226)

Cardiac mortality or 
development of HF 
(LVEF <40%)

83/359 (23.1%) ↑ (62)

miR-140 430 ACS Serum Admission RT-qPCR 4-year post-AMI Cardiac mortality 43/430 (10.0%)‡ ↑ (57)

miR-145 246 STEMI Serum Day 5 post-
PCI

RT-qPCR-DS 1-year post-AMI Cardiac mortality or 
hospitalization for 
HF

72/246 (29.3%) ↑ (63)

miR-150 430 ACS Serum Admission RT-qPCR 4-year post-AMI Cardiac mortality 43/430 (10.0%)‡ ↑ (57)

miR-155 40 AMI Serum Admission [S] miRNA 
array, [V] RT-
qPCR

2-year post-AMI Cardiac mortality 19/40 (47.5%) ↑ (64)

miR-184 72 AMI Serum 6, 12, 24 
hours & 7, 
14 days 
post-SO

RT-qPCR 1-month post-
AMI

Cardiac mortality, 
non-fatal AMI, 
development 
of HF, coronary 
revascularization 

22/72 (30.6%) ↑ (65)

miR-186 92 ACS Serum Pre-PCI RT-qPCR 1-year post-AMI All-cause 
mortality, non-
fatal AMI, stroke or 
unplanned coronary 
revascularisation

31/92 (33.7%) ↑ (66)

430 ACS Serum Admission RT-qPCR 4-year post-AMI Cardiac mortality 43/430 (10.0%)‡ ↑ (57)

Table 3 (continued)
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Table 3 (continued)

exRNA 
ACS 
population

Sample measurement Outcome measurement

Findings Ref.
Source Timepoint(s)†

Quantification 
method

Timepoint(s)† Primary endpoint
% of population 
with primary 
endpoint 

miR-191 210 STEMI Serum Admission [S] Illumina 
sequencing,[V] 
RT-qPCR

2-year post-AMI Cardiac mortality, 
hospitalization for 
HF or non-fatal AMI

70/210 (33.3%) ↓ (58)

miR-208a 40 STEMI Serum Pre-PCI RT-qPCR In-hospital Insufficient 
reperfusion (TIMI 0, 
TIMI 1)

19/40 (47.5%) ↑ (67)

84 AMI Serum Admission RT-qPCR 6-month post-
AMI

All-cause mortality, 
non-fatal AMI, 
unplanned coronary 
revascularization, 
stroke

17/84 (20.2%) ↑ (68)

miR-208b 407 ACS Plasma Admission RT-qPCR 30-day post-
hospitalization

All-cause mortality 
or development of 
HF or LVEF <40% 
or development of 
cardiogenic shock

74/407 (18.2%) ↑ (69)

444 ACS Plasma Admission RT-qPCR 6-month All-cause mortality 34/444 (7.7%) ↑ (61)

21 AMI Plasma Admission RT-qPCR 6-month post-
AMI

All-cause mortality 7/21 (33.3%) ↑ (70)

miR-210 430 ACS Serum Admission RT-qPCR 4-year post-AMI Cardiac mortality 43/430 (10.0%)‡ ↑ (57)

miR-328 359 AMI Plasma Admission RT-qPCR 176 days (IQR: 
121–226)

Cardiac mortality, 
or development of 
HF (LVEF <40%)

83/359 (23.1%) ↑ (62)

miR-380* 40 AMI Serum Admission [S] miRNA 
array, [V] RT-
qPCR

2-year post-AMI Cardiac mortality 19/40 (47.5%) ↑ (64)

miR-499 142 
NSTEMI

Plasma Admission RT-qPCR 1-year & 2-year 
post-AMI

Cardiac mortality 1-year: 54/142 
(38%), 2-year: 
45%

↑ (71)

407 ACS Plasma Admission RT-qPCR 30-day post-
hospitalization

All-cause mortality 
or development of 
HF or LVEF <40% 
or development of 
cardiogenic shock

74/407 (18.2%) ↑ (69)

