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In the last decades angiography has been the keystone to 
assess coronary anatomy, leading to a rapid development 
of percutaneous revascularisation techniques. Despite 
the widespread dissemination and high reproducibility, 
angiography provides a limited analysis of arterial lumen 
profile without the possibility to disclose vessel wall 
characteristics and composition of coronary plaques. 
Intracoronary imaging techniques have been developed to 
overcome these limitations. Intravascular ultrasound (IVUS)  
was the first technique introduced in interventional 
cardiology in the early 90ies (1), followed more than a 
decade after by optical coherence tomography (OCT). 
OCT is a light-based technology that similar to IVUS 
provides information about intravascular anatomy that 
far exceeds the level of detail obtained from conventional 

angiography (2). The use of near-infrared light rather 
than ultrasound reflectance allows OCT to have greater 
resolution at the price of lower penetration power. 
Moreover, near-infrared light is scattered by red blood 
cells, and therefore OCT use for guidance of intervention 
is limited by the need of prolonged crystalloid infusion 
during imaging (3,4). In so forth, the penetrance of OCT 
in daily clinical practice was limited and the technology was 
mainly employed as a research tool to investigate plaque 
morphology and strut endothelialisation (5). The frequency 
domain OCT system (FD-OCT) has the advantage of a 
more rapid image acquisition due to the fast-scanning laser 
systems minimising the contrast use and increasing imaging 
speed while delivering an improved image quality than 
with the earlier time domain systems (TD-OCT) (6). This 
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allows multiple acquisitions of the entire vascular segment 
of interest with an amount of contrast only slightly higher 
than the amount required for the control angiogram (7). 
Another potential advantage of the FD-OCT over the old 
TD-OCT is that imaging acquisition does not require 
arterial balloon occlusion during the pullback, reducing 
the risk of ischemia and vascular injuries (8). However, 
despite the safety and high-resolution power, the use of 
FD-OCT during PCI is less than 5% worldwide and its real 
role during daily practice still have to be defined. Surely, 
a potential field of application of OCT is for guidance of 
bioresorbable vascular scaffold (BRS) implantation.

BRS represent a revolutionary concept in interventional 
cardiology. This technology has the potential to induce 
a true anatomical and functional “vascular restoration” 
after coronary revascularization, with the scaffold losing 
mechanical integrity after 6–12 months and completely 
reabsorbed in 3–5 years (9,10). After initial enthusiasm, 
justified by the positive results reported in initial small studies 
and by the ABSORB III randomized trial that showed a non-
inferiority for target lesion failure (TLF) at 1 year between 
Absorb BVS (Abbot Vascular, Santa Clara, California, USA) 
and the Xience everolimus eluting stent (EES) (11,12), the 
AIDA trial and the three years follow up of the ABSORB II 
trial reported not trivial rates of scaffold thrombosis (ScT), 
requiring further investigations (13,14). These negative 
findings affected so much the credibility of bioresorbable 
therapy that the ABSORB BVS has been recently retired 
unless if used in controlled study protocols. Surely, the 
uncorrected patients and plaques selection together with 
suboptimal scaffold implantation might be partially related 
to the BRS negative results.

One of the potential pitfalls of bioresorbable scaffold is 
the low radial strength. While new generation metallic drug 
eluting stents (DES) presents a high radial strength able to 
counteract plaque recoil, the BRS structure is further weakened 
during the reabsorption process. Moreover, the presence of 
calcium or fibrosis that impairs distensibility of the vessel wall 
behind the scaffold might represent major limitations to an 
optimal scaffold opening. In so forth, tissue characterization 
and lesion preparation before BRS implantation is one of the 
crucial step for optimal BRS response.

OCT can accurately assess plaque characteristics such 
as calcifications, fibrous and lipid-rich plaque components, 
as well as the presence of dense macrophage infiltration, 
neovascularization and mural/luminal thrombi (15-19). 
Unfortunately, because of its limited tissue penetration, 
OCT is not suitable to properly visualise the external elastic 
membrane (EEM) in heavily diseased segments so that IVUS 
remains the gold standard to study vessel remodelling (19,20).

Once correct plaques characterization has been 
performed, the next step for optimal BRS response sees 
a proper lesion preparation followed by optimal scaffold 
apposition (Figure 1) (21-23). In fact the mechanical 
properties of BRS substantially differ from those of 
metal stents and the relatively less radial strength may 
results in insufficient scaffold expansion that might not 
be corrected by an aggressive post-dilatation because of 
the awareness that it might results in scaffold fracture. 
The lack of shadowing observed beyond polymer struts 
makes OCT the optimal imaging technique to optimize 
BRS implantation and identify eventually scaffolds failures 
such as malapposition, edge dissection, tissue protrusion, 
thrombus and fractures (24).

