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Background

R is a computer language initially designed by the 
statisticians Ross Ihaka and Robert Gentleman in the 
1990s and also famous for the excellent facilities on data 
analysis and visualization (1). Because it is freely available 
under the GNU General Public License and runs on 
UNIX, Windows and MacOS platforms, R can be easily 
extended via packages to provide all kinds of specialized 
and sophisticated functions (http://www.r-project.org). 
Tippmann recently reported that there were about 6,000 
R packages published by 2015 and 1% or higher of 
scholarly articles had cited R or R package(s) (2). It is also 
anticipated that R will continue to grow in popularity due 
to the increased requirements for analyzing large-scale data 
especially in biological and agricultural sciences.

Both data analysis and visualization can be easily 
implemented with R because the developed packages always 
provide easy-to-use command-line interface to user and also 
technically supported by the active online communities. In 
contrast to these advantages, a tiny but important barrier 

is that almost all R packages require the strictly specified 
format of data for inputting, which must be prepared by 
user in advance. According to our experiences, however, 
the appropriate preparation of data in accordance with 
R package’s requirements would be a tough and time-
consuming process for most if not all of users. In the present 
paper, we roughly categorize and exemplify common data 
manipulations with R in biological researches, which would 
be helpful for preparing original experimental data more 
efficiently to R packages.

Data structure and sample data

There are several objects for storing data in R, including 
vector, matrix, list and data frame. Among them data frame 
would be one of the most common objects because it is 
able to combine different models of data, such as numeric, 
character and factor, into a single table and hence closely 
resembles the real situations in researches. Therefore 
all data manipulations outlined in the present paper will 
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start with data frame, and it is also beyond our scope for 
describing various R objects in details.

In R the data frame is a two-dimensional array-like 
data structure, in which each row always represents one 
experimental subject and each column corresponds to a 
variable for storing measurements on all subjects. Each 
column of data frame could be arbitrary data model, 
while all columns must be equal in length. Therefore, 
any missing measurement in data frame must be specified 
by uniform character. There is a sample spreadsheet of 
clinical records for 41 diabetic patients, which contains six 
columns for storing various attributes and blood measures 
of patient (Table 1). In this table, the top line is column 
names and each line afterward corresponds to individual 
patient; the missing value is specified by character of ‘NA’. 
We herein use this sample data for exemplifying common 
manipulations in following sections.

Common data manipulations

In general, common manipulations prior to formal data 
analysis and visualization using the developed R packages 
could be roughly categorized into four classes, including (I) 
preview overall structure of data; (II) transform the existing 
variable into new column; (III) summarize data based on 
the specified groups; and (IV) reorganize the structure of 
data. Both reading and writing data are not included here 
because they are relatively straightforward and also beyond 
scope of data manipulation. Therefore, we suppose that the 
original dataset has been successfully inputted into R, for 
instance, the variable of ‘dpData’ has been already linked to 
our sample data.

Overview of data

At the beginning of data analysis and visualization, it is 
always necessary to preview the overall structure of data, 
such as organization of variables, number of observations, 
levels of a factor variable, etc. Three generic functions of 

head(), str() and summary() could be used for these purposes; 
and among them the head() compactly demonstrates the first 
few rows of a data frame, str() displays variable models, and 
summary() produces statistical summary for each variable.

Transform

Computing and creating new variable
Arbitrary mathematical calculation could be operated on 
one or more variables, and by which a new variable will 
be generated and added into the initial data frame. The 
function of mutate() in plyr package could powerfully 
perform such task. In the sample data, we simply divide 
WBC values by 10 for establishing a new column of WBC2.

> mutate(dpData, WBC2=WBC/10)

 PatID   AdmDate    Sex Class  WBC Lymph WBC2

1 p001 2016/10/3 Female Type2 14.8 11.3 1.48

2 p002 2016/10/3 Female Type2 15.7  7.0 1.57

3 p003 2016/10/4   Male Type2   NA  9.6   NA

Recoding factor variable
To recode a factor variable is required in some cases, such 
as in logistic regression analyses with binary variable. A 
generalized method is to employ the functions of mutate() 
and ifelse() in tandem; and the ifelse() statement could also 
be nested when recoding into more than two levels. In the 
sample data, we recode the Class variable into a new binary 
variable of C2, in which the value of type 2 corresponds to 
1 and others to 0.

>mutate(dpData,C2=ifelse(Class=='Type2',1,0))

 PatID   AdmDate    Sex Class  WBC Lymph  C2

1 p001 2016/10/3 Female Type2 14.8  11.3  1

2 p002 2016/10/3 Female Type2 15.7   7.0  1

8 p008 2016/10/10  Male Type1  5.9   7.2  0

Transforming continuous variable(s) into factor 
variable
It is able to classify subjects based on one or more 
continuous variables and then directly transformed into 
a factor variable, which could also be performed by the 
functions of mutate() and ifelse() in tandem. In the sample 
data, we try to classify patients into different groups based 
on both WBC and Lymph values, from which a new factor 
variable of Group is generated.