†, the sample timepoint associated with MACE; ‡, value given for cardiac mortality or non-fatal AMI; [S], screening cohort; [V], validation 
cohort; ↑, increased levels of miRNA in patients with MACE versus no MACE; ↓, decreased levels of miRNA in patients with MACE 
versus no MACE; miRNA, microRNA; MACE, major adverse cardiovascular events; ACS, acute coronary syndrome; RT-qPCR, real time-
quantitative polymerase chain reaction; AMI, acute myocardial infarction; STEMI, ST-segment elevation myocardial infarction; HF, heart 
failure; IQR, interquartile rang; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; DS, directly in serum; SO, 
symptom onset; TIMI, thrombolysis in myocardial infarction; NSTEMI, non-ST elevation myocardial infarction. 
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multiple animal studies demonstrating this link, limited 
clinical studies investigating the prognostic utility of miR-
208a are available. In a recent study conducted in 84 AMI 
patients, elevated levels of miR-208a were univariately 
associated with MACE (68). When ROC curve analysis 
was assessed, miR-208a had a sensitivity of 49.25% and 
specificity of 94.12% when a cut-off value of 3.297 was  
used (68). However, multivariate analysis was not conducted 
in this study, and no comparisons were made to current 
risk-stratification biomarkers. 

miR-208b

miR-208b belongs to the same family as miR-208a, and 
is encoded by the β-cardiac muscle myosin heavy chain 
gene 7 (β-MHC, MYH7) (72). Much like miR-208a, miR-
208b is considered a cardiac-specific miRNA (76) and has 
been extensively researched as a prognostic tool in AMI. 
Widera et al. (61) investigated miR-208b as a prognostic 
biomarker in 444 ACS patients during a 6-month follow-up  
period (61). Patients with miR-208b levels above the 
median had a 2.2-fold higher risk of death when compared 
to patients with miR-208b levels below the median. 
However, this association lost significance when adjusted 
for age, gender and hs-TnT levels (61). A similar finding 
was observed by Gidlöf et al. (69), in which miR-208b levels 
were univariately associated with MACE at 30-day in 407 
ACS patients but lost significance when adjusted for TnT 
levels. However, when MACE was investigated in AMI 
patients only (n=319), miR-208b remained a multivariate 
predictor of the primary endpoint, although prognostic 
accuracy was similar to that of TnT levels. While important 
differences exist between these two studies, including 
MACE definition and follow-up time, these findings suggest 
that miR-208b may be a more accurate biomarker in AMI 
patients. Indeed, a more recent study conducted by Alavi-
Moghaddam et al. in 2018 (70) demonstrated that STEMI 
patients with miR-208b levels ≥12.38, a value determined 
using survival analysis, were approximately 5-fold more 
likely to die within 6-month following infarction when 
compared to patients with lower levels. While these findings 
are of interest, it is important to note that this study was a 
pilot design and was conducted in 21 participants only and 
were not compared to existing biochemical measurements, 
such as hs-TnT or natriuretic peptides. 

miR-499

miR-499 is a muscle-specific miRNA that is highly 
expressed by the heart and is encoded by the MYH7b gene 
(50,77). The expression of miR-499 is closely linked to 
myocardial damage, with rodent (50) and pig (76) models 
of MI demonstrating rapid upregulation within 1 hour of 
artery occlusion. Clinical studies reflect these findings, 
with higher circulating levels of miR-499 observed in AMI 
patients compared to healthy volunteers (78). As such, 
miR-499 has been described in the literature as a sensitive 
biomarker for myocardial damage. Indeed, a recent meta-
analysis of 14 studies demonstrated a pooled sensitivity of 
AUC 0.84 (95% CI: 0.64–0.94) and a pooled specificity of 
AUC 0.97 (95% CI: 0.90–0.99) to diagnose AMI in patients. 
In this review, two large clinical studies demonstrated a 
link between miR-499 levels and short-term and long-term 
MACE following AMI. Gidlöf et al. (69) demonstrated 
that miR-499 levels were a modest independent predictor 
of composite MACE 30-day following hospitalisation in 
AMI patients compared to non-MACE AMI patients [odds 
ratio (OR) =1.58; 95% CI: 1.17–2.13; P=0.003]. However, 
when miR-499 levels were compared to TnT, ROC curve 
analysis demonstrated a similar prognostic performance 
(AUC: 0.64 versus 0.66). Olivieri et al. (71) demonstrated a 
similar independent relationship between long-term MACE 
and miR-499 levels in a more niche population of elderly 
NSTEMI patients. Specifically, this study demonstrated 
that elevated miR-499 levels were associated with cardiac 
mortality at 1 year following AMI [hazard ratio (HR) =2.17; 
95% CI: 1.20–3.91; P=0.01] and this outperformed TnT, 
which was not found to discriminate patients in this study. 
As such, miR-499 appears to be a promising prognostic 
biomarker that has performed modestly in larger clinical 
studies.

