
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(7):2209-2213jtd.amegroups.com

Background

R is a computer language initially designed by the
statisticians Ross Ihaka and Robert Gentleman in the
1990s and also famous for the excellent facilities on data
analysis and visualization (1). Because it is freely available
under the GNU General Public License and runs on
UNIX, Windows and MacOS platforms, R can be easily
extended via packages to provide all kinds of specialized
and sophisticated functions (http://www.r-project.org).
Tippmann recently reported that there were about 6,000
R packages published by 2015 and 1% or higher of
scholarly articles had cited R or R package(s) (2). It is also
anticipated that R will continue to grow in popularity due
to the increased requirements for analyzing large-scale data
especially in biological and agricultural sciences.

Both data analysis and visualization can be easily
implemented with R because the developed packages always
provide easy-to-use command-line interface to user and also
technically supported by the active online communities. In
contrast to these advantages, a tiny but important barrier

is that almost all R packages require the strictly specified
format of data for inputting, which must be prepared by
user in advance. According to our experiences, however,
the appropriate preparation of data in accordance with
R package’s requirements would be a tough and time-
consuming process for most if not all of users. In the present
paper, we roughly categorize and exemplify common data
manipulations with R in biological researches, which would
be helpful for preparing original experimental data more
efficiently to R packages.

Data structure and sample data

There are several objects for storing data in R, including
vector, matrix, list and data frame. Among them data frame
would be one of the most common objects because it is
able to combine different models of data, such as numeric,
character and factor, into a single table and hence closely
resembles the real situations in researches. Therefore
all data manipulations outlined in the present paper will

Statistics Corner

Common data manipulations with R in biological researches

Shi-Yi Chen1, Qin Liu2, Zhe Feng2

1Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu

611130, China; 2Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China

Correspondence to: Dr. Shi-Yi Chen. Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan

Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, China. Email: sychensau@gmail.com; Dr. Zhe Feng. Department of

Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu 610041, China. Email: fengzhe1002@163.com.

Abstract: R is a computer language and has been widely used in science community due to the powerful
capability in data analysis and visualization; and these functions are mainly provided by the developed
packages. Because every package has strict format definitions on the inputted data, it is always required to
appropriately manipulate the original data in advance. Unfortunately, users, especially for the beginners,
are always confused by the extreme flexibility with R in data manipulation. In the present paper, we roughly
categorize the common manipulations with R for biological data into four classes, including overview of
data, transformation, summarization, and reshaping. Subsequently, these manipulations are exemplified in a
sample data of clinical records of diabetic patients. Our main purpose is to provide a better landscape on the
data manipulation with R and hence facilitate the practical applications in biological researches.

Keywords: R; data manipulation; biological research

Submitted May 07, 2017. Accepted for publication May 26, 2017.

doi: 10.21037/jtd.2017.06.48

View this article at: http://dx.doi.org/10.21037/jtd.2017.06.48

2213

2210 Chen et al. Data manipulations with R

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(7):2209-2213jtd.amegroups.com

start with data frame, and it is also beyond our scope for
describing various R objects in details.

In R the data frame is a two-dimensional array-like
data structure, in which each row always represents one
experimental subject and each column corresponds to a
variable for storing measurements on all subjects. Each
column of data frame could be arbitrary data model,
while all columns must be equal in length. Therefore,
any missing measurement in data frame must be specified
by uniform character. There is a sample spreadsheet of
clinical records for 41 diabetic patients, which contains six
columns for storing various attributes and blood measures
of patient (Table 1). In this table, the top line is column
names and each line afterward corresponds to individual
patient; the missing value is specified by character of ‘NA’.
We herein use this sample data for exemplifying common
manipulations in following sections.

Common data manipulations

In general, common manipulations prior to formal data
analysis and visualization using the developed R packages
could be roughly categorized into four classes, including (I)
preview overall structure of data; (II) transform the existing
variable into new column; (III) summarize data based on
the specified groups; and (IV) reorganize the structure of
data. Both reading and writing data are not included here
because they are relatively straightforward and also beyond
scope of data manipulation. Therefore, we suppose that the
original dataset has been successfully inputted into R, for
instance, the variable of ‘dpData’ has been already linked to
our sample data.

