
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(Suppl 1):S52-S63jtd.amegroups.com

Introduction

Transforming growth factor (TGF)-β is the prototypical 
member of a large family of secreted growth factors; in 
mammals, the TGF-β family is comprised of 33 members (1).  
Originally identified as a cytokine that induces cellular 
“transformation” in  vi tro ,  promoting anchorage-
independent growth (2-5), TGF-β is now recognized as a 
pleiotropic and multifunctional growth factor that regulates 
a wide range of cellular responses, and may play a critical 
role in development, and in the pathogenesis of many 

diseases (1,6,7). In mammals, three TGF-β isoforms (β1, β2 
and β3) have been identified; these isoforms are encoded by 
different genes. Although in vitro studies suggest that the 
three isoforms have similar actions, the distinct phenotypes 
of mice with isoform-specific genetic disruption indicate 
numerous non-compensated functions of the three TGF-
βs in organ development and in tissue homeostasis (8-11). 
Despite a large body of evidence demonstrating induction, 
release and activation of TGF-βs following tissue injury, 
understanding of their in vivo functions in repair and 
remodeling has been hampered by the complexity of their 
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context-dependent actions and downstream signaling 
cascades. 

The adult mammalian heart has negligible regenerative 
capacity. Following myocardial infarction up to one 
billion cardiomyocytes become necrotic; this massive 
sudden loss of cardiomyocytes overwhelms any existing 
regenerative reserve, resulting in replacement of dead cells 
with collagen-based scar. The cellular events involved 
in repair of the infarcted heart can be divided in three 
distinct, but overlapping phases: the inflammatory phase, 
the proliferative phase and the maturation phase (12,13). 
During the inflammatory phase, release of alarmins by 
necrotic cardiomyocytes activates innate immune pathways, 
leading to recruitment of leukocytes in the infarcted 
myocardium (14). Clearance of the infarct from dead cells 
and matrix debris by professional phagocytes activates 
anti-inflammatory cascades leading to suppression of the 
inflammatory response and transition to the proliferative 
phase of infarct healing (15). During the proliferative 
phase, activated myofibroblasts deposit large amounts of 
extracellular matrix proteins in the infarcted area, while 
activation of angiogenesis ensures perfusion of the highly 
cellular and metabolically active wound. The maturation 
phase follows, as activation of anti-fibrotic pathways 
limits the fibrogenic response, leading to formation of a 
mature scar with low cellular content that contains cross-
linked collagenous matrix. Healing of the infarcted heart 
is associated with adverse remodeling of the ventricle, a 
constellation of cellular events that involve both infarcted 
and non-infarcted segments and are associated with the 
development of heart failure (16). 

A growing body of evidence suggests that TGF-β 
signaling pathways play an important role in regulation 
of the cellular events associated with cardiac repair, by 
modulating injurious, inflammatory, reparative, angiogenic, 
and fibrogenic responses. This manuscript reviews our 
current understanding of the role of TGF-β in the infarcted 
heart, focusing on its diverse cellular actions, discussing 
molecular cascades modulated by TGF-β, and identifying 
potential therapeutic targets. 

Expression of TGF-β in normal myocardium

High levels of myocardial TGF-β expression have been 
observed during embryonic development and in adult 
life, predominantly localized in cardiomyocytes and in the 
extracellular matrix (17). TGF-βs have been implicated in 
cardiac development and in valve morphogenesis (18,19). 

In adult mammals, TGF-β is stored in the myocardium 
in a latent form; whether low-level constitutive TGF-β 
activity is important for cardiac function remains unknown. 
In neonatal rat cardiac cardiomyocytes, exogenous TGF-β 
sustained spontaneous rhythmic beating in serum-free 
conditions (20); however, the in vivo relevance of these 
observations is unclear.

