
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2016;8(12):E1683-E1687jtd.amegroups.com

Introduction

Modeling human physiology in vitro is burgeoning 
as an exciting new field that requires coherent efforts 
encompassing multiple disciplines including engineering, 
biology, and medicine, among others (1). Originating from 
the concept of tissue engineering (2), yet with a distinct 
aim that is to construct models of human tissues and organs 
outside the body for improved biological, pharmaceutical, 
and environmental studies (3-6) rather than repairing them 
in vivo, these microphysiological systems have further 
undergone significant developments with the inclusion of 
the microfabrication and microfluidics technologies that 
conveniently bring in the beneficial complexity (4,7). While 
various microfabrication strategies allow us to engineer 
microscale tissue and organ units that possess shapes and 
architecture that mimic their in vivo counterparts (8-10),  
the ability to manipulate fluids at small scales leads to 
reproduction of the dynamic microenvironments indispensable 
for the functions of natural tissues and organs (1,4),  
both of which are otherwise not achievable using the 
conventional planar, static culture platforms. Of note, 
these individual microphysiological systems can be further 
linked together in such a way that the interconnected 
multi-unit platforms recapitulate the linkage of the various 
tissues and organs in their native arrangements, facilitating 

investigations of the intricate interactions among these 
different components in vitro (3-6).

To date, a variety of microphysiological systems have 
been developed that model their respective tissues and 
organs (and their disease states) of the human body, 
ranging from those mimicking the nervous system (11), the 
respiratory system (12,13), the digestive system (14,15), and 
the musculoskeletal system (16,17) to the cardiovascular 
system (18,19), covering essentially every single type of 
tissue and organ (4,5). Among all, the cardiac organoids 
have attracted increasing attention due to their critical roles 
in toxicology; for example, it is estimated that cardiotoxicity 
represents a major side effect of systemic drug toxicity—
in the past 40 years 19% of drug recalls were likely due to 
cardiotoxicity (20).

A human heart contains four main chambers of two atria 
and two ventricles as well as valves and heart wall laden with 
specialized cell populations. The myocardium is responsible 
for contraction of the heart, which is primarily composed 
of cardiomyocytes densely aligned in parallel forming the 
bundled myocardial fibers and enhancing the contractile 
force to pump the blood throughout the vascular system of 
the body (21). Besides cardiomyocytes, approximately half 
of the cells in the heart are cardiac fibroblasts that produce 
the connective and elastic extracellular matrix (ECM) of the 
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heart wall (21). Other important cell populations include 
the cardiac signal conduction system made of pacemakers 
cells and Purkinje fibers (21), as well as the endothelial cells 
that form the vasculature and supply nutrients to the cardiac 
cells (18).

Various approaches have been exploited to fabricate 
cardiac organoids and heart-on-a-chip devices that 
recapitulate the biology and physiology of a native heart. 
For instance, microengineering strategies that rely on the 
use of topographic cues would induce alignment of the 
cardiomyocytes that assume a similar structure of the native 
myocardium (22); bioprinting strategies have enabled the 
incorporation of vasculature into the cardiac organoids 
while maintaining the anisotropy of the cardiomyocytes (23);  
and the adoption of flexible substrates seeded with 
cardiomyocytes could lead to spontaneously actuating heart 
wall-like patterns modeling a part of a beating heart (24).

While significant efforts have been exerted on 
engineering functional cardiac organoids, ways to monitor 
their behaviors and responses have been limited. Common 
sensing strategies mainly rely on optical methods, either by 
imaging the contraction of the cardiac organoids (24,25), 
or by mapping the actions of the cardiomyocytes [e.g., 
Ca2+ flux following staining with fluorescence dyes (26)]. 
Besides, electrophysiological signals could also be measured 
by depositing microelectrode arrays onto the substrate on 
which the cardiomyocytes are housed (27). Nevertheless, 
these sensing elements have rarely been able to provide 
accurate, conformal measurements of the cardiac organoids 
as they typically would only represent projected collective 
behaviors (in the case of optical mapping) or planar signals 
(in the case of electrophysiology) of the model systems.