Overview of data

At the beginning of data analysis and visualization, it is
always necessary to preview the overall structure of data,
such as organization of variables, number of observations,
levels of a factor variable, etc. Three generic functions of

head(), str() and summary() could be used for these purposes;
and among them the head() compactly demonstrates the first
few rows of a data frame, str() displays variable models, and
summary() produces statistical summary for each variable.

Transform

Computing and creating new variable
Arbitrary mathematical calculation could be operated on
one or more variables, and by which a new variable will
be generated and added into the initial data frame. The
function of mutate() in plyr package could powerfully
perform such task. In the sample data, we simply divide
WBC values by 10 for establishing a new column of WBC2.

> mutate(dpData, WBC2=WBC/10)

 PatID AdmDate Sex Class WBC Lymph WBC2

1 p001 2016/10/3 Female Type2 14.8 11.3 1.48

2 p002 2016/10/3 Female Type2 15.7 7.0 1.57

3 p003 2016/10/4 Male Type2 NA 9.6 NA

Recoding factor variable
To recode a factor variable is required in some cases, such
as in logistic regression analyses with binary variable. A
generalized method is to employ the functions of mutate()
and ifelse() in tandem; and the ifelse() statement could also
be nested when recoding into more than two levels. In the
sample data, we recode the Class variable into a new binary
variable of C2, in which the value of type 2 corresponds to
1 and others to 0.

>mutate(dpData,C2=ifelse(Class=='Type2',1,0))

 PatID AdmDate Sex Class WBC Lymph C2

1 p001 2016/10/3 Female Type2 14.8 11.3 1

2 p002 2016/10/3 Female Type2 15.7 7.0 1

8 p008 2016/10/10 Male Type1 5.9 7.2 0

Transforming continuous variable(s) into factor
variable
It is able to classify subjects based on one or more
continuous variables and then directly transformed into
a factor variable, which could also be performed by the
functions of mutate() and ifelse() in tandem. In the sample
data, we try to classify patients into different groups based
on both WBC and Lymph values, from which a new factor
variable of Group is generated.

Table 1 Data structure of clinical records among three patients

PatID AdmDate Sex Class WBC Lymph

p001 2016/10/3 Female Type 2 14.8 11.3

p002 2016/10/3 Female Type 2 15.7 7

p003 2016/10/4 Male Type 2 NA 9.6

2211Journal of Thoracic Disease, Vol 9, No 7 July 2017

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(7):2209-2213jtd.amegroups.com

> mutate(dpData,Group=ifelse(WBC>10 &
Lymph>9,"H", ifelse(WBC<8 & Lymph<5,"L","M")))

 PatID AdmDate Sex Class WBC Lymph Group

1 p001 2016/10/3 Female Type2 14.8 11.3 H

2 p002 2016/10/3 Female Type2 15.7 7.0 M

3 p003 2016/10/4 Male Type2 NA 9.6 <NA>

20 p020 2016/10/18 Male Type2 6.5 2.3 L

Specifying level order of factor variable
In R the levels of a factor variable would be ordered
or unordered, and an ordered factor may have specific
meanings for data analysis and visualization. Therefore, it
may be necessary in some cases to specify or change level
order of factor variable. In the sample data, we use the
function of factor() to specify the level order of Sex variable
as Male and Female in order:

> dpData$Sex = factor(dpData$Sex, levels = c("Male",
"Female"))

Also, we could specify level order for a factor variable
according to the values of a second variable. In the sample
data, we use the function of reorder() to specify the level
order of Sex variable according to mean of WBC values for
each level.

> dpData$Sex = reorder(dpData$Sex, dpData$WBC,
FUN=mean, na.rm=TRUE)

Renaming levels of factor variable
To facilitate data analysis and visualization, it would
be helpful to edit the level names for a factor variable,
which could be performed by the function of revalue()
in plyr package. In the sample data, we simplify the level
names of Female and Male for Sex variable into F and M,
respectively.