Regulation of TGF-β isoforms in myocardial 
infarction

Induction of TGF-β isoforms has been extensively 
documented in both mouse and large animal models 
of myocardial infarction (17,21-26). In reperfused 
mouse infarcts, TGF-β1 and β2 mRNA levels show 
an early peak after 6–72 h of reperfusion; in contrast, 
TGF-β3 upregulation exhibits a prolonged time course 
with persistently elevated expression after 7 days of 
reperfusion (21). Most cell types involved in cardiac 
repair are capable of synthesizing and secreting large 
amounts of TGF-β; the relative contributions of various 
cell types in infarction-related upregulation remains 
poorly defined. Whether different cell types and distinct 
molecular pathways are responsible for upregulation of 
each TGF-β isoform is unknown. Studies in a porcine 
model of chronic coronary constriction suggested that 
cardiomyocytes are a major source of TGF-β following 
cardiac injury (22). On the other hand, experiments in 
a mouse model of myocardial infarction suggested that 
TGF-β is localized in infarct macrophages (27). Genetic 
disruption of monocyte chemoattractant protein (MCP)-
1/CCL2, a chemokine with a crucial role in recruitment 
of monocytes/macrophages in the infarcted myocardium 
a t t e n u a t e d  T G F -β2  a n d  β3  m R N A  e x p r e s s i o n , 
suggesting that mononuclear cells may be an important 
source of TGF-β isoforms in reperfused infarcts (28). 
The contributions of other cell types have not been 
convincingly documented. Platelets have been suggested 
to be an important source of TGF-β1 in the pressure-
overloaded myocardium (29); however, their role as a 
source of growth factors in the infarcted myocardium has 
not been systematically investigated. Lymphocyte subsets 
and mast cells infiltrate the infarcted heart (30-33) and are 
capable of producing TGF-βs. Moreover, much like most 
tissues, the normal myocardium may contain constitutive 
stores of matrix-bound latent TGF-β that can be activated 
following injury (34), initiating a response even in the 
absence of de novo synthesis. 
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The biology of TGF-β activation

TGF-βs are secreted as latent complexes, consisting of 
the TGF-β dimer, the latency-associated peptide (LAP), 
and a latent TGF-β-binding protein (LTBP). Current 
concepts suggest that while the LAP confers latency to 
TGF-β (35,36), the LTBP contributes to sequestration into 
the extracellular matrix (34). Although the LAP is cleaved 
intracellularly from the mature TGF-β dimer through 
furin-mediated actions, TGF-β and LAP remain bound 
after secretion through non-covalent interactions, forming 
the small latent complex. Activation of TGF-β signaling 
cascades requires release of the TGF-β dimer from the 
latent complex and requires the co-operation of several 
distinct mediators, including integrins, proteases, reactive 
oxygen species (ROS) and matricellular proteins. 

In the infarcted heart, evidence suggesting the presence 
of bioactive TGF-β in cardiac extracellular fluids (37), and 
activation of downstream Smad-dependent signaling (38) 
suggest rapid activation of TGF-β. The mechanisms 
responsible for TGF-β activation following infarction 
remain poorly understood. ROS activation is a hallmark 
of the ischemic response and may be involved in TGF-β 
activation in the infarcted myocardium. Cell surface 
integrins interact with LAP and have been directly 
implicated in TGF-β activation in many tissues (39); 
however, whether integrins play an important role in 
activating TGF-β in the infarcted heart remains unknown. 
Although in vitro, αvβ5 and αvβ3 integrins contributed 
to latent TGF-β activation and subsequent cardiac 
myofibroblast differentiation (40); the in vivo significance 
of these interactions has not been directly tested. Proteases 
of various classes (including serine proteases, cathepsins, 
metalloproteinases, and cysteine proteases) are capable 
of activating TGF-β in vitro. Although protease release 
and activation during the inflammatory phase of infarct 
healing may contribute to TGF-β activation; the in vivo 
significance of these effects has not been investigated. 
Matricellular proteins are markedly upregulated in the 
infarcted heart (41-43) and may play an important role in 
TGF-β activation. The prototypical matricellular protein 
thrombospondin (TSP)-1 interacts with LAP, promoting 
release of the TGF-β dimer from the latent complex (44). 
In both mouse and canine infarcts, a strikingly selective 
upregulation of TSP-1 in the infarct border zone is 
associated with activation of TGF-β signaling. TSP-1 
loss attenuates activation of Smad-dependent pathways 
following myocardial infarction, suggesting an important 

role for this matricellular protein in activation of TGF-β 
cascades (41). Finally, exposure to an acidic environment 
has been implicated in activation of latent TGF-β. It has 
been suggested that lactic acid may trigger pH-dependent 
TGF-β activation in patients with idiopathic pulmonary 
fibrosis (45). Whether the abundant lactic acid generated in 
the ischemic myocardium is involved in local activation of 
TGF-β remains unknown. 

