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Introduction

Like in other types of cancer, in the lung cancer survival 
analysis, one might be caught into pitfall to get the 
impression about survival of operated or non-surgically 
treated patients as a percentage of patients alive at the end 
of the study period. This simple measure is informative only 
if all of the patients were observed for the same length of 
time, which is usually not a case.

There are two main methods of survival analysis: Kaplan-
Meier and life-table method. Both methods operate with 

uncensored and censored cases, the first term relating to 
patients who are observed until the endpoint of interest (e.g., 
recurrence or death) and the second to those who survive 
beyond the end of the follow-up or who are lost to follow-
up at some point. 

In the life table method, the total observation period 
is divided into fixed intervals, usually months or years. 
After the calculation of proportion of patients surviving 
till the end of the interval, for each subsequent interval, a 
cumulative survival is calculated. For example, if the percent 
of the patients surviving the first interval is 90% and is 80% 
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for the second and third intervals, the cumulative survival 
percentage is 57.6% (0.9×0.8×0.8=0.576). 

The Kaplan-Meier methods differ from the previous one 
in a way that the proportion of patients surviving to each 
point that a death occurs is calculated, not at fixed intervals. 
As a consequence, the stepwise changes in the cumulative 
survival rate appear to occur independently of the intervals 
on the “X” axis. 

Multiple factors express influence to survival and many of 
them vary on the interval scale, like age, number of analysed 
nodes and/or node groups, biochemical analyses or markers. 
Dividing the analysed group according to each interval 
value would cause the excessive decrease of the number 
of subjects for each analysis for meaningful conclusions, 
together with many curves and possible comparisons that 
would compromise the interpretation. In that situation, the 
usually used method is Cox proportional hazards regression 
model, which estimates the influence of multiple variables 
on survival from data including censored observations. 
That is not possible with conventional multiple regression 
analysis, that cannot deal with censored observations.

Possible uncertainties in reported survival data

In the survival analysis, there may be a significant 
proportion of patients included at the end of the study 
period, with a follow up, for example of only 1 vs. 10 years 
follow up of earliest patients. So, one of the clinicians’ 
questions could be: in which way these lately included 
patients affect the obtained results (survival rate) and how 
high their percentage should be? 

The answer to this question of course depends upon 
the typical survival time of the patients in your population, 
relative to the length of follow-up for the more recently 
accrued patients (as well as for the patients that were 
accrued early but subsequently lost to follow-up).  
A censored observation is not completely ignored, but 
only provides partial information toward the survival 
estimates, and censored observations do not contribute to 
the “power” of an analysis. A large number of censored 
observations, which will appear as tick marks near the left 
end of the survival curve if censoring is shown, will result 
in instability of the survival estimates. If analyses are re-run 
at a later date, with further follow-up and events occurring 
in these patients, the new estimates may be substantially 
different from what was initially seen. A rule of thumb 
for clinical trial planning is that your observation period 
after the last patient is accrued should be at least as long 

as the expected median survival for your population [or 
the median progression free survival (PFS), if PFS is your 
primary endpoint]. A commonly reported metric is the 
median follow-up time among patients that were alive at 
last contact. In study populations with lengthy expected 
survival, this issue is one argument for using PFS, with its 
shorter failure times, as a surrogate endpoint.

If the analysis of prognostic factors in 5-year survivors 
after surgery is planned (1), one of the questions could 
relate the preferred method-life table or Kaplan-Meier? In 
other words, after five years, which aspects of survival and 
prognostic factors analysis are susceptible to the influence 
of the applied survival analysis method? Should the zero 
time be the date of surgery, or five years postoperatively? 

In the analysis of a subset of patients that are 5-year 
survivors after surgery, the zero time should be set at five 
years after surgery, and not the date of surgery. Formal 
comparisons—P values and hazard ratios, will be affected 
by the choice of zero time. One fairly obvious issue is that 
when using Cox proportional hazards regression analysis, 
and using the surgery date as time zero with survival 
curves not separating between groups until 5 years, the 
proportional hazards assumption is clearly violated. The 
log-rank tests based on the Kaplan-Meier estimations are 
also affected. Power of the log-rank test is optimized when 
hazards in the comparator populations are proportional. 
With the zero-time set up on the day of surgery, the 
reported P values for the comparisons will be lower than 
if time zero was chosen appropriately. Clearly, absolute 
differences in survival times are smaller relative to the 
overall survival (OS) time of the group as a whole.