Figure 1 Shows the angiographic view of two sequential stenosis in the mid LAD (A) successfully treated with a 3.0×28 and 2.5×18 mm 
Absorb BVS (B). OCT cross-sections [1, 2, 3] and the OCT longitudinal view [4] show the optimal scaffold expansion.
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Role of OCT guidance for BRS in clinical 
trial and registries: apposition, coverage and 
reabsorption

OCT has been largely applied in dedicated cohorts of 
patients from major clinical BRS-trials for the assessment of 
acute post-procedural and long-term outcome (Table 1). 

The ABSORB trial has provided the first description 
of the OCT appearance of the scaffolds. In the ABSORB 
cohort B study, enrolling 101 patients treated with the 
ABSORB everolimus-eluting scaffold (Abbott Vascular, 
Santa Clara, California), OCT was performed in 2 groups 
of patients, respectively at 6 and 24 months (B1, n=45) 
and 12 and 36 months (B2, n=56). Baseline imaging was 
optionally performed in 51 patients. The results showed the 
maintenance of the scaffold area at distance, with a slight 
decrease in luminal area, as a consequence on neointimal 
proliferation inside the BRS. In fact, 97% of the struts were 
covered at 1 year, with the scaffold displaying initial signs 
or resorption, but still largely visible (25). In addition, the 
comparison of post-procedural and late imaging allowed 
the discrimination between the acute scaffold disruption, 
which has been associated to an increased risk of TLF 
and thrombosis, and late discontinuities, representing the 
natural consequence of the reabsorption process (26).

In the subsequent ABSORB Japan trial, 400 patients 
were randomized to receive either the ABSORB BVS or 
cobalt-chromium EES. One-hundred twenty-five patients 
were randomly assigned to the OCT cohort, undergoing 
an imaging assessment at baseline and 2 years of follow-up.  
The OCT findings showed a complete vascular healing at 
2 years, almost full struts coverage and minimal scaffold 
malapposition both in BRS and DES groups. Larger tissue 
growth was observed inside the BRS, resulting in a smaller 
flow area. The authors reported a 1.6% of very late ScT 
rate certainly superior to the <1% reported with newer 
generations of DES. OCT imaging of this subgroup of 
patients showed struts malapposition and discontinuities, 
but whether this was a late acquired “physiological” 
phenomenon or an acute post-implantation rupture could 
not be discriminated for the lack of immediate post-
implantation data because OCT evaluation was performed 
only after the event (27).

In another study our group showed that an extensive 
use of OCT for guidance of BRS implantations allowed 
achieving similar acute performance than second generation 
metallic DES even during treatment of complex coronary 
lesions (28). We compared fifty complex coronary lesions 

(all type ACC/AHA B2-C) treated with BRS under OCT 
guidance matched to an equal number of lesions treated 
with second generation DES. We found a similar incidence 
of residual area stenosis (RAS) and overall percentage of 
incomplete stent apposition (ISA) between the DES-group 
and BRS-group. Mean and minimal lumen area were similar 
in the two groups with also a similar mean and minimum 
eccentricity as well as symmetry index between the two groups. 
In the BRS group, there was a trend toward a higher 
prolapse area but this did not significantly impact on the 
final lumen area. These results however required a higher 
balloon diameter/mean reference vessel diameter ratio for 
predilatation in the BRS group with significantly higher pre 
and post dilatation inflation pressure together with a more 
extensive use of NC balloons for lesion preparation in the 
BRS group. Despite this, our data suggest that a satisfactory 
scaffold expansion can be achieved also in complex coronary 
lesions, at least when appropriate lesion preparation and 
BRS deployment under OCT guidance is performed. 
Moreover, in a small subgroup of 22 calcified lesions we 
also showed the safety and feasibility of super high-pressure 
dilatation (max post dilatation pressure of 28±3 ATM) after 
BRS deployment without reporting any scaffold fractures (29).

The importance of OCT examination during BRS 
implantation is also highlighted by another study (30). In 
this retrospective analysis of more than 200 consecutive 
BRS implanted in 101 patients, we found that almost half 
of the OCT examinations led to a change in strategy before 
and/or after scaffolds implantation. When used before, 
OCT images suggested additional lesions preparation and 
allowed fine-tuning of the length and size of BRSs used. 
When used as a final control, OCT-pullback led to further 
post-dilatation in almost one third of the cases despite the 
aggressive systematic angiography-guided optimization 
technique used in the study. Interestingly, we also found 
that lesions treated with 2.5-mm overlapping scaffolds, 
considered at a higher degree of complexity, required more 
than one OCT pullback in a higher proportion of cases 
compared with the other lesions; not a trivial finding since 
the vast majority of ScT reported generally affect BRS 
improperly used during treatment of small coronary vessels.