miR-133a

The miR-133 family comprises three variants that are conserved 
across the human genome, with miR-133a-1 and miR-133a-2 
sharing an identical mature sequence and miR-133b differing 
by two nucleotides at the 3’ terminus (79). Interestingly, miR-
133 also belongs to the same transcriptional unit as miR-
1, causing these miRNAs to be transcribed together (80). 
Early animal studies have demonstrated highly specific 
expression of miR-133/a in skeletal and cardiac muscle 
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(50,80), with these findings supported by human tissue 
studies (48,50). miR-133 expression is protective of 
cardiomyocyte hypertrophy (81,82) and oxidative stress-
induced cardiomyocyte apoptosis (83). Additionally, miR-
133 expression can modulate cardiac fibroblast ECM 
activity by post-transcriptional regulation of connective 
tissue growth factor (84). As such, miR-133 has a key 
regulatory role in cardiac development and function and 
is a prognostic biomarker of interest. In an early study by 
Widera et al. (61), miR-133a levels were linked to all-cause 
mortality at 6 months following an ACS diagnosis. In this 
study, patients with miR-133a levels in the fourth quartile 
had a 2.5-fold increased risk of death when compared 
to patients in the first three quartiles. However, when 
adjusted for age, gender and hs-TnT levels, this association 
did not remain significant. A further prospective study 
demonstrated similar findings in 216 STEMI patients, with 
increased levels of miR-133a associated with development of 
all-cause death, non-fatal MI or development of congestive 
heart failure 6-month following AMI (41). Specifically, this 
study demonstrated that miR-133a levels above the median 
were associated with increased mortality and cumulative 
MACE when compared to patients with levels below the 
median. However, upon multivariate analysis, miR-133a did 
not remain an independent predictor (41). As such, these 
findings suggest some association of elevated miR-133a 
with prognostic outcomes in patients. However, miR-133a 
alone may not be a superior biomarker compared to current 
clinical and biochemical parameters. 

Panels of miRNAs

Increasingly, biomarker research is moving away from a 
single-marker analysis and towards a multi-marker approach 
that utilises a panel of selected biomarkers that represent 
different biological pathways to better predict risk in 
patients (85). Several studies have demonstrated the clinical 
utility of combining miRNAs to predict LV remodelling 
and MACE in AMI patients (Table 4) which are potentially 
superior to single-marker analysis. 

Creating a molar ratio between two biologically linked 
miRNAs is a simple but effective statistical approach for 
combining biomarkers. Cortez-Dias et al. (86) compared 
the prognostic utility of measuring miR-122-5p alone or in 
a ratio with miR-133b to predict MACE following AMI. 
Upon univariate Cox regression analysis, miR-122-5p was 
not associated with MACE, while a higher ratio of miR-
122-5p/miR-133b was significantly linked to increased risk 

of all-cause mortality alone (HR =1.62; 95% CI: 1.22–2.14; 
P=0.001) or in combination with non-fatal AMI (HR 
=1.50; 95% CI: 1.21–1.85; P<0.001) and the composite 
of these endpoints combined with unstable angina, stroke 
or hospitalization with heart failure (HR =1.44; 95% CI: 
1.19–1.74; P<0.001). Hromadka et al. (91) also used a molar 
ratio to investigate the prognostic utility of combining 
miR-126-3p and miR-223-3p to predict the composite 
endpoint of cardiovascular death, recurrent AMI and stroke 
when measured acutely in 598 AMI patients. When ROC 
curve analysis was conducted, this study did not identify a 
significant difference in predictive value between miR-126-
3p/miR-223-3p and miR-126-3p at 30-day [AUC 0.741 
(95% CI: 0.704–0.775) versus AUC 0.686 (95% CI: 0.647–
0.723)] or 1-year [AUC 0.642 (95% CI: 0.603–0.681) versus 
AUC 0.608 (95% CI: 0.567–0.647)] following AMI. These 
findings demonstrate a complicated picture for the utility of 
molar ratios in prognostication. Potentially, careful selection 
of miRNAs with biologically meaningful relationships is an 
important factor to consider prior to combining miRNAs. 
Additionally, ratios are inherently flawed by the ability to 
only combine binary variables. 