Table 1 Data structure of clinical records among three patients

PatID AdmDate Sex Class WBC Lymph

p001 2016/10/3 Female Type 2 14.8 11.3

p002 2016/10/3 Female Type 2 15.7 7

p003 2016/10/4 Male Type 2 NA 9.6
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> mutate(dpData,Group=ifelse(WBC>10 & 
Lymph>9,"H", ifelse(WBC<8 & Lymph<5,"L","M")))

 PatID   AdmDate    Sex  Class WBC Lymph Group

1 p001  2016/10/3 Female Type2 14.8 11.3  H

2 p002  2016/10/3 Female Type2 15.7  7.0  M

3 p003  2016/10/4   Male Type2   NA  9.6 <NA>

20 p020 2016/10/18  Male Type2  6.5  2.3  L

Specifying level order of factor variable
In R the levels of a factor variable would be ordered 
or unordered, and an ordered factor may have specific 
meanings for data analysis and visualization. Therefore, it 
may be necessary in some cases to specify or change level 
order of factor variable. In the sample data, we use the 
function of factor() to specify the level order of Sex variable 
as Male and Female in order:

> dpData$Sex = factor(dpData$Sex, levels = c("Male", 
"Female"))

Also, we could specify level order for a factor variable 
according to the values of a second variable. In the sample 
data, we use the function of reorder() to specify the level 
order of Sex variable according to mean of WBC values for 
each level.

> dpData$Sex = reorder(dpData$Sex, dpData$WBC, 
FUN=mean, na.rm=TRUE)

Renaming levels of factor variable
To facilitate data analysis and visualization, it would 
be helpful to edit the level names for a factor variable, 
which could be performed by the function of revalue() 
in plyr package. In the sample data, we simplify the level 
names of Female and Male for Sex variable into F and M, 
respectively.

> dpData$Sex=revalue(dpData$Sex, c(Female='F', 
Male='M'))

> head(dpData)

 PatID  AdmDate Sex Class  WBC Lymph

1 p001 2016/10/3   F Type2 14.8  11.3

2 p002 2016/10/3   F Type2 15.7   7.0

3 p003 2016/10/4   M Type2   NA   9.6

Specifying a date variable
In general, date value is inputted into R as a character or 
numeric model, which, therefore, must be specified as date 
model by the function of as.Date() in advance. In the sample 
data, the AdmDate variable is initially treated as factor 
model, which is specified as date variable suitable for the 
following analysis.

> dpData$AdmDate = as.Date(dpData$AdmDate, 
format='%Y/%m/%d')

> head(dpData)

 PatID    AdmDate    Sex Class  WBC Lymph

1 p001 2016-10-03 Female Type2 14.8  11.3

2 p002 2016-10-03 Female Type2 15.7   7.0

3 p003 2016-10-04   Male Type2   NA   9.6

Summarize

Summarizing counts or proportions for factor variable
For a factor variable, it is common to summarize the 
counts or relative proportions for each level into a 
simple tabulation. A cross-tabulation will be generated 
when more than one factor variables are jointly used. 
The generated tabulation and cross-tabulation could be 
directly transformed into the format of data frame. These 
tasks could be performed by the functions of table() and 
prop.table(). In the sample data, we summarize the counts 
and proportions of patients for two variables of Sex and 
Class.

> t = table(dpData$Sex, dpData$Class)

> t

         Type1 Type2

  Female     2    13

  Male       2    24

> prop.table(t, 2)

             Type1     Type2

  Female 0.5000000 0.3513514

  Male   0.5000000 0.6486486

Adding margins to rows and/or columns
In R the function of addmargins() provides a simple method 
for summarizing values by rows and/or columns. In the 
sample data, we summarize the counts and proportions 
of patients according to both Sex and Class variables and 
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further calculate the sums by both rows and columns.

> addmargins(table(dpData$Sex, dpData$Class), 
c(1,2), FUN=sum)

         Type1 Type2 sum

  Female     2    13  15

  Male       2    24  26

  sum        4    37  41

Computing multiple statistics by groups
The data aggregation is an important manipulation in data 
frame, for which a number of methods have been proposed. 
It is common to compute multiple statistics for a continuous 
variable based on the specified groups by one or more factor 
variables. In the sample data, we could use ddply() function 
in plyr package to compute four statistics, including the 
number of observation, mean, standard derivation and 
standard error, for WBC measurements according to both 
Sex and Class variables.

> ddply(dpData, c('Sex', 'Class'), summarize, n=sum(!is.
na(WBC)), mean=mean(WBC, na.rm=TRUE), sd = 
sd(WBC, na.rm=TRUE), se=sd/n)

     Sex Class  n mean    sd     se

1 Female Type1  2 13.2 0.141 0.0707

2 Female Type2 13 17.1 6.481 0.4985

3   Male Type1  2 12.9 9.899 4.9497

4   Male Type2 23 15.1 4.596 0.1998

Computing multiple statistics by columns
When the summarization of multiple statistics is operated 
on more than one variables at different columns, an 
additional step is required before using the ddply() 
function. That is to use melt() function in reshape2 
package to arrange all target variables into a single column. 
In the sample data, we similarly compute four statistics of 
the number of observation, mean, standard derivation and 
standard error for both WBC and Lymph variables.

