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Introduction

Temporary mechanical cardiorespiratory support with the 
use of extracorporeal membrane oxygenation (ECMO) 
circuitry in adult patients is a relatively new development 
in medicine (1-3). Technological advancements have 
allowed use of these therapies with relative ease and the 
patient outcomes are promising, even when it is applied 
as a rescue therapy (4). As ECMO finds its place in 

modern intensive care unit (ICU), clinical application of 
this technology needs further refinement to optimise its 
effectiveness. Currently, there is lack of clarity on many 
aspects of ECMO management and it may take decades of 
further research to generate evidence that will guide best 
practice. There is undoubtedly a learning curve for such 
complex interventions and clinical application of ECMO is 
rapidly evolving. For example, sedation on ECMO can be 
a significant challenge (5,6), but a patient being kept bed-
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bound whilst receiving ECMO and with heavy sedation is 
no longer a common practice in advanced ECMO centres 
and there is increasing emphasis on early interruption of 
sedation and use of mobilisation techniques (7-9). Optimal 
ventilation strategies on ECMO are also unclear and this 
has a significant bearing on sedation practices. Similarly, 
modern circuitry has allowed safe conduct of ECMO with 
low intensity anticoagulation (10). Very few centres now 
administer prophylactic antibiotics to their ECMO patients. 
Therefore, pharmacotherapy needs to be applied in a goal-
directed fashion. Often, ECMO is a bridge to further long-
term devices or transplant (11,12), and once again optimal 
pharmacotherapy helps clinicians to manage the ECMO run 
in a manner that minimises complications and maximises 
the likelihood of a patient receiving destination therapy. 
A thorough understanding of altered pharmacokinetics/
pharmacodynamics (PK/PD) during ECMO is essential to 
apply pharmacotherapy in these complex patients (13), and 
this paper aims to provide the necessary background for 
clinicians and researchers in this field.

Pharmacotherapy to reverse disease

Mechanical support does not necessarily replace pharmacological 
support and optimal pharmacological management is critical to 
reverse underlying disease and minimise complications. Such 
drug therapy may include:

(I) Antibiotics or immunomodulator drugs that are 
administered to reverse underlying disease; 

(II) Sedation and analgesia to minimise pain, discomfort 
and anxiety; 

(III) Anticoagulation to minimise thrombotic risks 
within the patient and in the circuitry; 

(IV) Vasoactive drugs to support circulation or promote 
native cardiac ejection; 

(V) Diuretic agents to assist fluid balance; 
(VI) Other general supportive measures. 
It is important that these drugs are dosed effectively to 

achieve desired clinical effect which includes minimising 
the possibility of drug toxicity. While vasoactive drugs, 
sedatives, diuretics or anticoagulants can be titrated to real-
time observable clinical endpoints, antibiotic dosing is often 
arbitrary or based on data from critically ill patients not on 
ECMO, or even from non-critically ill patients (14). This 
is concerning as reversal of the underlying disease that 
leads to cardiac and/or pulmonary dysfunction is critical to 
liberation from ECMO and not all patients may be bridged 
to other definitive options such as a long-term device or 

transplantation. 
Therefore, the increasing use of ECMO in adult ICUs 

needs to be accompanied by an in-depth understanding on 
the potential ECMO-related PK changes and how these 
alterations may affect dosing requirements. The current 
challenge therefore is to investigate the ECMO-related 
PK changes in these drugs to in order to design optimised 
drug dosing regimens. Extreme PK changes in critically ill 
patients have been well described (14), and the introduction 
of ECMO appears to have added an additional level of 
complexity and importantly, another variable inadequately 
characterised in adult critical care management (15). 
Preliminary investigations have demonstrated that the 
introduction of ECMO potentially leads to significant 
changes in the PK of drugs in three ways: (I) drug 
sequestration by the circuit; (II) increased volume of 
distribution (Vd) and; (III) altered drug clearance (CL). 

ECMO and drug sequestration

The interaction between the ECMO circuit and the 
physicochemical properties of drugs may lead to significant 
changes in the PK of many important drugs, subsequently 
altering the dosing requirements for patients on ECMO. 
An advanced understanding on this intricate interaction is 
critical to drug dosing in patients receiving ECMO, at least 
until more robust dosing guidelines become available. 