Cellular actions of TGF-β in the infarcted 
myocardium

TGF-βs are capable of regulating phenotype and function of 
all cell types involved in cardiac injury and repair (Figure 1). 
Although TGF-β1, β2 and β3 exhibit distinct patterns of 
regulation following myocardial infarction, information 
on isoform-specific actions in the infarcted myocardium is 
lacking. Most in vitro studies have investigated TGF-β1-
mediated actions. In vivo experiments on the other hand, 
have focused on the role of TGF-β receptor-activated 
signaling, exploring pathways common to all three isoforms 
and to other members of the TGF-β superfamily. Thus, our 
current knowledge precludes conclusions regarding cellular 
actions of specific isoforms. 

Effects of TGF-β on ischemic cardiomyocytes 

Early studies suggested that injection of exogenous TGF-β 
in isolated perfused hearts undergoing brief myocardial 
ischemia followed by reperfusion exerts protective actions, 
attenuating oxidative stress and reducing release of pro-
inflammatory cytokines, such as tumor necrosis factor 
(TNF)-α (46). In a model of reperfused feline myocardial 
infarction, TGF-β1 administration reduced cardiomyocyte 
death; these protective actions were associated with 
attenuated neutrophil recruitment in the infarcted 
myocardium (47). Whether TGF-β-mediated protection 
in these studies is due to activation of direct pro-survival 
pathways in cardiomyocytes, or reflects suppression of 
injurious inflammatory signaling, remains unknown. 
Regarding the effects of TGF-β on cardiomyocyte survival, 
ex vivo and in vitro experiments have produced conflicting 
results. In isolated perfused hearts, TGF-β1 infusion during 
early reperfusion protected cardiomyocytes from apoptosis 
through actions involving p42/p44 mitogen-activated 
protein kinase (MAPK) signaling (48). In contrast, in rat 
cardiomyocytes the pro-apoptotic effects of angiotensin 
II were attributed to activation of TGF-β signaling (49). 
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Moreover, in vitro studies have demonstrated direct 
actions of TGF-β on cardiomyocyte function, mediated 
through upregulation of the laminin receptor 37/67 (50). 
Considering its notoriously pleiotropic and context-
dependent actions, the effects of exogenous administration 
of TGF-β are likely dependent on the dose, route and 
timing of administration, and the specific characteristics of 
the experimental model.

Endogenous cardiomyocyte-specific TGF-β actions have 
been recently investigated using genetic models of cell-
specific TGF-β receptor disruption (51). In a model of non-
reperfused myocardial infarction, mice with cardiomyocyte-
specific disruption of TGF-β signaling were protected from 
death due to cardiac rupture. The mechanism of protection 
remains poorly defined. It was suggested that TGF-β 
signaling in cardiomyocytes may suppress synthesis of 
cardioprotective genes, such as interleukin (IL)-33, growth 
differentiation factor (GDF)-15 and TSP-4. 

Effects of TGF-β on immune cells

A large body of in vitro and in vivo evidence suggests that 

TGF-βs modulate phenotype and function of immune cells, 
critically regulating inflammatory responses (52). In vitro, 
femtomolar concentrations of TGF-β promote neutrophil (53) 
and monocyte (54) chemotaxis; this effect may be important 
for recruitment of leukocytes in inflamed tissues. Picomolar 
TGF-β concentrations stimulate synthesis of a variety of pro-
inflammatory cytokines and chemokines by monocytes (54,55). 
In contrast to its pro-inflammatory actions in monocytes, 
TGF-β is known to deactivate macrophages, suppressing 
MCP-1/CCL2, IL-1β and TNF-α synthesis (56-58). It 
should be emphasized that effects of TGF-β on immune 
cells can be either pro- or anti-inflammatory depending on 
the cytokine milieu, the tissue origin of the cells, and the 
experimental context (59). For example, despite its potent 
chemotactic actions for monocytes and neutrophils in single-
cell assays, TGF-β may attenuate leukocyte migration 
across an endothelial layer by reducing surface expression of 
adhesion molecules (60). Thus, attribution of pro- or anti-
inflammatory properties to TGF-βs should be based on 
robust in vivo evidence, rather than on in vitro experiments. 