Aside from choosing the appropriate zero time, estimates 
of OS such as Kaplan-Meier are not the best choice in the 
presence of competing risks (in this case, death due to a 
cause other than cancer is a competing risk when evaluating 
the time to death due to cancer). An analysis of cumulative 
incidence, rather than failure-free survival, would better 
handle this situation (2).

Survival surrogates

OS is the “gold standard” endpoint for the majority of 
clinical trial settings in oncology (3). However, in recent 
years, PFS has seen increasing use as a primary endpoint, 
particularly in phase II trials, for several reasons (4). Trials 
utilizing PFS as the primary endpoint can reach completion 
more quickly as compared to trials with OS as the primary 
endpoint, because disease progression is typically observed 
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at an earlier time point than death. Moreover, with 
advances in second- and third-line therapy and supportive 
care, differences in treatment effect between competing 
treatment regimens can be obscured or even confounded 
by the choice of treatment post-progression, a factor that is 
seldom controlled by the clinical trial protocol.

PFS

The performance of PFS and other endpoints as a surrogate 
for OS varies among different disease and treatment 
settings. There are multiple considerations regarding the 
suitability of a surrogate endpoint, however this article 
focuses on the statistical aspects, and particularly on 
evaluating the ability of PFS to accurately predict the OS 
outcome. The topic has received considerable attention 
in the thoracic oncology literature, with various methods 
employed. Here we review four different exemplary studies 
of three different lung cancer disease and treatment settings. 
These four studies all employed correct techniques. 
Examples abound of studies using incorrect techniques, 
such as the computation of a simple correlation coefficient 
between the PFS outcome and the OS outcome. Such a 
technique does not account for the censored nature of 
survival and PFS data. 

For those who have access to data, we recommend 
methods that can be used to evaluate the relationship 
between PFS and OS in your own database. The suggested 
methods are most suitably applied to the data from clinical 
trials, however the analysis of certain detailed institutional 
series or other databases, though not ideal, is possible. The 
aim of this paper is to recommend methods that achieve a 
balance between ease of use and correct technique. 

Past evaluations of PFS as a surrogate endpoint

Advanced non-small cell lung cancer (NSCLC)
Mandrekar et al. (5) pooled the data from four North 
Central Cancer Treatment Group (NCCTG) phase II 
trials, conducted between 2001 and 2007, to examine PFS 
and tumour response endpoints with respect to their ability 
to predict OS. PFS and response endpoints were separately 
modelled as time dependent covariates in Cox regression 
models on OS, stratified by trial and adjusted by other 
known baseline prognostic factors. Landmark analyses were 
then performed evaluating progression (and response) status 
at 8, 12, 16, 20 and 24 weeks post-registration. The ability 
of each endpoint to discriminate patients with different 

survival times was evaluated by calculating a concordance 
index (6) in conjunction with landmark analyses, for each of 
the endpoints in question. For all analysis strategies, PFS 
was the superior surrogate endpoint, in terms of successfully 
predicting OS outcomes. Patients who had progressed at 
any time during treatment showed much worse OS, and 
this effect was more dramatic than the improved prognosis 
observed in patients with a partial or complete response. 
In landmark analyses, PFS also outperformed indicators 
of treatment response, with the highest concordance index 
being associated with the 12 week landmark. 

Extensive stage small cell lung cancer
Foster et al. (7) evaluated PFS (along with measures of 
tumor response) as a surrogate endpoint in first-line 
extensive SCLC using pooled, patient-level data from 
nine NCCTG trials that accrued between 1987 and 1999. 
Analyses at the individual patient level were similar to those 
described above for NSCLC, with PFS and other potential 
surrogates modelled as a time dependent covariate, and with 
landmark analyses at 2, 4, and 6 months. PFS was found to 
be the best surrogate for OS, with the strongest associations 
for progression status at 4 and 6 months. In addition, trial-
level surrogacy measures were calculated for PFS and 
response endpoints across the subset of three randomized 
trials that were included in this study.