Circuit factors
ECMO circuitry, which includes the conduit tubings 
and oxygenator membrane,  introduces addit ional 
extracorporeal volume and increases the surface areas that 
drugs can be trapped in and adsorbed on. This results 
in an increase in Vd and subsequent decreases in plasma 
drug concentrations (15,16). However, the adsorption 
phenomenon may decrease over time due to saturation of 
binding sites and it is imperative that dosing of drugs also 
reflects this situation; applying higher dosing continuously 
during ECMO to overcome this adsorption phenomenon 
may later lead to drug toxicity. Conversely, the circuit may 
serve as a reservoir and redistributes the sequestered drug 
back into the patient even after the drug administration 
stops, potentially leading to prolonged undesirable 
pharmacological effects. Sequestration of drugs can be 
influenced by the following circuit factors: oxygenator 
materials (17-19); the types of conduit tubings (19,20); 
circuit age (20-22) and; the composition of the priming 
solution (23-25).
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Physicochemical characteristics of the drug
The physicochemical properties of a compound determine 
the interaction of an individual drug with the ECMO 
circuit. The specific physicochemical characteristics that 
need to be considered include molecular size, pKa and 
degree of ionisation, lipophilicity and plasma protein 
binding (15). Numerous ex vivo data have suggested that the 
degree of lipophilicity and protein binding are significant 
factors affecting the proportion of drug sequestered within 
the ECMO circuit (23,24,26-28). The lipophilicity of a 
drug is generally described by the n-octanol/water partition 
coefficient (log P); a high positive log P indicates a higher 
degree of lipophilicity and therefore, drugs with such a 
property tend to be highly sequestered and extracted by the 
ECMO circuit than drugs with a lower log P (18,28,29). 
Additionally, the extent of protein binding may determine 
the degree of drug sequestration for drugs with similar 
lipophilicity (26,29).

ECMO and increased volume of distribution

The introduction of ECMO may alter the apparent Vd of 
drugs by the following mechanisms: (I) drug sequestration; 
(II) haemodilution from priming solution and; (III) ECMO-
related physiological changes. PK changes associated with 
the systemic inflammatory response syndrome (SIRS) 
are common in critically ill patients receiving ECMO, 
potentially leading to an increase in Vd of hydrophilic 
drugs (30). Furthermore, patients receiving ECMO may 
have significant changes in blood pH leading to further 
alterations in drug distribution, degree of ionisation and 
protein binding (31). Numerous data documenting the 
relationship between ECMO usage and enlarged Vd mostly 
originated from ex vivo and neonatal PK studies (16,32,33). 
Hence, the extrapolation of this data to critically ill adult 
patients may potentially be misleading due to significant 
physiological and body composition differences between 
these populations and must be undertaken with caution.

ECMO and drug clearance

In general, ECMO patients have been shown to display 
lower drug CL when compared with patients not receiving 
ECMO (16). Lower drug CL and the resultant accumulation 
of drugs and their metabolites are believed to be caused 
by renal and hepatic hypoperfusion and hypoxia (34).  
This phenomenon is sometimes offset by the initial increase 
of clearance due to increased cardiac output secondary to 

SIRS, aggressive fluid therapy and inotropic support (30).
Dosing regimens based on the CL of non-ECMO 

population are often used to guide dosing in ECMO 
patients due to scarcity of more relevant data. As previously 
discussed, the PK parameters in this subpopulation are 
likely to be unique. Much of the current ECMO PK data 
exist in the neonatal literature (35), but extrapolation 
from this must be done with caution in the context of the 
immature glomerular and tubular function, as well as the 
developing hepatic function of newborns (36).

The impact of ECMO on the PK of antimicrobials

Much of the emphasis and incentive to better understand 
ECMO-related PK changes stems from the desire to 
provide optimal antibiotic therapy for critically ill ECMO 
patients. Optimal antibiotic therapy has been shown to 
correlate with improved patient outcomes (37-39) and 
this strategy often underpins the primary treatment goal 
in this patient population. In comparison to sedatives and 
vasoactive agents, which can be titrated to effect, antibiotic 
therapy is guided by laboratory surrogates without any real-
time feedback. Suboptimal antibiotic dosing may likely lead 
to treatment failures and importantly, to the development of 
bacterial resistance (40). Optimal dosing of antibiotics must 
consider physicochemical characteristics of the individual 
drug and its interaction with the circuit (26,28,29). In the 
absence of robust data guiding antibiotic dosage for patients 
on ECMO, it is prudent that the use of existing published 
data is supplemented with therapeutic drug monitoring 
(TDM) where possible. Table 1 summarizes the potential 
PK changes and suggested dosing adjustments for several 
important antimicrobials during ECMO support. 

