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Stem cell therapy brings a new hope and provides 
an alternative therapeutic strategy for treatment of 
human diseases in clinical therapy. Due to  the stemness 
characteristics, stem cells are considered as a potential 
tool to understand and model many critical diseases such 
as Alzheimer’s (1), cardiovascular (2), cancer diseases (3)  
etc.  Compared with multipotent embryonic stem 
cells (ESCs), induced pluripotent stem cells (iPSCs), 
successfully generated from somatic cells by transfecting 
four transcription factors (Oct4, Sox2, Klf4, and c-Myc) 
in fibroblasts (4), could overcome the limitations of 
multipotent stem cells that commit to differentiate into only 
several lineage cells and the ethical concern of ESCs that 
need the oocytes and embryo destruction (5). Besides, iPSCs 
also possess abilities in generating other stem cells and a 
variety of immune cells for broad clinical requirements. 
Therefore, utilizing iPSCs in stem cell therapy has great 
attractions and provides tremendous applications in 
regenerative medicine (Figure 1). 

Recently, Shiba et al. first utilized the iPSCs to perform 
an allogeneic transplantation in primate heart for repairing 
the infarcted cardiac tissues (6), indicating that allogeneic 
transplantation of iPSC-derived cardiomyocytes (iPSC-
CMs) did not require a large number of stem cells for heart 
regeneration. However, allogeneic transplantation could 
induce an immune response and cause graft rejection. 

Histocompatibility complex (MHC) plays an indispensable 
role in the immune response after transplantation and 
guest-host diseases. Based on the concept of MHC-matched 
transplantation, Shiba et al. directly injected iPSC-CMs 
from MHC haplotype (HT4) homozygous cynomolgus 
monkey (Macaca fascicularis), which MHC structure is equal 
to that of human, into the HT4 heterozygous monkeys with 
myocardial infarction. After 12 weeks of transplantation, the 
grafted iPSC-CMs still survived and improved the cardiac 
contractile function with no evidence of immune rejection. 
These results demonstrated that the feasibility of allogeneic 
transplantation by iPSCs from primates for repairing 
clinical human diseases. 

The iPSC-CM engineered cardiac tissue present great 
opportunities for regenerative medicine, drug screening, 
and disease modeling. However, recent studies found 
that hiPSC-CMs could not accurately replicate the 
native morphology and function of CMs in adult heart 
due to the complexity of structure and function of the 
heart (7,8). To this end, researchers have applied various 
approaches, including electric stimulus, cyclic stretch and 
chemical molecules, to replicate the in vivo myocardium 
microenvironment to promote the iPSC-CM maturation 
(9-11). Shiba et al. also found that the expression of cTnT 
was lower in the allogeneic iPSC-CMs than in the adult 
hearts, indicating the immaturity of iPSC-CMs in vitro (6).  
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Therefore, cells were treated with pro-survival cocktail 
before transplantation. The in vivo grafted iPSC-CMs 
were electrically integrated with the host myocardium. In 
addition, the iPSCs could also differentiate into other cells 
to achieve a wide range of applications, such as ophthalmic, 
neural and bone tissues. 

Retina is a one of important tissues in eyes because it 
contains a simple epithelial monolayer, which involves 
retinol cycling and nutrient transport of photoreceptors. 
Many retinal diseases such as age-related macular 
degeneration (AMD), retinitis pigmentosa (RP), and 
Stargardt’s disease (STGD) are related to the degeneration 
of photoreceptor cells leading to vision loss or blindness. 
However, there is no efficient curative treatment for these 
diseases. Recently, Zhong et al. successfully induced human 
iPSCs to differentiate, recapitulate the main steps of retinal 
development, and form a three dimensional (3D)-retinal 
cups with mature photoreceptors (12). Furthermore, 
Cyranoski showed a case that the first person with AMD 
whose vision was recovered by implanting a retinal pigment 
epithelium cell sheet generated from autologous iPSCs of 
a patient into an eye (13). Additionally, several biomaterials 
such as chitosan, collagen, and gelatin etc. are widely used 
in ocular tissue engineering for corneal regeneration (14). 
These biomaterials, especially collagen and gelatin, are 
indicated having great cell viability and biocompatibility 