In the clinical trial setting, examination of trial level 
surrogacy is considered to be the best approach for the 
validation of a surrogate endpoint. These surrogacy 
measures quantify the association between the treatment 
effects on OS and the treatment effects on the surrogate 
endpoints. Trial-level surrogacy was measured in multiple 
ways, including recommended conventional methods (8). 
The association between treatment effects on OS and the 
surrogate endpoints of PFS and response was evaluated 
by calculating the Spearman’s rank correlation coefficient, 
along with the R2 value from a weighted linear regression 
model (WLS R2), with weights equal to the sample size of 
the unit (treating center) from which the data were derived. 
The treatment effects within each unit were estimated 
by calculating the log hazard ratios (HRs) and log odds 
ratios (ORs) from Cox PH and logistic regression models, 
respectively, depending on the nature of the endpoint. 
In addition, the surrogacy of the time-to-event putative 
surrogate endpoint of PFS was quantified by a formal 
trial-level surrogacy measure, known as the Copula R2. 
Copula R2 is estimated from a bivariate survival model 
which models the putative surrogate endpoint and the true 
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endpoint jointly. Both the WLS R2 and the Copula R2 value 
range from 0 to 1, with values close to zero suggesting poor 
surrogacy, and values close to 1 indicating high surrogacy.

The NCCTG findings in SCLC were later validated in 
a follow-up study (9) utilizing trial data from a much larger 
pooled group of ten randomized trials which accrued in the 
United States cooperative groups and the Japan Cooperative 
Oncology Group (JCOG), from 1982–2007. This study 
assessed the surrogacy of PFS with OS at the patient and 
trial level, with methods similar to the previous analysis. 
Trial-level surrogacy was assessed through association of 
the log hazard ratios on OS and PFS across trials, including 
weighted (by trial size) least squares regression (WLS R2) 
of Cox model effects and correlation of the copula effects 
(copula R2). The methods regarding these calculations are 
described by Renfro et al. (10). The results of the previous 
study were validated, with PFS having strong surrogacy for 
OS at both the patient level and the trial level.

Multimodal NSCLC
The Surrogate Lung Project Collaborative Group (a joint 
European and North American effort) used techniques 
similar to those used by Foster et al. described above, to 
evaluate the PFS endpoint in various randomized trials of 
adjuvant therapy, sequential or concurrent chemotherapy, 
and modified radiation therapy in locally advanced disease. 
According to their findings, PFS ranged from good, 
through very good, to excellent as a surrogate for OS 
on both the trial level and the independent patient level, 
depending upon the treatment setting (11).

Recommended methods for evaluating PFS as a surrogate 
endpoint in future datasets

Clinical trials provide the ideal setting for evaluating 
surrogate endpoints such as PFS. Clinical trials provide 
the framework for relative homogeneity in the patient 
population, uniform methods for response assessments, 
accurate determinations of progression times, and 
consistent treatment delivery. The “gold standard” method 
described above, the evaluation of trial level surrogacy, 
can only be employed with access to data from multiple 
randomized clinical trials. If the data are available from a 
collection of randomized trials, then the evaluation of trial 
level surrogacy should be carried out, in addition to the 
methods described below. Although it is more difficult to 
employ, trial-level surrogacy is the most powerful method 
for evaluating surrogate endpoints. However, if the data in 

question are not from randomized trials, which are often 
the case, then only the patient-level methods described 
below should be applied. 

The methods described by Foster et al. (9) that were 
used to evaluate the large, pooled, international cooperative 
group dataset are the best approach when the data are 
available from randomized trials. However in the event that 
randomized trial data are not available, the methods used 
in the evaluation of the NCCTG lung cancer data (5) are 
exemplary in their correct implementation, applicability, 
and ease of use and interpretation. Our recommendations 
for single-arm trials or other series data, outlined below, 
are therefore based on the most easily employed methods 
described in that paper.

Defining and determining the progression-free survival 
endpoint
In any case, the PFS endpoint must be clearly defined 
and consistently measured. For clinical trials, PFS time is 
defined as the date of trial registration until objective disease 
progression or death, whichever occurs first (12). Patients 
alive and progression free at last contact are censored 
observations. In contrast, time to progression (TTP) is 
defined simply as the time between trial registration and 
objective tumor progression. Death is not part of the 
endpoint; a patient that has died prior to progression 
counts as a censored observation. Another endpoint that is 
occasionally used is time to treatment failure (TTF), where 
failure time is the time at which first-line treatment is 
terminated for any reason, including progression or adverse 
events. The relative merits of PFS and TTP are discussed 
from the regulatory standpoint in government agency 
publications from the United States and Europe (European 
Medicines Agency, 2013, U.S. Department of Health 
and Human Services, Food and Drug Adminstration, 
2007). The PFS endpoint could be adapted to the hospital 
series setting by considering the date of starting planned 
treatment as the start time