Beta-lactams

Beta-lactam antibiotics are relatively hydrophilic with 
varying levels of protein binding. This suggests that there 
may be inter-class variability in their ECMO-related PK 
changes. For example, ceftriaxone is ≥85% protein-bound 
and would likely have higher drug sequestration into 
the ECMO circuitry than other beta-lactams with lower 
protein-binding properties (26,29). The beta-lactam’s 
optimal bactericidal killing is achieved when the free 
(unbound) drug concentration remains four-to-five times 
above the minimum inhibitory concentration (MIC) of a 
pathogen for extended periods during a dosing interval 
(fT>MIC) (54,55). Existing dosing regimens aim to optimise 
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this index but with the ECMO- and critical illness-related 
PK changes, the ability to ensure optimal fT>MIC becomes a 
clinical challenge. 

Numerous ex vivo model of ECMO circuits (26,28,56,57) 

and clinical PK studies (46,47,58,59) have investigated beta-
lactams PK during ECMO support. The earlier studies 
demonstrated high variability in drug concentrations 
with a largely unpredictable PK profile when comparing 

Table 1 Summary of pharmacokinetic changes and potential dosing adjustments for antimicrobials during ECMO

Drug (ref.)
N-octanol/water 
partition coefficient

Protein 
binding (%)

Anticipated/reported 
pharmacokinetic changes

Dosing recommendations & 
comments

Antibiotics

Aminoglycosides  
(41-45)

<0.0 <30 Minimal circuit drug 
sequestration; enlarged Vd; 
decreased CL

Insufficient data to recommend 
optimal dosinga; TDM-guided 
dosing

Beta-lactams

Ampicillin (24) 1.35 15–30 Minimal to moderate circuit drug 
sequestration; enlarged Vd

Consider alternative agents; less 
drug loss in blood-primed vs. 
crystalloid-primed circuit 

Ceftriaxone (26,29) −1.7 95 Significant circuit drug 
sequestration; enlarged Vd

Dosing similar to critically ill 
patients not on ECMO support; 
TDM-guided dosing

Meropenem (46,47) −0.69 2 Minimal circuit drug 
sequestration; enlarged Vd; 
circuit drug loss due to stability 
issues associated with the 
carbapenems

Dosing similar to critically ill 
patients not on ECMO support; 
TDM-guided dosing; consider 
alternative dosing strategies (CI or 
EI dosing)

Piperacillin/tazobactam 
(46)

0.67 30 Minimal circuit drug loss; 
enlarged Vd

Dosing similar to critically ill 
patients not on ECMO support; 
TDM-guided dosing; consider 
alternative dosing strategies (CI or 
EI dosing)

Fluoroquinolones 
(26,29)

<2.3 20–40 Minimal circuit drug 
sequestration

Dosing to optimise AUC0-24/MICb

Vancomycin (48-51) −3.1 50–60 Minimal circuit drug 
sequestration; enlarged Vd

Dosing similar to critically ill 
patients not on ECMO support; 
a loading dose 25–30 mg/kg 
followed by 30–40 mg/kg/day; 
TDM-guided dosing; consider CI 
dosing

Antifungals

Caspofungin (24,52,53) <0.17 97 Minimal to moderate circuit drug 
sequestration

Insufficient and conflicting data; 
dosing adjustments may be 
required

Voriconazole (24,52) 1 58 Significant drug sequestration Higher initial loading dose 
with higher daily doses; TDM-
guided dosing to monitor circuit 
saturation

a, due to major refinements in ECMO technology, earlier pharmacokinetic data and dosing recommendations may potentially be irrelevant 
to current practice; b, these may be achieved with a 400 mg 8-hourly or 600 mg 12-hourly for ciprofloxacin. ECMO, extracorporeal 
membrane oxygenation; MIC, minimum inhibitory concentration; TDM, therapeutic drug monitoring.
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ECMO versus non-ECMO patients. However, two 
recent studies have both suggested that the introduction 
of the ECMO does not significantly alter the PK of 
beta-lactams (46,47). As the presence of ECMO has 
not been found to significantly alter the PK of beta-
lactam antibiotics, the recommended dosing strategies 
for critically ill patients without ECMO support can 
be applied in this patient population (60). It is also 
suggested to use beta-lactam TDM during ECMO to 
maximise therapeutic outcomes (60,61). 