as a carrier to encapsulate limbal epithelial cells (LEC), 
corneal endothelial cells, and stromal cells (15,16) or as an 
ocular drug delivery carrier (17). Moreover, Collagen and 
fibrin hydrogels shows strong abilities for inducing corneal 
and LEC differentiation of mesenchymal stem cells (MSCs) 
(18,19) to re-epithelialized corneal tissues of patients with 
vision loss (19,20). It implied that combination of stem 
cells and biomaterials is a potential therapeutic in ocular 
tissue regeneration. Chiou et al. combined keratocyte-
reprogrammed iPSCs and thermosensitive chitosan-
based hydrogel to repair corneal wound healing (21). 
Combination of iPSCs and biomaterials as a stem cell niche 
provides the proliferation of endogenous limbal stem cells, 
increases the epithelial cellular growth, and recovers the 
thickness of corneal epithelium in damaged corneas. It 
shows the potential applications of iPSCs in ocular tissue 
engineering for clinical regeneration.

Neurological diseases such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), and ischemic stroke etc. are major 
global health burdens in the world (22). The common 
mechanisms resulting in these diseases are the accumulation 
of misfolded aggregated proteins or lack of the blood 
flow yielding neuron death (23). However, there are no 
significant radical methods for neuronal regeneration. 
iPSCs via regulation of medium components have already 
showed their abilities, generating neural progenitor cells, 
differentiating into functionally specialized neurons (brain/
motor neurons) and glia cells (astrocyte) (22). Therefore, 
modeling neurological diseases by iPSCs is a novel concept 
in clinical medicine. Compared with transplantation of 
fetal neural stem/precursor cells (NSPCs) or fetal neural 
tissues, the use of primary fetal neural tissues or NSPCs 
lacks scalable ability, and has the recurrence of dyskinesia 
and ethical issues. Contrarily, the above issues are less 
mentioned in using iPSCs as a therapeutic tool (24,25). 
For the clinical potential applications, transplanting 
autologous/allogeneic stroma-reprogrammed mouse iPSCs 
in rat brains showed the midbrain-like dopamine neuron 
from transplanted iPSCs improving the rats with PD 
(26,27). Additionally, to control iPSCs proliferating and 
differentiating into specific subtype neurons by biomaterials 
are widely investigated recently. For example, by the 
thickness of electrospun fibers as 3D microenvironments 
regulating cell-cell contact interactions supports the 
reprogrammed neuron from iPSCs with high ectopic 
expression of NeuroD1 (iNs) (28). Furthermore, the in 
vivo results also showed the iNs on electrospun structure 
were with the high survival rate and the synaptophysin-

Figure 1 Potential applications of iPSCs for disease modeling. 
Reprogramming technologies can be potential methods to produce 
iPSCs from somatic cells in human body. By transplantations of 
autologous or allogeneic specific lineage cells differentiated from 
iPSCs, it brings a hope for disease modeling for patients.
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expressed neurite termianls indicating synaptic connection 
with host brain tissues (28). Besides, Wang et al. fabricated 
a nanofibrous tubular conduit as a bridge to induce iPSCs 
differentiating into Schwann cells, connecting transected 
sciatic nerves, and accelerating regeneration of sciatic 
nerves (29), these show the feasibilities of combining iPSCs 
and biomaterials to regenerate the diseases of central and 
peripheral nerve system in clinic applications.