In vivo, TGF-β1 plays an essential role in preventing 
spontaneous inflammation in mammalian t issues. 
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Figure 1 The cell biological actions of TGF-β in the infarcted myocardium. TGF-β may exert a wide range of actions on all cell types involved in 
injury, repair and remodeling of the infarcted heart. TGF-β may modulate survival pathways in cardiomyocytes, promote mononuclear cell chemotaxis, 
exert anti-inflammatory actions on macrophages, suppress endothelial cell adhesion molecule synthesis, modulate lymphocyte phenotype, promote 
myofibroblast conversion and activation, and regulate angiogenesis and vascular maturation symbols. Mo, monocyte; N, neutrophil; L, lymphocyte; Ma, 
macrophage; CM, cardiomyocyte; EC, endothelial cell; F, fibroblast; MF, myofibroblast; P, pericyte; TGF-β, transforming growth factor-beta.
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Approximately 50% of TGF-β1 null mice develop normally 
and show no gross developmental abnormalities. However, 
2–4 weeks after birth, these mice develop massive multi-
organ inflammation, predominantly affecting the heart 
and lungs (9). Mice with T cell-specific loss of the type 
II TGF-β receptor TβRII exhibited an inflammatory 
disease with striking similarities to TGF-β1 KO animals, 
suggesting that TGF-β may act by suppressing T cell-
mediated inflammation (61).

Repair of the infarcted heart is dependent on timely 
recruitment of inflammatory leukocytes, and subsequent 
activation of reparative macrophages that stimulate 
myofibroblast activation and angiogenesis (15,62). Evidence 
from in vitro studies and in vivo neutralization experiments 
suggest that, in healing infarcts, TGF-β may regulate 
inflammatory leukocyte function. Experiments in a canine 
model of myocardial infarction demonstrated that TGF-β 
bioactivity is markedly increased in the post-ischemic 
cardiac lymph (reflecting release of active TGF-β in the 
cardiac extracellular space), and contributes to monocyte 
chemoattractant activity during the first five hours of 
reperfusion (37). In a mouse model of non-reperfused 
myocardial infarction, early systemic inhibition of TGF-β 
signaling through transfection with the extracellular domain 
of TβRII increased mortality, accentuating neutrophil 
recruitment, and increasing expression of TNF-α, IL-1, and 
MCP-1/CCL2 (63). These observations are consistent with 
an important role for TGF-β in negative regulation of the 
post-infarction inflammatory response. In addition, mice 
with genetic loss of TSP-1, a crucial TGF-β activator, had 
defective containment of the post-infarction inflammatory 
response, associated with evidence of attenuated Smad2 
activation (41). These effects may reflect a crucial role 
for localized TSP-1-mediated activation of TGF-β in the 
infarct border zone as a “barrier” preventing expansion of 
the inflammatory reaction into the non-infarcted area. In 
the absence of TSP-1, expansion of inflammatory activation 
increases fibrosis and accentuates adverse remodeling (41). 
However, it should be emphasized that TSP-1 has multiple 
cellular targets and several functional domains and may 
regulate inflammation and fibrosis through TGF-β-
independent effects (64).