A recent publication by Lind et al., shed light on the 
existing dilemma, which for the first time provided an 
enabling strategy to fabricate fully integrated sensor-
impregnated heart-on-a-chip device (Figure 1A,B) (28).  
Specifically, they used a three-dimensional (3D) multi-
material extrusion printer with a multi-step procedure to 
generate the thin-film cantilever capable of deflecting by 
seeded cardiomyocytes, whereas the embedded conductive 
wires could directly measure the contractile signals during 
the deflections that would reflect the status of the cardiac 
organoids (Figure 1C): (I) printing the 0.5 µm-thick  
bottom release layer of dextran; (II) printing the 3 µm-thick  
cantilever base of thermoplastic polyurethane (TPU); 
(III) printing the 6.5 µm-thick strain gauge wires of 
TPU encapsulating 25 wt.% conductive carbon black 
nanoparticles; (IV) printing the 1.5 µm-thick TPU wire 

cover; (V) printing cardiomyocyte-guiding microfilaments 
of polydimethylsiloxane (PDMS); (VI) printing electrical 
leads and contact pads of silver:polyamide (Ag:PA); (VII) 
printing the well structure and insulation covers of PDMS; 
and (VIII) seeding the cardiomyocytes onto the printed 
cantilevers following curing of all the materials.

Applying such a heart-on-a-chip system, the embedded 
strain gauge could conveniently measure the signals generated 
by each contracting cantilever via establishing a mechanical 
model that provided conversion between the changes in 
gauge resistance and those in cantilever radius/curvature, 
expressed as tissue twitch stress (σ), i.e., the difference 
between the systolic and diastolic stresses (Figure 2A).  
The contracting signals measured with the printed gauge on the 
cantilever were found to well correlate with the conventional 
optical tracking (Figure 2B), indicating the accuracy of the 
integrated sensing units and eliminating the needs for external 
instrumentation such as the use of a dedicated microscope. 
This sensor-impregnated heart-on-a-chip platform not 
only allowed for long-term culture and maturation of the 
human induced pluripotent stem cell-derived cardiomyocytes  
(hiPS-CMs, Figure 2C) but more importantly, the real-time,  
in-line recording of their dose-dependent responses to 
pharmaceutical compounds (Figure 2D).

This piece of work represents the first example of 
constructing a flexible organ-on-a-chip platform that is 
directly impregnated with sensing units for signal recording. 
The integration of the sensing elements is instrumental, 
allowing for seamless data collection and readouts of 
organoid status with no need of secondary devices. The 
conformal nature of the sensors further resulted in more 
accurate measurements that are less affected by the spatial 
movement of the 3D organoids than their projection-based 
or planar counterparts where the signals might be biased. 
Although currently the technology is still in its infant 
stage with limited complexity in the circuitry and types 
of signals that can be measured, its further optimization, 
development, and expansion into the combination with 
more sophisticated organoids potentially even diseased 
models [e.g., mitochondrial cardiomyopathy (29)], are 
envisioned in the near future.
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Figure 1 Fabrication of the sensor-impregnated heart-on-a-chip device. (A) schematic of the device principle: (I) contraction of an 
anisotropic engineered cardiac tissue (II) deflects a cantilever substrate, thereby stretching a soft strain gauge embedded in the cantilever, 
and (III) this generates a resistance change proportional to the contractile stress of the tissue; (B) the heart-on-chip device constructed from 
cardiomyocytes seeded on a set of fully printed device; (C) automated printing of the device on a 2×3 glass slide substrate in seven sequential 
steps. For each step, a corresponding still image from the printing procedure is shown. Cardiomyocytes were subsequently seeded onto 
each printed sensor-impregnated cantilever after it was fully cured. Adapted with permission from reference (28); copyright 2016 Nature 
Publishing Group. TPU, thermoplastic polyurethane; PDMS, polydimethylsiloxane.
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