Regardless of whether the investigator is evaluating the 
data from a series or a clinical trial, attention should be 
paid to the method and timing of determination of disease 
progression. Progression times are sensitive to the disease 
assessment interval, which should therefore be standardized 
across the patient population. Methods have been devised 
to deal with the width of assessment intervals (13) relative to 
progression times, but ideally the assessment interval should 
not vary much between patients in the cohort. Although 
this issue is particularly problematic in the comparison 
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of two treatment arms with differing cycle length, in the 
case of evaluating PFS in a single treatment population, 
widely varying assessment intervals will introduce excess 
variation in PFS measurements. To further ensure accuracy 
and consistency, the method of assessment for tumor 
measurement (imaging technique) should be consistent 
between baseline and follow up, and an objective response and 
progression determination method, such as RECIST (14),  
should be used to determine progression. 

Data analysis
As mentioned, for randomized trial data, we recommend 
a thorough study of the evaluation of trial level surrogacy. 
Otherwise, in the case of single arm trials or other data, at the 
very least follow these steps to conduct a “landmark analysis” 
in conjunction with the calculation of a concordance index:

(I) Classify your cases according to progression status 
(progressed, progression-free, or unknown) at 
one or more time points of interest. (e.g., 2, 4 and  
6 months). Progression status for a given time point is 
only known if the patient has progressed prior to the 
time point, or the date of last contact for follow-up is 
after the time point. (If the patient has died without 
documented progression, then the progression status 
is “progression.” 

(II) Perform a separate Cox proportional hazards 
regression analysis for each time point, where the 
explanatory variable is progression status at that 
time point, and the outcome variable is OS. You 
may stratify your analyses by any known prognostic 
factors, such as weight loss or performance status. 
Include only those cases that could be classified. 
Exclude these with progression status for the time 
point. Note: if follow-up is complete and mature, 
and the time points are chosen appropriately to 
work with disease assessment times, there should 
not be a large number of excluded cases.

(III) Determine and report the landmark time point 
where progression status best predicts survival 
according to the hazard ratios and P values from 
the proportional hazards analyses. Draw Kaplan-
Meier survival curves according to progression 
status (yes vs. no) for each time point.

(IV) Calculate the concordance index for each landmark 
analysis model. The concordance index (or 
“c-Index”) is essentially the probability that for 
any two randomly selected cases, the case that is 
predicted to have the worst outcome (by the model 

parameters according to the predictor variable(s) in 
question which is in this case progression status at 
“X” months) does in fact have the worst outcome. 
A C-index of 0.5 would indicate that outcomes 
are random with respect to the prediction rule 
(progression status at X months), and a C-index 
of 1 would indicate a perfect rule. The calculation 
of a simple C-index involves the evaluation of all 
possible pairs in the data, excluding those for which 
it can’t be determined which case has the worst 
outcome in terms of time to death. An example of 
an excluded pair would be one in which one case is 
censored (alive at last contact) at a time that is less 
than the time of death for the other case. It cannot 
be determined which patient survived (or will 
survive) the longest. In its simplest form (Harrell, 
1982), Harrell’s C is easily calculated and available 
via several different R packages (Appendix 1).

Improvements have been proposed to the basic c-index, 
in order to avoid the issue of pairs made “unusable” by 
censoring. These improvements are based on the actual 
survival models rather than the observations. Gönen and 
Heller (15) developed a “model-based” analog to the 
c-index, called the Concordance Probability Estimate 
(CPE), which effectively estimates the concordance index 
from the model parameters rather than the observed 
outcomes, thus avoiding the exclusion of non-informative 
pairs due to censoring. If this method is desired, R packages 
are also available and easy to use. An added advantage of this 
technique is that one can calculate the percent improvement 
in the CPE of when you add progression status to a “base 
model”, which may only include your known baseline 
prognostic variables. 

Some additional clarifications
Despite sufficient evidence helping clinicians to adequately 
select the appropriate statistical method, some aspects may 
still remain unclear. 

(I) Is there any difference in rationale for the use of PFS 
in studies of early stages NSCLC vs. advanced stage? 