The specific effects of TGF-β on the phenotype of 
immune cells in the infarcted myocardium remain poorly 
understood. In vitro, TGF-β has been shown to modulate 
macrophage phenotype, promoting M2 polarization (65), 
enhancing macrophage-colony stimulating factor (M-CSF)-
induced proliferation (59), inhibiting nitrite release (66), 

reducing cytotoxic activity (67), and suppressing release 
of inflammatory mediators (68). However, the potential 
involvement of TGF-β  in mediating the dynamic 
phenotypic alterations of infarct macrophage subpopulations 
remains unknown. TGF-β also serves as a central mediator 
in T lymphocyte differentiation and activation, critically 
regulating phenotype and function of all subpopulations 
(69-71). Although activated subsets of T lymphocytes have 
been implicated in repair and remodeling of the infarcted 
heart (30,32,72), the relative role of TGF-β signaling in 
their recruitment and activation has not been investigated. 

TGF-β in regulation of fibroblast phenotype and function

The central role of TGF-β in cardiac fibroblast activation 
is well-documented by a wide range of in vitro studies 
and by extensive associative in vivo evidence (73). TGF-β 
mediates conversion of fibroblasts into myofibroblasts (74), 
a phenotypic transformation associated with reparative 
and fibrotic responses. Moreover, TGF-β markedly and 
consistently stimulates synthesis of extracellular matrix 
proteins (such as collagen I, collagen III and fibronectin) 
(75,76) and promotes a matrix-preserving program by 
decreasing collagenase expression and by accentuating 
tissue inhibitor of metalloproteinases (TIMP)1 expression 
(38,77). In contrast, effects of TGF-β on cardiac fibroblast 
proliferation are less consistent: both proliferative and anti-
proliferative effects have been reported (76,78). Differences 
in TGF-β concentration, and in the experimental context 
may account for the conflicting observations. 

During the proliferative phase of infarct healing, 
abundant myofibroblasts infiltrate the infarct border zone 
(79,80) and serve as the main source of collagen (81), 
while participating in extracellular matrix metabolism 
by secreting matrix metalloproteinases (MMPs). Most 
infarct myofibroblasts originate from resident fibroblast 
populations (82,83); TGF-β may play a crucial role in 
conversion of these highly plastic interstitial cells into 
myofibroblasts. TGF-β may also stimulate extracellular 
matrix synthesis and modulate the protease expression profile 
of these cells. Unfortunately, this concept is only supported 
by systemic TGF-β inhibition experiments; in vivo effects of 
fibroblast-specific loss of TGF-β signaling have not been 
studied. In a model of non-reperfused infarction, TGF-β 
inhibition through administration of a neutralizing antibody 
had detrimental effects, accentuating chamber dilation, 
increasing myocardial MMP expression, and reducing 
collagen synthesis (84). Two independent investigations 
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inhibiting TGF-β by using gene transfer of the extracellular 
domain of TβRII suggested that TGF-β may play a key role 
in fibrosis of the infarcted heart (63,85). TGF-β inhibition 
after the inflammatory phase of cardiac repair attenuated 
deposition of fibrous tissue in the infarcted region (85). 
These investigations support the critical role of TGF-β as a 
regulator of extracellular matrix deposition and metabolism 
following myocardial infarction. However, whether 
fibroblasts are the main cellular targets responsible for these 
actions of TGF-β remains unknown. 

Effects of TGF-β on endothelial cell phenotype and on 
infarct angiogenesis

Vascular endothelial cells are the most abundant non-
cardiomyocytes in the adult mammalian myocardium (86), 
and play an important role in repair of the infarcted heart. 
During the inflammatory phase, endothelial cells serve 
as a source of chemokines (87,88); interactions between 
activated endothelial cells and leukocytes are critical for 
recruitment of neutrophils and monocytes in the infarcted 
myocardium (89). During the proliferative phase, endothelial 
cells proliferate and generate neovessels (90), important 
for perfusion of the healing infarct and for supply of 
granulation tissue cells with oxygen and nutrients. Finally, 
during the maturation phase, neovessels acquire a coat 
comprised of mural cells (91,92); this process restrains 
angiogenesis, suppresses inflammatory activation, and may 
contribute to stabilization of the scar (93).

