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“Hyperglycemic memory” is an interesting term. This 
hypothesis was first put forward in 1990 by Roy et al. (1), 
after which this phenomenon was named “metabolic” 
or “hyperglycemic” memory (2,3). Recently, two-meta 
analyses showed that intensive glycemic control had no 
impact on the risk of heart failure in patients with diabetes 
mellitus (4,5). It is possible that the small benefit on 
non-fatal myocardial infarctions and microalbuminuria 
may be offset by a significant increase in the risk of 
severe hypoglycemia (4), and the detrimental effects 
of hyperglycemia may persist even after restoration 
of normal glucose levels, that is, “hyperglycemic” or 
“metabolic” memory. Collectively, these data suggest that 
such memories are stored early in the course of diabetes, 
supporting the hypothesis of hyperglycemic memory.

Chronic hyperglycemia is a major initiator of diabetic 
vascular complications. Indeed, high glucose, mediated 
via various mechanisms such as increased production of 
advanced glycation end products, activation of protein 
kinase C, stimulation of the polyol pathway and enhanced 
reactive oxygen species generation, regulates vascular 
inflammation, altered gene expression of growth factors 
and cytokines, and platelet and macrophage activation, thus 
playing a central role in the development and progression 
of diabetic vascular complications (6). In turn, this results 
in diabetic cardiomyopathy. Diabetic cardiomyopathy is 
characterized by myocardial hypertrophy, fibrosis, and 
impairment of the left ventricular performance occurring 
independently of a recognized cause, namely myocardial 
ischemia (7,8). Oxidative bursts, in turn, are capable of 
amplifying maladaptive signaling, including of protein 
kinase C, mitogen-activated protein kinases, advanced 
glycation end products, and aldose reductase, consequently 
leading to apoptosis, hypertrophy, fibrosis, impaired calcium 

homeostasis, and contractile dysfunction (8). 
Recently, Costantino et al. suggested that glycemic control 

is not able to rescue hyperglycemia-induced alterations 
of microRNAs (miRNAs) in the diabetic heart. The 
authors showed that 316 out of 1,008 total miRNAs were 
dysregulated in the diabetic heart (9). Notably, 268 of those 
miRNAs remained significantly altered after 3 weeks of 
intensive glycemic control with insulin. miRNAs represent a 
class of small non-coding RNAs that control the expression 
of entire networks of complementary transcripts. In the 
heart, miRNAs are critically involved in the maintenance 
of tissue homeostasis (10). In 1990, Roy et al. found that 
the fibronectin mRNA levels were increased in the kidney 
cortex and heart in streptozotocin-induced diabetic rats (1). 
Subsequently, in 2007, He et al. revealed that overexpression 
of miRNA-29, which is highly up-regulated in diabetic rats, 
leads to insulin resistance in 3T3-L1 adipocytes (11). 

The findings by Costantino et al. are very interesting; if 
these kinds of changes in miRNAs occur in the early phase 
of diabetes mellitus, these findings may impact on the 
appropriate glucose lowering therapy. Especially, the notion 
that lower is better in terms of the glucose level may collapse 
in the near future. Indeed, glycemic control was unable to 
restore the expression of relevant downregulated miRNAs, 
such as the anti-fibrotic miRNA-29b, as well as miRNA-30a 
and miRNA-1, potent inhibitors of mitochondrial fission, 
apoptosis, and hypertrophy, in previous reports (12-14). 
Furthermore, miRNA-1 replacement therapy has recently 
been shown to revert cardiac hypertrophy and fibrosis 
by targeting Fibulin-1, a secreted protein implicated in 
extracellular matrix remodeling (15). Taken together, these 
findings indicate that now is the time to review the current 
glucose lowering therapy strategies and focus on gene 
therapy.
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