Multivariate analysis techniques are a common statistical 
method in the literature, and overcome the limitation of 
ratios by combining large panels of variables together (92). Lv  
et al. (87) investigated the usefulness of miR-208b and miR-
34a in predicting cardiac mortality and development of heart 
failure 6-month following AMI. This study demonstrated 
that the combination of these biomarkers using ROC curve 
[0.777 (95% CI: 0.731–0.819)] was incrementally superior 
for predicting MACE when compared to miR-208b [0.737 
(95% CI: 0.0.689–0.782)] or miR-34a [0.642 (95% CI: 
0.590-0.691)] alone. Importantly, when these biomarkers 
were compared to NT-proBNP, miR-208b and miR-34a 
combined, but not singularly, demonstrated an improved 
predictive ability for MACE. In another study, ROC 
curve analysis was used to predict MACE in 186 STEMI  
patients (88). When sampled acutely, the combination of 
miR-26b-5p, miR-660-5p, miR-320a [AUC 0.718 (95% CI: 
0.767–0.851)] improved prediction when compared to each 
biomarker alone. Numerically, all of these miRNAs were 
comparable or superior for prediction when compared to 
hs-TNT and pro-BNP. 

An alternative multivariate biomarker approach 
was conducted by Devaux et al. (89) for the prediction 
of impaired wall motion contractility in 150 patients 
6-month following AMI. In this study, Akaike Information 
Criteria (AIC) was utilised to avoid model over-fitting, 
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as this statistical technique accounts for variable input 
number which can naturally inflate analysis. This study 
demonstrated that the addition of miR-16, miR-27a, miR-
101 and miR-150 to clinical features and NT-proBNP 
levels resulted in a significantly lower AIC from 188.269 to 
181.432 (P=0.005), which indicates an improved model fit. 
Using net reclassification analysis, this study demonstrated 
that the combined addition of these four miRNAs could 
improve classification of patients by 66% when compared 
to clinical features and NT-proBNP levels alone. 

Combined, these studies demonstrate the prognostic 
benefit of combining multiple biomarkers to risk-stratify 
AMI patients. However, multivariate statistical approaches 
assume independence between variables and cannot account 
for collinearity. This is an important limitation to consider 
for multi-marker panels, as many miRNAs have a shared 
biological activity or similar downstream targets that 
prevent them from being independent factors. As such, 
emphasis on developing methods to combine miRNAs that 
account for this shared association is important. 

Multidimensional reduction models can overcome 
collinearity by accounting for statistical correlations 
between input variables. Principle component analysis 
(PCA) is one statistical method that reduces complex and 
multi-dimensional data into fewer components that best 
describe the original dataset (93). Additionally, scores can 
be generated to describe an individual’s placement on 
each principle component (PC) (94), and these combined 
biomarker scores can be correlated with outcome 
variables. This model has been demonstrated by Danielson  
et al. (90) in a study that investigated the prognostic 
utility of combining miRNAs to predict LV remodelling 
6 months following AMI. Fourteen miRNA targets, that 
were initially identified using RNA sequencing, were 
combined into four PC groups that accounted for 61.3% 
of total variance. When compared to measures of LV 
function, PC1 was an independent predictor of change 
in LV mass, PC2 independently predicted parameters 
of LV size and volume, while PC3 was an independent 
predictor of extracellular volume fraction. Firstly, this study 
demonstrates the utility of PCA for combining biomarkers 
and linking these two primary endpoints while accounting 
for collinearity. Secondly, this study demonstrates the 
importance of miRNA selection when designing a panel, as 
each PC contained a different combination of miRNAs that 
predicted different parameters of LV remodelling. 

Clinical challenges of miRNA biomarkers as 
prognostic tools

This review has highlighted a number of candidate miRNAs 
for prognostication following AMI. In total, there are 38 
miRNAs included in this review that have been individually 
linked to LV remodelling or MACE. Of these miRNAs, 
only 13 were represented across more than one study. Lack 
of validation and reproducibility represents an important 
clinical challenge in this field. 