TGF-β is critically involved in vascular development 
through effects on both endothelial cells and pericytes (94) 
and modulates endothelial cell gene expression and activity. 
The actions of TGF-β on endothelial cells may be either 
angiogenic or angiostatic, depending on the context, the 
differentiation of the cells, and the presence or absence 
of other mediators (94,95). Very limited information is 
available on the effects of TGF-β on vascular cells in 
the infarcted myocardium. In vitro, TGF-β stimulation 
attenuates chemokine synthesis by cytokine-stimulated 
endothelial cells (96); such actions may contribute to 
suppression of the inflammatory response following 
myocardial infarction. TGF-β may also be implicated in 
infarct angiogenesis and vascular maturation; however, 
information on specific cellular actions is lacking. 

TGF-β and cardiac regeneration

Enhancement of the extremely limited regenerative capacity 

of the infarcted heart is a major goal in cardiovascular 
research (97,98). Because of their broad effects on 
differentiation and fate of progenitor cells (99), several 
members of the TGF-β family have been suggested as 
potential activators of the regenerative response. Fish 
and amphibians exhibit robust myocardial regenerative 
responses; in zebrafish, TGF-β has been implicated in 
myocardial regeneration (100). In vitro, TGF-β stimulation 
increased the expression of cardiac transcription factors in 
embryonic stem cells, directing them towards cardiomyocyte 
differentiation (101). In vivo, implantation of TGF-β 
pre-programmed CD117+ stem cells into the infarcted 
myocardium induced angiogenesis and was reported to 
promote a regenerative response (102). However, in other 
studies, TGF-β appeared to act as a suppressor of cardiac 
regeneration. TGF-β inhibition enhanced differentiation 
of stem cell-derived mesoderm to cardiomyocytes (103). 
Moreover, in a model of cardiac injury, TGF-β inhibition 
improved cardiomyoblast-mediated regeneration (104). 
The conflicting findings may reflect distinct effects of 
TGF-β on various cell types used to promote myocardial 
remuscularization. 

TGF-β signaling pathways in the infarcted 
myocardium

Active TGF-β signals by binding to the TGF-β receptor 
complex at  the cel l  surface.  TGF-β  binds to the 
constitutively active TβRII; this complex recruits and 
transphosphorylates the type I receptor (TβRI) (105,106). 
TβRI activation propagates downstream signaling involving 
a family of intracellular effectors, the Smad proteins 
(106,107). The receptor activated Smad proteins (R-Smads), 
Smad2 and Smad3 are phosphorylated upon activation of 
the cytoplasmic domain of TβRI; then form a trimeric 
complex with the common Smad, Smad4. Subsequently, 
the activated Smad complex translocates to the nucleus, 
recruits coactivators or corepressors into transcriptional 
complexes (108), and regulates gene transcription. Although 
TGF-βs typically activate Smad2/3 cascades, it has been 
recognized that Smad1 and Smad5 may also be activated by 
TGF-β in certain cell types, providing an alternative Smad-
dependent pathway for signal transduction (109). The 
structurally divergent inhibitory Smads (i-Smads), Smad6 
and Smad7, are induced by TGF-βs as part of a negative 
feedback loop that inhibits TGF-β signaling by interfering 
with phosphorylation of R-Smads (110). In addition to 
Smad-dependent signaling, TGF-β also activates a wide 
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range of non-canonical cascades, including p38 MAPK, 
Erk, JNK, TAK-1, and Rho GTPase pathways (111-113). 

Activation of both Smad2/3 and Smad1/5 pathways has 
been reported in infarcted hearts (38,114). Although TGF-
βs are likely important activators of the Smad2/3 cascade, 
other members of the TGF-β family, angiotensin II, 
or matricellular proteins may also contribute to Smad 
activation. Our knowledge on the role of Smad3 signaling 
in myocardial infarction is based on in vitro experiments 
and on investigations using mice with global loss of Smad3. 
Smad3 KO animals had no significant defects in resolution 
of inflammation; but exhibited attenuated leukocyte 
recruitment in the infarcted area. Moreover, global 
Smad3 loss reduced fibrosis in the infarct border zone and 
in the remodeling myocardium, resulting in improved 
diastolic function (38). In vitro experiments showed that 
Smad3 null cardiac fibroblasts were hyperproliferative, 
but exhibited impaired function. Smad3 was critically 
involved in myofibroblast transdifferentiation and mediated 
TGF-β-induced extracellular matrix synthesis and TIMP 
upregulation (38,76). Considering the broad effects of 
Smad3 on all cell types, it is unclear whether the improved 
remodeling exhibited by mice with global loss of Smad3 
is due to fibroblast-mediated actions. Understanding the 
role of Smad-dependent signaling in myocardial infarction 
requires cell-specific loss-of function strategies. 