As previously mentioned, populations with longer 
survival times require longer observation periods for OS. 
So PFS or disease free survival (DFS) may be the more 
desirable endpoint in early stage and/or resected NSCLC, 
especially if the investigator is unable to plan for a lengthy 
follow-up period. More work is needed to evaluate the 
suitability of PFS as a surrogate for OS in early stage 
disease. 
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(II) What are the problems related to the treatment 
response assessment in studies using a PFS as a surrogate 
for OS? 

Current ly,  ca lculat ion of  the  PFS i s  based on 
unidimensional measurements of the tumour size by 
using the Response Evaluation Criteria in Solid Tumours 
(RECIST) system. An important concern that relates to this 
way of the treatment response assessment is that criteria 
for disease progression (20% increase in tumour diameters) 
may not be met in some situations. This because the effect 
of some new cytostatic or targeted treatment protocols 
may not lead to tumour shrinkage, but to stable disease 
or tumour texture change as well. Furthermore, by using 
RECIST criteria, it is not easy to assess the treatment 
response at the level of pleura or pericardium. 

Volumetric assessment of the tumour change is a valuable 
alternative, extending the analysis to the tumour density 
as well. Volumetric measurements were found useful as an 
early marker of treatment response in NSCLC for detection 
of subtle changes in indolent disease (16-18). However, 
unlike for RECIST, a widely accepted definition of response 
has not yet been established for volumetric change. 

Postoperative lung cancer recurrence and survival

The influence of intensified postoperative follow-up on 
survival or local recurrence detection could not be clearly 
demonstrated. In around 50–67% of patients, recurrence 
will appear before a scheduled control because of the 
onset of symptoms (19). As there are not many studies 
addressing that point, the evidence-based explanation is not 
available. In the analysis of this type of survival, lead- and 
length-time biases should be kept in mind, like in the lung 
cancer screening. To remind, the lead/time bias causes the 
impression of prolonged survival in the screened vs. non/
screened group, because of the earlier tumour detection in 
the screened group, even in the absence of symptoms. Even 
in case of failure of the initiated treatment, with the same 
time point of death in both groups, the survival of patients 
in the screened would be longer owing to the interval 
between the time of tumour detection by screening and 
of the symptom onset in the non-screened group. Length 
time bias is another type of false impression of prolonged 
survival, caused by more indolent tumours in one group 
compared to another. In the group with more indolent 
tumours, more patients with tumour will be detected vs. 
group with more fast growing tumours. The prolonged 
survival in the group with more indolent tumours cannot be 

attributed to the early initiated treatment. 
One of the questions in this field could relate the 

preferred method for survival analysis in limited series 
of quite rare procedures, like for example, completion 
pneumonectomy for postoperative lung cancer recurrence? 
It is sometimes necessary to run a multicentric study to 
collect around 30–40 cases. What are potential pitfalls of 
two survival curves—one from the date of the first, and 
another from the date of redo surgery? 

In this situation, the population is defined by the 
occurrence of a second surgery due to recurrence. This 
is similar to something we are seeing in the literature 
called post-progression survival. In some settings, post-
progression survival appears to be more related to OS 
than PFS, and is therefore a topic that is receiving some 
attention.

As for pitfalls of using date of original surgery as time 
zero, similar to example above, there will necessarily be a 
period of no failures and no censored observations prior 
to the earliest time when second surgery occurs. So all of 
the previously described pitfalls exist in this example. The 
proportional hazards assumption is violated, and P values 
for comparisons are likely to be artificially smaller. 

Pitfalls of using time of redo surgery as time zero: 
different from the example above, the time between original 
surgery and redo surgery differs between patients. So if 
you look at survival from date of redo surgery, the survival 
outcome of patients with a long period between original 
and second surgery could be biased downward relative 
to patients with an earlier re-do, even if survival from 
original surgery is the same. However, we do frequently 
see the analogous situation in second line trials in systemic 
therapies, where recurrence/progression after initial therapy 
varies with respect to timing, and time zero for the second 
line trials is at the start of second line treatment. This is the 
accepted approach, and in fact the findings are often such 
that the patients with a longer period between completion 
of first line therapy and recurrence/progression also have 
the better post-progression prognosis.
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R package to calculate Harrell’s c index:
 Package “pec” Author: Thomas A. Gerds
 https://cran.r-project.org/web/packages/pec/pec.pdf

R package for calculating CPE with Standard Error (Gonen) from a Cox Model: 
 Package “CPE,”  Authors:  Qianxing Mo, Mithat Gonen and Glenn Heller
 https://cran.r-project.org/web/packages/CPE/CPE.pdf
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