> dpData$Sex=revalue(dpData$Sex, c(Female='F',
Male='M'))

> head(dpData)

 PatID AdmDate Sex Class WBC Lymph

1 p001 2016/10/3 F Type2 14.8 11.3

2 p002 2016/10/3 F Type2 15.7 7.0

3 p003 2016/10/4 M Type2 NA 9.6

Specifying a date variable
In general, date value is inputted into R as a character or
numeric model, which, therefore, must be specified as date
model by the function of as.Date() in advance. In the sample
data, the AdmDate variable is initially treated as factor
model, which is specified as date variable suitable for the
following analysis.

> dpData$AdmDate = as.Date(dpData$AdmDate,
format='%Y/%m/%d')

> head(dpData)

 PatID AdmDate Sex Class WBC Lymph

1 p001 2016-10-03 Female Type2 14.8 11.3

2 p002 2016-10-03 Female Type2 15.7 7.0

3 p003 2016-10-04 Male Type2 NA 9.6

Summarize

Summarizing counts or proportions for factor variable
For a factor variable, it is common to summarize the
counts or relative proportions for each level into a
simple tabulation. A cross-tabulation will be generated
when more than one factor variables are jointly used.
The generated tabulation and cross-tabulation could be
directly transformed into the format of data frame. These
tasks could be performed by the functions of table() and
prop.table(). In the sample data, we summarize the counts
and proportions of patients for two variables of Sex and
Class.

> t = table(dpData$Sex, dpData$Class)

> t

 Type1 Type2

 Female 2 13

 Male 2 24

> prop.table(t, 2)

 Type1 Type2

 Female 0.5000000 0.3513514

 Male 0.5000000 0.6486486

Adding margins to rows and/or columns
In R the function of addmargins() provides a simple method
for summarizing values by rows and/or columns. In the
sample data, we summarize the counts and proportions
of patients according to both Sex and Class variables and

2212 Chen et al. Data manipulations with R

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(7):2209-2213jtd.amegroups.com

further calculate the sums by both rows and columns.

> addmargins(table(dpData$Sex, dpData$Class),
c(1,2), FUN=sum)

 Type1 Type2 sum

 Female 2 13 15

 Male 2 24 26

 sum 4 37 41

Computing multiple statistics by groups
The data aggregation is an important manipulation in data
frame, for which a number of methods have been proposed.
It is common to compute multiple statistics for a continuous
variable based on the specified groups by one or more factor
variables. In the sample data, we could use ddply() function
in plyr package to compute four statistics, including the
number of observation, mean, standard derivation and
standard error, for WBC measurements according to both
Sex and Class variables.

> ddply(dpData, c('Sex', 'Class'), summarize, n=sum(!is.
na(WBC)), mean=mean(WBC, na.rm=TRUE), sd =
sd(WBC, na.rm=TRUE), se=sd/n)

 Sex Class n mean sd se

1 Female Type1 2 13.2 0.141 0.0707

2 Female Type2 13 17.1 6.481 0.4985

3 Male Type1 2 12.9 9.899 4.9497

4 Male Type2 23 15.1 4.596 0.1998

Computing multiple statistics by columns
When the summarization of multiple statistics is operated
on more than one variables at different columns, an
additional step is required before using the ddply()
function. That is to use melt() function in reshape2
package to arrange all target variables into a single column.
In the sample data, we similarly compute four statistics of
the number of observation, mean, standard derivation and
standard error for both WBC and Lymph variables.

> m = melt(dpData, measure.vars = c('WBC','Lymph'))

> ddply(m, 'variable', summarize, n=sum(!is.na(value)),
mean=mean(value, na.rm=TRUE), sd=sd(value,
na.rm=TRUE), se=sd/n)

 variable n mean sd se

1 WBC 40 15.53 5.38 0.1344

2 Lymph 40 6.73 2.96 0.0739

Reshape

Extracting all columns having the specified model
In general, columns of a data frame contain different models
of data. Therefore, it is common to extract all columns
with the same model, such as numeric and character, and
subsequently generate a new data frame. In the sample data,
we use sapply() function to extract all numeric columns.

> dpData[, sapply(dpData, class)=='numeric']

 WBC Lymph

1 14.8 11.3

2 15.7 7.0

3 NA 9.6

4 23.2 7.6

Extracting subset of data frame
The function of subset() provides a flexible method for
extracting a subset of data frame, in which the filtering
criteria could be operated onto both row and column. In
the sample data, we try to extract female patients with WBC
higher than 18, and after which only three variables of Sex,
WBC and Lymph are included in the new data frame.