Similar results, as compared to the ABSORB BVS, have also 
been achieved with the DESOLVE novolimus-eluting BRS 
(Elixir Medical Corporation, Sunnyvale, California, USA).  
The authors compared the OCT findings from a 
cohort of patients treated with the ABSORB (n=35) and  
37 matched patients receiving the DESOLVE-150 scaffold. 
There was no difference in minimal and mean lumen area 
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and in the incidence of struts malapposition between the 
two scaffolds. However, the DESOLVE-150 showed a 
non-significantly higher tissue prolapse and asymmetric 
expansion, potentially conditioned by the slightly inferior 
thickness of the struts as compared with the ABSORB 
BVS (150 vs. 156 µm). Nevertheless, differences in the 
characteristics of the treated lesions could also have 
influenced the results of the study (31).

Indeed, the relevance of the thickness of the BRS 
struts has emerged after the demonstration that large 
scaffold platforms present limits in deliverability and 
favour the disruption of the laminar flow, with increase in 
thrombogenicity. The DESOLVE-100 µm (Elixir Medical 
Corporation, Sunnyvale, California, USA), in fact, has been 
implanted in 15 patients and compared with the results of 
the larger DESOLVE-150 (n=45 patients). OCT showed a 
good mechanical acute performance of the thinner platform, 
with lower rates of edge dissections. However, higher rates 
of scaffold fractures and reduced radial force emerged with 
the 100µm platform, despite larger experiences are certainly 
needed to draw more definite conclusions (32).

A similar reduction in the thickness of the struts 
has been observed in the Amaranth research program 
(Mountain View, CA, USA), although their BRSs still 
represent investigational products not available on the 
market. The first FORTITUDE—150 µm sirolimus-
eluting scaffold showed 96% struts coverage and scaffold 
stability at 9-months OCT examinations. The subsequent 
APTITUDE—115 µm sirolimus-eluting scaffold, in the 
RENASCENT II study, confirmed at 9-months OCT good 
struts coverage (97%), with a low rate of malapposition 
(0.037% of struts, all re-endothelized), whereas the 
MAGNITUDE—100 µm sirolimus-eluting scaffold is 
currently evaluated in the ongoing RENASCENT III study.

The MeRes 100 BVS (Meril Life Sciences Pvt. Ltd., Vapi, 
India) also is an analogous low-profile, sirolimus-eluting 
BRS, that has been implanted in 166 lesions (108 patients) 
in the MeRes-1 first-in-man study. The OCT re-assessment 
showed an early 6-months high rate of neointimal coverage 
(99.3%), potentially providing an explanation for the good 
clinical performance (low rate of MACE, 0.93%, with no 
ScT) at 1-year clinical follow-up (33).

Finally, a different scaffold design, has been developed for 
the DREAMS 2G (Magmaris; Biotronik, Bülach, Switzerland),  
a sirolimus-eluting scaffold built in a magnesium alloy. In 
the BIOSOLVE II and III program, OCT was performed 
on volunteer basis at 6, 12 and 36 months. No intraluminal 
mass was detected by OCT in BIOSOLVE-II at 6 and 

12 months and no malapposed struts were detected at 
6-months, when scaffold struts were already well embedded 
into the vessel wall, with 95% of absorption at 12-months. 
Thanks to its laser-polished surface the DREAMS 2G 
present a smooth surface, and strut cross-sections are 
rectangular with rounded edges, which may facilitate 
embedding into the vessel wall (34). Nevertheless, a 
dedicated Magmaris-OCT study is currently ongoing and 
will enrol 60 consecutive patients undergoing Magmaris 
scaffold implantation. The primary end point will be the 
percentage of uncovered scaffold struts assessed by OCT at 
the prespecified follow-up up to 12 months (35).

Conclusions

BRS represent a revolutionary concept in interventional 
cardiology with their unique potentiality to induce a true 
anatomical and functional “vascular restoration” after 
coronary revascularization. However, the mechanical 
properties of these polymer-based scaffolds highly differ from 
the metallic stents used in our daily practice. The importance 
of correct patients selection as well as technical aspects 
during BRS implantation procedures has been highlighted in 
several studies suggesting that the high ScT reported might 
be related to the underutilization of intracoronary imaging 
guidance during BRS implantation. OCT might represent 
the optimal imaging technique to optimize BRS implantation 
and identify eventually scaffolds failures.
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