Vancomycin

This glycopeptide antibiotic exhibits optimal bacteriological 
and clinical outcomes when the ratio of area under the 
concentration-time curve during a 24-hour period (AUC0–24) 
to MIC (AUC0–24/MIC) is maintained ≥400 (62,63). Early 
adult and neonatal PK studies suggested that there is an 
ECMO-related increase in Vd and decrease in CL and as 
a result alterations in effective vancomycin concentrations 
(64-66). Many newer studies have not corroborated these 
earlier findings (48-51). A retrospective PK study showed 
that conventional intermittent vancomycin dosing may 
likely be a flawed dosing strategy during ECMO, with 95% 
of the cohort achieving suboptimal antibiotic exposure (50). 
However, a matched-cohort study conducted by Donadello 
et al. showed similar Vd and CL between ECMO and non-
ECMO patients, who all received continuous vancomycin 
infusion (51). This suggests that the use of continuous 
vancomycin infusion during ECMO may potentially negate 
the ECMO-related PK changes. Higher vancomycin doses 
may be required if intermittent bolus dosing is used in 
patients receiving ECMO.

Fluoroquinolones

Similar to vancomycin, optimal bactericidal killing of 
fluoroquinolones is associated with the AUC0–24/MIC  
ratio (67). There are limited PK data available on this class 
of antibiotic in ECMO patients, but an ex vivo experiment 
has suggested that the risk of circuit drug loss is relatively 
low and potentially insignificant for ciprofloxacin (26). 
Given other members of the group such as moxifloxacin and 
levofloxacin have a lower log P values with similar protein 
binding properties as compared to ciprofloxacin (68), it is 
therefore anticipated that the degree of sequestration in 
ECMO circuit for these drugs may also be relatively low. 
It is highly likely that no dosing adjustment is required 

when these antibiotics are used during ECMO but dosing 
should seek to maximise AUC0–24/MIC ratio as this ensures 
optimal therapeutic outcomes in critically ill patients (67). 
Nevertheless, more robust PK data are urgently needed to 
corroborate these preliminary data.

Aminoglycosides

Limi ted  da ta  ha s  been  pub l i shed  on  the  PK o f 
aminoglycosides in the critically ill adult population 
receiving ECMO. Aminoglycoside exhibits concentration-
dependent bacterial killing and optimal therapeutic 
outcomes have been associated with achieving a ratio of 
peak drug concentration (Cmax) to MIC (Cmax/MIC) ratio 
of 10–12 (69) and an AUC0–24/MIC ratio of 80–160 (70). 
Neonatal PK studies have mostly reported an increase in the 
Vd of gentamicin with a decrease in CL (41-45). However, 
extreme caution must be taken when extrapolating these 
findings to the critically ill adult patients given marked 
differences in patient physiology and rapid evolution of 
ECMO technology, rendering earlier PK knowledge and 
dosing recommendations irrelevant to current clinical 
practice. It is also recommended that TDM should continue 
to be employed when an aminoglycoside is used in patients 
receiving ECMO.

Antifungals

Antifungals are heterogeneous group of drugs with varying 
levels of protein binding and lipophilicity. With limited 
large-scale PK data, their optimal dosing in ECMO 
remains arbitrary. Voriconazole demonstrated significant 
sequestration into the ECMO circuit in an ex vivo study (24), 
with 71% of circuit drug loss being reported, which was 
expected due to the drug’s high log P value and moderate 
protein binding property (68). Another published case study 
of voriconazole in ECMO patients corroborated the ex vivo 
finding, highlighting the need for an increased voriconazole 
dosing for this subpopulation (52). However, Spriet et al. 
also demonstrated time-dependent saturation of the circuit 
leading to supra-therapeutic concentrations with increased 
dosing. 