The role of Smad-independent TGF-β signaling 
pathways in the infarcted heart has not been systematically 
investigated. TGF-β-activated kinase (TAK)-1, a member 
of the MAPK family, is activated in the pressure-overloaded 
myocardium, and is involved in cardiac hypertrophy and 
fibrosis (115). The potential role of TAK-1 following 
infarction has not been studied. Experimental studies in 
models of renal and pulmonary injury have suggested an 
important role for non-Smad pathways [such as p-21-
activated kinase 2 (PAK2) and c-Abl] in fibrotic diseases 
(116,117). However, the involvement of these pathways in 
repair and fibrosis of the infarcted heart remains unknown. 

It has been proposed that, in addition to its direct effects 
on the cells responsible for cardiac repair, TGF-β may 
also act by inducing expression of downstream effectors, 
such as the matricellular protein connective tissue growth 
factor (CTGF)/CCN2, or endothelin (118). CCN2 
may synergize with TGF-β to stimulate cardiomyocyte 
hypertrophy (119) and enhance fibrosis (76). Although 
transgenic overexpression studies have suggested protective 
effects of CCN2 on the size of the infarct (120), actions of 
endogenous CCN2 in the infarcted myocardium have not 

been dissected. It is unclear, whether any of the effects of 
TGF-β on the cellular response to myocardial infarction 
are mediated through CCN2. A recent study suggested that 
in a model of myocardial TGF-β overactivation, induced 
through cardiac-specific expression of an active TGF-β 
mutant, CCN2 did not play an important role in cardiac 
pathology (121). 

Targeting TGF-β in myocardial infarction

Because of its critical role in repair, remodeling, fibrosis and 
regeneration, TGF-β is considered an attractive therapeutic 
target in myocardial infarction and cardiac remodeling (118). 
Unfortunately, the pleiotropic and context-dependent 
actions of the TGF-β isoforms, and the complexity of TGF-
β-activated signaling cascades have hampered therapeutic 
application. Clearly, in the infarcted myocardium, TGF-β 
has both beneficial and detrimental actions. Identification 
of safe and effective therapeutic strategies will require 
understanding of the cellular basis for these effects, and 
dissection of the distinct actions of Smad-dependent and 
Smad-independent TGF-β signaling. Unfortunately, 
expansion of our knowledge on the pathophysiological role 
of TGF-β in myocardial infarction may not be sufficient for 
implementation of effective strategies in human patients. 
In the clinic, post-infarction remodeling and heart failure 
is pathophysiologically heterogeneous. For the same 
amount of cardiomyocyte loss, some patients develop 
dilative remodeling and systolic dysfunction, while others 
may have extensive fibrosis, accompanied by diastolic 
heart failure (122). Differences in TGF-β responses 
between patients may account for the distinct patterns 
of post-infarction remodeling in various subpopulations. 
Identification of patients with overactive TGF-β responses 
through the use of carefully validated biomarkers, or 
imaging studies, will be important in order to design 
personalized treatment strategies. Moreover, it should be 
emphasized that, because of its broad effects on many cell 
types, targeting TGF-β may carry significant risks (123). 
A large body of evidence suggests that disruption of the 
TGF-β/Smad axis promotes aortic aneurysm formation and 
rupture (124-126). Thus attempts for clinical translation 
of TGF-β/Smad inhibition strategies should exclude 
patients vulnerable to the potentially adverse consequences 
of Smad3 disruption on vascular remodeling. Temporal 
considerations are also highly significant: early inhibition 
of the TGF-β response may perturb reparative responses 
essential to maintain the structural integrity of the ventricle. 
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Successful translation will require a combination of animal 
studies to understand the cellular targets and functions of 
TGF-β, and human investigations to identify patients likely 
to benefit from specific therapeutic interventions. 
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