> m = melt(dpData, measure.vars = c('WBC','Lymph'))

> ddply(m, 'variable', summarize, n=sum(!is.na(value)), 
mean=mean(value, na.rm=TRUE), sd=sd(value, 
na.rm=TRUE), se=sd/n)

  variable  n  mean   sd     se

1      WBC 40 15.53 5.38 0.1344

2    Lymph 40  6.73 2.96 0.0739

Reshape

Extracting all columns having the specified model
In general, columns of a data frame contain different models 
of data. Therefore, it is common to extract all columns 
with the same model, such as numeric and character, and 
subsequently generate a new data frame. In the sample data, 
we use sapply() function to extract all numeric columns.

> dpData[ , sapply(dpData, class)=='numeric']

    WBC Lymph

1  14.8  11.3

2  15.7   7.0

3    NA   9.6

4  23.2   7.6

Extracting subset of data frame
The function of subset() provides a flexible method for 
extracting a subset of data frame, in which the filtering 
criteria could be operated onto both row and column. In 
the sample data, we try to extract female patients with WBC 
higher than 18, and after which only three variables of Sex, 
WBC and Lymph are included in the new data frame.

> subset(dpData, Sex=='Female' & WBC > 18, 
select=c('Sex', 'WBC', 'Lymph'))

      Sex  WBC Lymph

4  Female 23.2   7.6

9  Female 18.6   6.5

10 Female 35.4   8.1

Renaming column of data frame

Renaming column would also facilitate the following data 
analysis and visualization in some cases. In the sample data, 
we simplify the names of WBC and Lymph variables into 
W and L, respectively.

> names(dpData)[names(dpData)=='WBC'] = 'W'

> names(dpData)[names(dpData)=='Lymph'] = 'L'

> head(dpData)

  PatID   AdmDate    Sex Class    W    L
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1  p001 2016/10/3 Female Type2 14.8 11.3

2  p002 2016/10/3 Female Type2 15.7  7.0

3  p003 2016/10/4   Male Type2   NA  9.6

Reshaping data frame between wide and long formats
In R the measurements of different variables could be 
arranged into separate columns, which referred to as the 
“wide” format of data frame. Alternatively, all values of 
multiple variables could be stacked together into a single 
column (namely value column), for which an additional 
column is used for storing variable’s names (namely variable 
column); and this is the “long” format of data frame. Both 
melt() and dcast() functions in reshape2 package provide 
simple methods for converting between wide and long 
formats of data frame. In the sample data, two variables 
of WBC and Lymph are initially arranged as wide format, 
which could be converted into the long format.

> long = melt(dpData, measure.vars=c('WBC', 'Lymph'))

> head(long)

 PatID   AdmDate    Sex Class variable value

1 p001 2016/10/3 Female Type2      WBC  14.8

2 p002 2016/10/3 Female Type2      WBC  15.7

3 p003 2016/10/4   Male Type2      WBC    NA

Subsequently, we could convert the long format back to 
wide format.

> dcast(long, PatID + AdmDate + Sex + Class ~ variable, 
value.var='value')

  PatID    AdmDate    Sex Class  WBC Lymph

1  p001  2016/10/3 Female Type2 14.8  11.3

2  p002  2016/10/3 Female Type2 15.7   7.0

3  p003  2016/10/4   Male Type2   NA   9.6

Merging two data frames
In R the merge() function is powerful for joining two data 
frames together based on the common variable(s). The 
missing value from one of the data frames could be flexibly 
treated, in which “NA” character will be filled if necessary. 
We construct two simple data frames for illustrating the 
merge() function.

> df1=data.frame(x=c('a','b','c','d'), y=c(1,2,3,4))

> df2=data.frame(x=c('a','b','e'), z=c(1,3,5))

> merge(df1, df2, all=TRUE)

  x  y  z

1 a  1  1

2 b  2  3

3 c  3 NA

4 d  4 NA

5 e NA  5

Conclusions

Because R is extremely flexible for data manipulation, a 
number of methods could be likely employed for solving 
the same problem. However, such enhanced flexibility 
in usage would inevitably confuse the user, especially for 
these beginners. Therefore, we try to outline the common 
manipulations of data and then exemplify the typical 
applications in biological researches. Of course, only one 
method is recommended for a certain task in the present 
paper, which doesn’t mean that this method is absolutely 
superior to others. Because it is mainly intended to provide 
an overall landscape, both the arguments and usage for 
these introduced functions are not further described in 
details. Finally, any calculation or manipulation for our 
sample data has no biological meaning at all.
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