The echinocandin antifungal, caspofungin, has also been 
studied in ex vivo model of ECMO circuit reporting a 43% loss 
due to sequestration (24). However, several reports in critically 
ill adult patients documented conflicting findings (52,53). 
Further, larger powered studies are required to investigate the 
PK of antifungals in patients on ECMO support.
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The impact of ECMO on the PK of sedatives and 
analgesics

Significant amounts of research have been dedicated 
towards optimising sedation and analgesia for critically 
ill patients. Evidence-based sedation protocols, primarily 
aiming for lighter and minimal sedation, have been 
suggested to improve therapeutic outcomes in critically 
ill patient population (9). However, strict adherence to 
these recommendations may be challenging in critically 
ill patients receiving ECMO and importantly, may not 
always be practical in such a scenario. Earlier in the 
course of extracorporeal support, patients on ECMO 
usually require deep sedation and paralysis to optimise 
circuit flows and ventilation whilst eliminating pain, 
anxiety and other forms of distress induced by the ICU 
environment (71). Further to this, emerging reports 
have documented greater sedative requirements are 
needed for critically ill neonates (33,59,72,73) and adults 
during ECMO support (5,6). PK studies in neonates 
have consistently reported increased Vd and decreased 
drug CL during ECMO (16,35), both of which could 
potentially explain the heightened sedation requirement 
observed in this patient cohort. Table 2 summarizes the 
potential PK changes and suggested dosing adjustments 
for several important sedatives and analgesics during 
ECMO support.

Opioids

Fentanyl, due to its higher degree of lipophilicity (68), 
appears to be more significantly sequestered in the 
ECMO circuit as opposed to other drugs. In a recent 
ex vivo experiment, Shekar et al. demonstrated that the 
mean drug loss of fentanyl (97%) to ECMO circuits was 
relatively higher when compared to those of morphine 
(0%) and midazolam (87%) (28). This, among other studies 
(24,27,74-76), corroborates the need to escalate fentanyl 
doses over time in order to achieve optimal sedation in 
critically ill patients receiving ECMO (5,6). However, 
higher fentanyl doses for this cohort may not always be 
feasible and safe; excessive sedative drug use has been 
associated with increased patient morbidity in the ICU  
(78-81). Fentanyl therefore appears to be an inferior option 
in this population and if it is to be used, it may be considered 
as a short-term alternative to other agents. In an ex vivo 
model of ECMO circuit, Mehta et al. observed that fentanyl 
concentrations remained stable for up to 3 hours but were 
undetectable at 24 hours during their experiment (24).

In contrast, the impact of ECMO on morphine PK is less 
pronounced when compared to fentanyl (24,27,28,32,33). 
Shekar et al. demonstrated that the average morphine 
recovery from their ex vivo model of ECMO circuits at 
24 hours was >99% and this suggests that the risk of drug 
sequestration to the circuit is relatively low and potentially 

Table 2 Summary of pharmacokinetic changes and potential dosing adjustments for sedatives and analgesics during ECMO

Sedatives and analgesics (ref.)
N-octanol/water 
partition coefficient

Protein 
binding (%)

Anticipated/reported 
pharmacokinetic changes

Dosing recommendations & 
comments

Benzodiazepines

Midazolam (5,6,28) 3.9 97 Significant circuit drug 
sequestration

Higher initial loading dose with 
higher daily doses

Dexmedetomidine (17,20) 2.8 94–97 Significant circuit drug 
sequestration

Consider higher initial loading 
dose with higher daily dosesa

Opioids

Fentanyl (24,27,28,74-76) 4.1 80–85 Significant circuit drug 
sequestration

Consider alternative agents; to be 
considered only as a short-term 
analgesia 

Morphine (24,27,28,32,33) 0.9 30–40 Minimal to moderate circuit  
drug sequestration

Higher initial loading dose with 
higher daily doses

Propofol (23,77) 3.8 95–99 Significant circuit drug 
sequestration

Insufficient data but likely to 
require higher doses over time

a, should be considered due to favourable safety profile when compared to other traditional agents. ECMO, extracorporeal membrane 
oxygenation.
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insignificant for morphine (28). This, among other 
findings (18,24,27,32,33), may likely stem from the result 
of morphine being less lipophilic (68), and consequently, 
making it a superior clinical option as opposed to fentanyl 
in the management of ECMO patients. Additionally, 
morphine has also been reported to provide optimal 
analgesia, whilst reducing drug withdrawal and length of 
hospital stay significantly.