Bone defects such as trauma or orthopedic defects make 
disability in patients. Allogenic or autogenic bone graft 
transplantation are gold standards for major treatments. 
However, weak osteoinduction, donor availability, 
and cost etc. are the limitations in autogenic/allogenic 
transplantation (30). In past decade, utilizing engineered 
bone instead of autogenic/allogeneic bone is widely used 
in clinical (31). But, it requires other cell sources to create 
vascular and nerve compartments. Therefore, combination 
of stem cells and biomaterials has gradually developed as 
an alternative strategy for complex bon reconstruction (32). 
MSCs isolated from adult tissues are the most commonly 
used stem cells in bone regeneration. However, following 
aging, the functionality in regeneration and self-renewal 
ability of MSCs are impaired (33). Compared with MSCs, 
Sheyn et al. reported that BMP6-overexpressing MSC-
generated from iPSCs (iMSCs) by short-term exposing 
transforming growth factor-β (TGF-β) could overcome the 
challenges, possessing self-renewal without tumorigenic 
ability, acquiring more differentiated cell type, and 
regenerating bone defects (34). Additionally, de Peppo et al. 
also confirmed that different human iPSCs lines (hiPSCs) 
(11c, 1013A, and BC1) on the engineered bone constructs 
were strongly induced toward the expressions of osteoblast 
differentiations and bone formation (STAT3 and TGFB3 
genes) (35). Recently, various biomaterials are developed for 
the regeneration of bone defects (36). Due to the stiffness 
of scaffolds playing a role in ontogenesis differentiation of 
stem cells (37), tunable biomaterials such as polyethylene 
glycol (PEG)- gelatin-, or poly (vinyl alcohol) (PVA)- 
based hydrogels (38-40) etc. are gotten attention for bone 
regenerative engineering. Moreover, most shapes of bone 
defects are irregular so that implanted scaffolds with regular 
shapes have low regenerative efficiency in juried bones. 
To overcome this limitation, Faulkner-Jones et al. first 
showed a iPSC-laden ink for bioprinting (41). Therefore, 
combination of iPSC-laden inks, current 3D bioprinting 
technologies, and computed tomography scan brings 
a new concept for applications of iPSCs in bone tissue 
engineering.

The iPSC technology brings a new hope as a probably 
therapeutic tool for cell therapies. However, the safety and 
effectiveness of iPSC transplantation in disease remodeling 
should be evaluated carefully. Some challenges including 
specific differentiated protocols or immune-response 
exist to interrupt the transplantation of iPSCs becoming 
a reality in clinical medicine so that iPSCs therapy is still 
at the preliminary stage. Recently, many studies showed 
using iPSC-derived specific lineage progenitor cells 
to treat human disorders (42-46). It shows that using 
customized reprogrammed iPSC-derived progenitor 
cells will provide a strategy to enhance the regenerative 
efficiency of specific human diseases. The safety issues 
of iPSCs such as tumorigenicity are gotten attention 
because of using retrovirus or lentivirus as the vectors. 
But following the new reprogrammed protocols without 
exogenous DNA integration (47,48) or with only small 
molecule compounds (49), the risks of tumor formation 
could be decreased. Besides, El Khatib’s and Shiba’s groups 
successfully utilized autologous/allogeneic iPSCs to treat 
islet and heart diseases without any tumorigenicity (6,50), 
these results increases the applicability of iPSCs in clinical 
medicine. Additionally, despite many disease remodeling by 
using iPSCs, regeneration of complex 3D tissues or organs 
is a major challenge in regenerative medicine. In past 
decade, combination of stem cells and scaffolds for tissue/
organ regeneration is spring up in tissue engineering field. 
Notably, to overcome the fabricated limitations of complex 
tissues/organs, 3D and 4D bioprinting technologies create 
a new vision for fabrication of complex structures (51). By 
the bioprinting technologies, the stem cell-laden structures 
could mimic the complex environments in body with the 
dynamic responses where is close to the native human 
tissues/organs. Therefore, combining autologous/allogeneic 
iPSCs, biomaterials, and bioprinting technologies to 
regenerate human diseases could be expected as a new 
trend in the next-generation therapeutic methods in clinical 
medicine.
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