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Immunotherapies that target programmed cell death 
protein 1 (PD-1) or one of its ligands, programmed cell 
death ligand 1 (PD-L1), are a recent breakthrough in 
treatment of human malignant diseases (1), including non-
small cell lung cancers (NSCLCs) (2). Monoclonal antibody 
drugs that target the interaction between PD-1 and PD-L1 
have shown dramatic and/or durable responses in a subset of 
NSCLC patients (3-6), leading to FDA approvals of three 
agents (nivolumab, pembrolizumab, and atezolizumab) for 
treatment of metastatic NSCLC patients. Other agents 
that also target this pathway, such as durvalumab (7) and 
avelumab (8), are currently under clinical development.

In an illustration of how these drugs work to eliminate 
tumor cells (Figure 1), the two most prominent actors are 
tumor cells themselves and tumor infiltrating cytotoxic T 
cells (1). In this context, tumor cells that express PD-L1  
suppress immune reactions of PD-1 positive activated 
T cells through the PD-L1/PD-1 interaction, thus the 
blockade of this pathway by immunotherapeutic drug(s) 
enables T cells to counterattack tumor cells.

On the other hand, it is also true that tumor immune 
microenvironment not only contains cytotoxic T cells 
but also consists of heterogeneous cell populations (9) 
including natural killer cells, dendritic cells, regulatory 
T cells, myeloid-derived suppressor cells, and tumor-
associated macrophages (TAMs). Several studies have 
identified that PD-1 is expressed in some of these immune 
cells other than cytotoxic T cells, and, reportedly, the PD-1 

inhibits function of these immune cells (10-12). However, 
the roles of PD-1, expressed by these immune cells, on 
tumor maintenance and tumor development are not fully 
understood. In addition, it is also unclear to date how 
immunotherapies that target PD-1 or PD-L1 affect these 
PD-1 positive immune cells (other than T cells). In a recent 
study, Gordon et al. has reported that both mouse and 
human TAMs express PD-1, PD-1 expression negatively 
correlates with phagocytic potency of TAMs, and blockade 
of PD-1/PD-L1 pathway in vivo reduced tumor growth and 
lengthened the survival of mice in macrophage dependent 
fashion using in vitro and in vivo colon cancer models (13).

Macrophages are among the most abundant normal 
cells in the tumor microenvironment (14). Most tissue 
macrophages arise from yolk sac/fetal liver progenitors, and 
aside from that, the lung residential macrophages are from 
three distinct lineages (yolk sac/fetal liver/and bone marrow) 
that arrive at different times, reside in different locations 
(alveolar/interstitial, or peripheral/central), according to 
a recent lineage-tracing study in mice (15). On the other 
hand, macrophages involved in pathogen responses appear 
to come from circulating bone marrow monocytes (14).

When considering the roles of macrophages in tumors, 
although their functions are exceptional diverse, researchers 
often simply divide microphages into two subtypes;  
M1 macrophages (classically activated macrophages) and 
M2 macrophages (alternatively activated macrophages) (16). 
These subtypes correspond to “tumor killing” and “tumor 
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promoting”, respectively, since M1 macrophages have roles 
to promote inflammation, while M2 macrophages suppress 
inflammation and facilitate tissue repair.

In clinical research settings, the roles of TAMs, as a 
prognostic factor, have been extensively studied in many 
tumor types, including NSCLCs. Although the results still 
have some contradictions, recent two meta-analyses (17,18) 
conclude that TAMs in tumor islet (higher density of M1 
TAMs) predict better prognosis, while TAMs in stroma 
(higher density of M2 TAMs) predict worse prognosis in 
NSCLCs. These results suggest a dual role of TAMs in 
tumor development and maintenance, providing a rationale 
to target immune suppressive TAMs (M2 TAMs) as a part 
of immunotherapies for cancers. In fact, for patients with 
solid malignancy or lymphoma, there are several ongoing 
trials (e.g., NCT02216409) that target CD47, an “immune 
checkpoint” of macrophages, the inhibition of which 
facilitates macrophages to phagocyte tumor cells.