Although most of the available data noted greater 
op io id  requ i rement s  on  ECMO,  a  more  recent 
publication indicated otherwise. In a 2-year, prospective, 
observational study involving 32 critically ill patients 
on ECMO, DeGrado et al. observed that this cohort 
required relatively lower doses of opioids than previously 
described with no dose increments needed throughout 
the study duration (82). It is imperative to highlight that 
≥20% of the cohort were receiving ECMO as a bridge to 
transplantation and this subgroup of patients commonly 
requires lower sedative and analgesic doses compared 
with other indications for ECMO (83). Furthermore, 
sedation practices vary across different institutions and 
may contribute to these contradictory findings. DeGrado 
et al. also noted that the patients who received venovenous 
(VV) ECMO in this study also had significantly higher 
opioid requirements than those receiving venoarterial 
(VA) ECMO (82). Approximately half of the VV ECMO 
patients had acute respiratory distress syndrome (ARDS) 
and therefore were more likely to need higher doses 
of sedatives and analgesics, before and during ECMO 
treatment, to facilitate optimal mechanical ventilation. 
In contrast, VA ECMO patients may have been fully 
anaesthetised prior to or during cardiac surgery. 

Benzodiazepines

Significant midazolam sequestration has been observed 
in several neonatal and paediatric ECMO studies (59,84). 
In an ex vivo model of ECMO circuit, Shekar et al. aimed 
to describe midazolam disposition in the adult ECMO 
circuitry (28). In this experiment, the average midazolam 
recovery from the ECMO circuits was approximately 
13% and more importantly, half of the drug was lost 
in the circuits within 1 hour of the experiment. This 
essentially means that higher initial midazolam doses 
may be required to achieve early and optimal sedation 
in critically ill patients during ECMO support. These 
findings are further corroborated by two retrospective 
cohort studies (5,6), which aimed to characterise sedation 

requirements in patients receiving ECMO for cardiac 
and/or respiratory failure. In the first study, Shekar et al.  
reported that the median daily dose for midazolam 
was 175 mg (range, 24–1,500 mg), representing a 10% 
increase in daily dose after ECMO commencement (6). 
Furthermore, these patients were receiving up to 1,500 mg 
of midazolam/day despite concomitant use of propofol, 
dexmedetomidine, thiopentone and neuroleptic agents, 
raising genuine concerns of increased morbidity secondary 
to excessive sedation. In the second study, Nigoghossian 
et al. documented that ECMO patients required twice 
as high midazolam 6-hour exposure when compared to 
patients not on ECMO support (ECMO: 118 mg vs. non-
ECMO: 60 mg ; P=0.04) and optimal sedation was reached 
approximately three days later in the ECMO group (5). 

However, these earlier findings have since been 
contradicted by a recent publication and therefore warrant 
further investigation. In a cohort of 32 critically ill 
patients receiving ECMO, DeGrado et al. recently noted 
that these patients required significantly lower doses of 
benzodiazepines (24 mg) than previously documented in the 
literature and additionally, did not demonstrate a need for 
dose escalation throughout ECMO treatment (82). When 
patients who received ECMO as a bridge to transplantation 
were excluded from analysis, benzodiazepine requirements 
were significantly higher in the VV ECMO group (VV 
ECMO: 48 mg vs. VA ECMO: 34 mg; P=0.006), similar to 
what has been reported by Shekar et al. (6).

Dexmedetomidine

Dexmedetomidine is unique compared with other 
traditional agents, because it produces sedation and 
analgesia without compromising respiratory drive (85,86). 
However, limited data currently exist on its usage in 
critically ill patients during ECMO support (17,20,87). 
Due to the lipophilic nature of the drug, dexmedetomidine 
appears to be significantly lost through circuit adsorption 
during ECMO (68). Wagner et al. used an in vitro model 
to evaluate the impact of ECMO on the disposition of 
dexmedetomidine over the course of 24 hours (20). Within 
the first hour of the experiment, ≥40% of the drugs were 
lost in the circuits and only ≤30% remained at 24 hours. 
The investigators further suggested that the significant drug 
loss was likely due to adsorption to polyvinyl chloride (PVC) 
tubings and this notion has also been supported by a recent 
publication (17). The precise role of dexmedetomidine 
remains unclear in patients receiving ECMO but its 
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favourable safety profile may be advantageous over other 
traditional agents. On the basis of the available data, using 
higher initial loading doses with higher daily doses may be 
considered to compensate for the anticipated PK changes 
during ECMO treatment.