> subset(dpData, Sex=='Female' & WBC > 18,
select=c('Sex', 'WBC', 'Lymph'))

 Sex WBC Lymph

4 Female 23.2 7.6

9 Female 18.6 6.5

10 Female 35.4 8.1

Renaming column of data frame

Renaming column would also facilitate the following data
analysis and visualization in some cases. In the sample data,
we simplify the names of WBC and Lymph variables into
W and L, respectively.

> names(dpData)[names(dpData)=='WBC'] = 'W'

> names(dpData)[names(dpData)=='Lymph'] = 'L'

> head(dpData)

 PatID AdmDate Sex Class W L

2213Journal of Thoracic Disease, Vol 9, No 7 July 2017

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(7):2209-2213jtd.amegroups.com

1 p001 2016/10/3 Female Type2 14.8 11.3

2 p002 2016/10/3 Female Type2 15.7 7.0

3 p003 2016/10/4 Male Type2 NA 9.6

Reshaping data frame between wide and long formats
In R the measurements of different variables could be
arranged into separate columns, which referred to as the
“wide” format of data frame. Alternatively, all values of
multiple variables could be stacked together into a single
column (namely value column), for which an additional
column is used for storing variable’s names (namely variable
column); and this is the “long” format of data frame. Both
melt() and dcast() functions in reshape2 package provide
simple methods for converting between wide and long
formats of data frame. In the sample data, two variables
of WBC and Lymph are initially arranged as wide format,
which could be converted into the long format.

> long = melt(dpData, measure.vars=c('WBC', 'Lymph'))

> head(long)

 PatID AdmDate Sex Class variable value

1 p001 2016/10/3 Female Type2 WBC 14.8

2 p002 2016/10/3 Female Type2 WBC 15.7

3 p003 2016/10/4 Male Type2 WBC NA

Subsequently, we could convert the long format back to
wide format.

> dcast(long, PatID + AdmDate + Sex + Class ~ variable,
value.var='value')

 PatID AdmDate Sex Class WBC Lymph

1 p001 2016/10/3 Female Type2 14.8 11.3

2 p002 2016/10/3 Female Type2 15.7 7.0

3 p003 2016/10/4 Male Type2 NA 9.6

Merging two data frames
In R the merge() function is powerful for joining two data
frames together based on the common variable(s). The
missing value from one of the data frames could be flexibly
treated, in which “NA” character will be filled if necessary.
We construct two simple data frames for illustrating the
merge() function.

> df1=data.frame(x=c('a','b','c','d'), y=c(1,2,3,4))

> df2=data.frame(x=c('a','b','e'), z=c(1,3,5))

> merge(df1, df2, all=TRUE)

 x y z

1 a 1 1

2 b 2 3

3 c 3 NA

4 d 4 NA

5 e NA 5

Conclusions

Because R is extremely flexible for data manipulation, a
number of methods could be likely employed for solving
the same problem. However, such enhanced flexibility
in usage would inevitably confuse the user, especially for
these beginners. Therefore, we try to outline the common
manipulations of data and then exemplify the typical
applications in biological researches. Of course, only one
method is recommended for a certain task in the present
paper, which doesn’t mean that this method is absolutely
superior to others. Because it is mainly intended to provide
an overall landscape, both the arguments and usage for
these introduced functions are not further described in
details. Finally, any calculation or manipulation for our
sample data has no biological meaning at all.

Acknowledgements

Funding: This work was supported by National Natural
Science Foundation of China and Science and Technology
Department of Sichuan Province, China (81300276 &
2015FZ0082).

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

References

1. Ihaka R, Gentleman R. R: a language for data analysis and
graphics. J Comput Graph Stat 1996;5:299-314.

2. Tippmann S. Programming tools: Adventures with R.
Nature 2015;517:109-10.

Cite this article as: Chen SY, Liu Q, Feng Z. Common data
manipulations with R in biological researches. J Thorac Dis
2017;9(7):2209-2213. doi: 10.21037/jtd.2017.06.48