In the study by Gordon et al. (13), colon cancer 
mouse cell lines were subcutaneously injected into 
immunocompetent mice to assess the expression and the 

roles of PD-1 on TAMs. They observed that around 50% of 
macrophages in the tumors expressed surface PD-1 (which 
correlated with the time after engraftment and the tumor 
volume), whereas no circulating monocytes or splenic 
macrophages expressed detectable levels of PD-1. These 
PD-1 positive TAMs expressed an M2-like surface profile, 
and these findings were confirmed in human colon cancer 
specimens. The authors also found, by using a bone marrow 
transplantation mice model, that the time-dependent 
increase in PD-1 positive TAMs is mainly attributed to bone 
marrow-derived macrophages homing to the inflammatory 
tumor microenvironment, rather than from tissue-resident 
macrophages differentiating into PD-1 positive TAMs. 
Ex vivo phagocytosis assay with GFP+ Staphylococcus aureus 
bioparticles and in vivo experiments with a mice model 
lacking an adaptive immune system revealed that PD-1 
positive TAMs showed reduced degree of phagocytosis, 
compared to their PD-1 negative counterparts. The  
in vivo model also showed that the phagocytic ability of 
PD-1 positive TAMs further decreased if co-existent tumor 
cells expressed PD-L1. These results led the authors to 
perform experiments to treat mice (which also lack an 
adaptive immune system) with PD-L1 positive tumors by 
anti-PD-1, anti-PD-L1, or combination of anti-PD-L1 and 
anti-CD47 agents. As they expected, these immunotherapies 
showed efficacy over PBS control in terms of tumor volume 
and survival of mice. This novel finding may enhance our 
knowledge about the roles of the PD-1/PD-L1 pathway 
in the tumor immune microenvironment involving tumor 
cells, cytotoxic T cells, and TAMs (Figure 2).

The first question for this study is whether or not these 
results can be applied to NSCLC patients. Since these 
experiments utilized mouse models with subcutaneous 
injection of cancer cells, they may not have site-specific 
features (such as colon-specific or lung-specific) of the tumor 
immune microenvironment. In addition, a recent large scale 
comprehensive genomic study reported that the significantly 
mutated genes in lung adenocarcinomas were most similar 
to those in glioblastoma and colorectal cancer (19).  
Therefore, I propose that the roles of PD-1 positive TAMs, 
and the effects of anti-PD-1/anti-PD-L1 drugs on these 
TAMs in NSCLC patients are worthy of investigation in 
future studies, at least in lung adenocarcinoma patients.

Among lung adenocarcinoma patients, we now know that 
lung cancers with epidermal growth factor receptor (EGFR) 
activating mutations respond poorly to anti-PD-1/anti-PD-L1 
drugs compared with lung cancers with wild-type EGFR 
(20,21). Lower immunogenicity due to lower mutation burden 

Figure 1 Model of action of anti-PD-1/PD-L1 immunotherapy in 
tumor cells—T cells interaction theory. Tumor cells that express 
PD-L1 suppress cytotoxic function of PD-1 positive activated 
T cells through the PD-L1/PD-1 interaction. Therefore, the 
blockade of this pathway by anti-PD-1 drugs or by anti-PD-L1 
drugs enables T cells to counterattack tumor cells.
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[higher mutation burden is one of potential predictive markers 
for higher efficacy of anti-PD1/anti-PD-L1 drugs in lung 
cancers (22)] in lung cancers with EGFR mutations may be one 
of explanations for these clinical observations. However, it is of 
note that a recent study that analyzed the correlation between 
intra-tumoral immune cell densities and genetic alterations in 
lung adenocarcinomas found that intra-tumoral macrophage 
density was significantly lower in tumors with EGFR 
mutations compared with those with wild-type EGFR (23).  
In this study, the density of neutrophils was also lower in 
lung cancers with EGFR mutations, while the densities of 
CD8 positive T-cells (cytotoxic T cells) and mature dendritic 
cells were identical. It is possible that lower density of intra-
tumoral macrophages in lung cancers with EGFR mutations 
is one of additional mechanisms behind the lower efficacy of 
current immunotherapies in lung cancer patients with EGFR 
mutations.

The mechanisms of action of small molecule molecular 
targeted agents (e.g., EGFR tyrosine kinase inhibitors) are 

simple, since these drugs target molecular aberration(s) 
found only in tumor cells. In contrast, the target molecules of 
immunotherapies, i.e., immune checkpoint molecules, are shared 
by multiple types of immune cells/non-cancerous cells/tumor 
cells, and these cells interact with each other. Understanding 
the complexity of the tumor immune microenvironment may 
be essential to optimize and to personalize immunotherapies, as 
well as to precisely predict their efficacies and/or adverse events.
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Figure 2 Model of action of anti-PD-1/PD-L1 immunotherapy focusing on tumor cells, cytotoxic T cells, and tumor associated 
macrophages (TAMs). PD-1 is expressed not only in T cells, but also in TAMs, leading these cells to become inactivated upon binding to 
PD-L1 expressed on tumor cells. TAMs (M2 TAMs) also express PD-L1 and the ligand for the death receptor FAS that inactivates T cells 
and triggers caspase-dependent cell death in T cells, respectively (left). Treatment with an anti-PD-1 or anti-PD-L1 monoclonal antibody 
drug not only activates cytotoxic T cells, but also affects TAMs so that they increase phagocytic potency against tumor cells (right). 
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