Propofol

As propofol is a highly lipophilic and highly protein bound 
drug (68), it is anticipated to be significantly sequestered 
within the ECMO circuitry (21,77,88-90). In an in vitro 
study, Hynynen et al. showed that approximately 35% and 
75% of propofol were lost within the ECMO circuits after 
5 and 120 minutes of the experiment, respectively (89). 
In a recent ex vivo model of whole-blood primed ECMO 
circuit, Lemaitre et al. reinforced earlier experimental 
findings which documented significant propofol loss 
through circuit adsorption (23). In this study, 70% of drug 
concentration diminished within the first 30 minutes of 
the experiment and after 5 hours, only 11% of the initial 
propofol concentration remained. Although these findings 
are expected based on the physicochemical properties of 
propofol, Lemaitre et al. also suggested that oxidation may 
also be an important determinant of propofol PK during 
ECMO; a 70% decrease in propofol concentrations were 
noted at 45 minutes post-oxygen exposure in the in vitro 
arm of the study. Based on these limited data, it appears 
that higher doses of propofol may be required over time 
for optimal sedation but further studies are needed to 
investigate the safety of such an approach in ECMO 
patients.

Anecdotally, in the author’s experience, a multimodal 
strategy of early tracheostomy/extubation where feasible, a 
combination of enteral longer-acting benzodiazepines and 
antipsychotics, intravenous short acting benzodiazepine and 
an opioid (morphine preferred) and dexmedetomidine in 
titrated doses to clinical endpoints often achieves optimal 
sedation, analgesia and anxiolysis. Intravenous ketamine can 
be a useful adjunct. Enteral methadone may be added as the 
risks of opioid withdrawal after weeks of high dose opioid 
therapy may be substantial and often excessive sedation is 
administered to overcome this. Dexmedetomidine, being 
a negative chronotropic agent can also aid optimisation of 
oxygenation in VV ECMO patients who have refractory 
hypoxia on ECMO in the setting of a high native cardiac 
output. Development of evidence-based sedation and 
analgesia targets and protocols for ECMO patients may 
help address this complex issue moving forward. 

The impact of ECMO on the PK of other drugs

There are limited data available on the PK of other drugs 
during ECMO and most of them originated from neonatal 
and paediatric studies. Scarce PK data are available for 
several cardiovascular drugs (91-95), diuretics (96-98), 
phenobarbital (99), ranitidine (100), and theophylline (101), 
and these studies generally reported altered drug PK and 
dosing requirements during ECMO support.  

Anticoagulants

Optimising anticoagulation in patients receiving ECMO is 
necessary to prevent some of the common ECMO-related 
complications, such as bleeding and/or thrombosis. The PK 
of heparin was studied on five infants receiving ECMO and 
in this study, Green et al. found that more than one-half of 
the administered heparin was cleared by the circuit itself 
or by blood components in the circuit (102). Data from an 
ex vivo ECMO model further corroborate this observation 
whereby approximately 30% and 50% of heparin were lost 
at 24 hours in the crystalloid- and blood-primed ECMO 
circuits, respectively (24). A more recent study by Park 
et al. however appears to contradict these earlier findings 
and their in vitro ECMO model essentially highlights the 
importance of material selection on ECMO-related PK 
changes (17). In this study, the authors found that heparin 
concentrations remain unchanged in the different types of 
tubings and oxygenators tested.

Future directions

In order to optimise drug dosing in critically ill patients 
receiving ECMO, it is essential that the relative impact 
of drug, device and critical illness factors are considered 
and systematically investigated, either in isolation or 
combination. This can be achieved by integrating pre-
clinical findings (e.g., ex vivo and animal ECMO models) 
with data from critically ill ECMO patients and through 
these processes, the PK of a drug and sources for its 
variability can be described and importantly, optimal dosing 
recommendations could be suggested for this patient 
population. In this respect, the ECMO PK Project (103) 
and the ASAP ECMO Study (104) are two prime examples 
of such an approach, combining mechanistic and clinical 
research to investigate PK alterations during ECMO. 
Data from the two studies will identify the drugs that are 
most suitable to be used during ECMO and strategies to 
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optimise dosing in critically ill patients receiving ECMO 
in accordance to PK/PD principles. Until robust dosing 
guidelines become available, physicochemical properties of 
drugs can be used to predict PK changes and consequently, 
guide effective dosing in this patient population.

Conclusions

Optimised pharmacotherapy enhances the effectiveness of 
ECMO and is crucial to its success. Clinicians should use 
available therapeutic drugs in a manner that allows the best 
possible clinical application of ECMO. Further refinements 
in clinical application of ECMO will provide clear PD 
endpoints for many of the drugs that are commonly used on 
ECMO. In the meantime, pending population PK data and 
dosing guidelines, a sound understanding of altered PK in 
critically ill and those on ECMO will serve a guide to drug 
dosing on ECMO.
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