Discovered as circulating biomarkers just over a 
decade ago, miRNAs are still within an infancy stage of 
research (95). As such, there is an absence of standardised 
methodologies for sample collection, storage, extraction, 
detection, and normalisation. At each stage of sample 
processing, a number of factors can be introduced that 
alter miRNA expression, and these are well described in 
reviews by Felekkis and Papaneophytou (96) and Moldovan 
et al. (97). One such example is the choice between plasma 
or serum as the sample source. Consistently studies have 
shown discordance in miRNA levels between paired 
plasma and serum samples (98,99), with a recent study 
in NSTEMI patients demonstrating an opposite pattern 
of miR-21 expression with increased levels in serum and 
decreased levels in plasma (99). While the literature remains 
undecided on which sample source is superior, there is a 
lack of consensus in the literature with approximately half 
of the studies in this review using plasma. Normalization 
of miRNA expression is also a very important step in 
result interpretation, and can be undertaken using either 
exogenous or endogenous controls. Currently, there 
are no well-established endogenous controls, and these 
often differ between different disease states and can be 
affected by sample preparation (96). Alongside creating 
a standardised methodology for miRNA measurement, 
reporting on aspects of sample processing that may account 
for heterogeneity between studies should be encouraged. 
Storage conditions, sample haemolysis and freeze-thaw 
cycles are all sources of variation in miRNA expression (96), 
and including this type of detail in study methodologies 
will provide transparency and better enable cross-study 
comparisons. 

In addition to methodological challenges, study design 
considerations are also an important source of discordance 
in circulating miRNA research; definitions for prognostic 
endpoints are not well defined in the literature. Indeed, 
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there is currently no single universal definition to describe 
LV remodelling (100,101) or MACE (15). In this review, 
some studies defined LV remodelling based on LVEDV 
measures (36,39,42,43), others focused on measures 
of infarct volume, myocardial salvage or parameters of 
systolic function (37,38,41,89,90), and some studies used a 
combination of measures to define LV remodelling (40,45). 
In addition, some studies dichotomised patients based on 
a predefined endpoint value (36,42,43), while others used 
continuous measurements for statistical analysis (37,41,44). 
Imaging techniques were also inconsistent between studies 
in this review. Four studies employed cMRI, 9 studies 
used echocardiography, 1 study utilised both imaging  
methods (42) and 1 study did not disclose the imaging 
modality used (40). 

Similar to LV remodelling, significant heterogeneity 
exists in the individual outcome measures that are used to 
define composite MACE endpoints (102), and this is well 
illustrated in Table 3. The syndromes and outcome measures 
that are encompassed in MACE are described by unique 
pathophysiological processes. An example of this is sudden 
cardiac death (SCD), which accounts for approximately 
50% of all CAD associated mortality (103). Recently, 
Silverman et al. in 2020 (104) demonstrated that increased 
levels of miR-150-5p and miR-29a-3p and decreased levels 
of miR-30a-5p were associated with an increased risk of 
SCD in CAD patients. Indeed, unfavourable levels of all 
three increased an individual’s risk of SCD by 4.8-fold (95% 
CI: 1.59–14.51, P=0.006). The pathophysiology of SCD 
is complex but is associated with dysregulation of cardiac 
electrophysiology (103), and is a significantly different 
aetiology to CAD. All three of the miRNA identified by 
Silverman et al. (104) are less specific to cardiac tissue 
and are more broadly linked to pathways of inflammation 
and fibrosis. This differs from other studies that have 
investigated mortality and MACE following AMI, and 
have more commonly identified myomiR specific miRNAs 
(e.g., miR-208a, miR-208b and miR-499) as prognostic 
tools (68,69,71). This illustrates that despite existing in the 
same all-encompassing clinical endpoint, different disease 
pathophysiology’s may differentially be linked to unique 
miRNAs. 

Alongside endpoint definitions, study size and follow-up 
time can greatly influence the prognostic utility of miRNAs 
within a study. Sample size was relatively small for most 
studies included in this review, with only half comprising 
a cohort size greater than 100 participants. While this is 
less concerning for studies where all participants receive 

an endpoint measurement, such as LV function measures, 
it can become problematic for studies where only a 
proportion of the cohort meet the endpoint requirements, 
such as the development of MACE. Of the cohort-based 
studies that examined MACE, total case numbers ranged 
from 7 to 83 participants, which crudely translates to 
between 10% and 50% of the total cohort size. Under 
these conditions, small sample sizes can reduce statistical 
power and can lead to the underestimation of relationships 
between miRNA and outcome measures. In addition to this, 
effect sizes of miRNAs are generally small and coefficients 
of variation can be high which makes replication in small 
cohorts difficult and sometimes redundant. Follow-up times 
were also variable for studies included in this review and 
ranged from in-hospital to 2 years post-AMI. This inequity 
is problematic when comparing both MACE and LV 
remodelling endpoints between studies, as both outcome 
measures worsen overtime. This is particularly prominent 
for LV remodelling, which is a progressive disease 
that begins early following AMI and continues beyond  
1 year (105). Therefore, studies with shorter follow-up 
times (less than 6 months) focus on early remodelling and 
miss long-term remodelling processes. In addition to follow 
up times for endpoint measurement, the timing of sample 
collection must be considered when evaluating miRNA 
biomarkers. Samples collected immediately following 
AMI may be more reflective of initial tissue damage, 
whereas samples collected at chronic timepoints may 
reflect an already significantly advanced disease process. 
Timing of sample collection is also dependent on practical 
considerations including timing of patient follow up 
appointments. 

Natriuretic peptides and troponins are critical in the 
diagnosis of heart failure and AMI, respectively. While 
these biochemical measures have limitations for prognosis, 
they are rapid, inexpensive, and routinely measured in a 
clinical setting. Therefore, any future biomarker tools must 
be superior to these methods in order to improve clinical 
practise. Some (42,62,63,71,87,88), but not all (36,61,69), 
studies included in this review demonstrated a benefit in 
circulating miRNAs when compared to these traditional 
tools. In general, combined biomarker studies were more 
consistently associated with superior prediction of future 
risk when compared to single biomarker studies. This was 
elegantly shown by Lv et al. (87), who demonstrated that 
miR-208b and miR-34a combined, but not alone, were 
superior at predicting LV remodelling when compared to 
NT-proBNP. 
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Future perspectives and recommendations 

Circulating miRNAs are a promising tool for predicting 
future risk in AMI patients. However, for miRNA 
biomarkers to be moved towards the clinic, the following 
recommendations are suggested for future research. 

(I)	 Standardisation of methodologies and reporting 
for extracellular miRNA isolation, measurement 
and study design is a priority for all future research 
in this field. Currently, it remains difficult to 
discern between miRNAs that are ineffective at 
predicting adverse outcomes following AMI and 
miRNAs that are clinically useful but vary between 
studies due to methodological issues. There 
are resources available from groups such as the 
Extracellular RNA Communication Consortium 
(exrna.org) (106,107) and the International Society 
for Extracellular Vesicles (108) that provide 
frameworks for technical aspects of circulating 
miRNA research and reporting standards. 

(II)	 Larger trials, preferably multicentre studies, should 
be prioritised to establish whether candidate 
miRNA biomarkers are superior to current clinical 
tools in predicting MACE and LV remodelling 
outcomes. Endpoints, outcomes, and measurement 
tools (e.g., imaging modalities) should be clearly 
defined.

(III)	 Future studies should prioritise the measurement 
of miRNA panels over single biomarker analysis. 
The measurement of multiple biomarkers in 
combination has proved promising and may more 
accurately capture complex pathophysiological 
processes associated with the development adverse 
outcomes. 

(IV)	 A comparison between current clinical biomarkers, 
such as troponins and natriuretic peptides, and 
novel miRNA candidates should be examined 
within all  future studies.  This provides an 
opportunity to assess if the miRNA candidates 
correlate with measures of myocardial damage 
and if they can be additive to current biomarkers 
commonly used to facilitate clinical decision-
making. 

Conclusions

miRNAs are a  promising tool  for  predict ing the 
development of MACE and LV remodelling following AMI 

that could be additive to current clinical practice. However, 
there has been inconsistency between studies to date that 
have identified candidate predictive and prognostic miRNA 
biomarkers. Standardisation of methodology and robust 
validation of candidate biomarkers in larger multicentre 
trials are required to establish miRNAs as future prognostic 
tools for the clinic. 
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