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In 1993, Przyklenk et al. reported the fascinating finding 
that administering brief periods of non-lethal ischemia 
and reperfusion to the circumflex coronary artery reduces 
myocardial infarct size following a prolonged occlusion 
of the left anterior descending coronary artery, indicating 
that the protection produced by ischemic conditioning 
can potentially be transferred from one area of the heart 
to another, a phenomenon which has been named remote 
ischemic conditioning (RIC) (1). Further experimental 
studies then established that the heart could be protected 
against ischemia-reperfusion injury by instigating brief 
bursts of non-lethal ischemia and reperfusion as a 
conditioning stimulus to an organ or tissue remote from 
the heart, thus extending the concept of RIC to inter-organ 
conditioning. Once it had been demonstrated that RIC 
can be induced simply by applying a blood pressure cuff to 
a limb, the technique has quickly developed applications 
in a wide range of clinical scenarios of potential ischemia-
reperfusion damage (2,3). A large number of cardiac surgery 
studies, for example, have applied RIC via three or four 
cycles of 5-min ischemia followed by 5-min reperfusion 
of the upper or lower limb, the majority reporting 
reduced post-operative cardiac biomarker release, with 
even amended clinical outcomes in long-term follow-up 
analyses of studies that had insufficient power to conclude 
on outcomes (4). Nevertheless, two large clinical trials 
recently failed to achieve improved clinical outcomes using 
RIC in the cardiac surgery setting (5,6). Among the several 

confounding factors that likely altered the RIC response 
in these studies, the use of propofol anesthesia proved 
puzzling, given that this substance was already known to 
abrogate the RIC-induced protection (7). Consequently, the 
potential of RIC to confer protection in patients undergoing 
cardiac surgery remains uncertain (8). Nevertheless, it still 
has great potential, due to its infarct-sparing effect in other 
clinical situations at risk of ischemia-reperfusion damage, 
such as acute myocardial infarction (9,10). Furthermore, 
RIC still has a major therapeutic value in protecting non-
cardiac organs exposed to ischemia-reperfusion damage, such 
as the brain in strokes, liver and kidneys in transplantation, 
and even lungs in pulmonary surgery (11,12). 

In this issue, García-de-la-Asunción et al. tested the 
ability of RIC to alter oxidative lung damage in patients 
undergoing pulmonary lobectomy (12). Using three cycles 
of 5-min ischemia and 5-min reperfusion on the thigh 
immediately before lobectomy, the authors found that the 
increase in exhaled breath condensate 8-isoprostane was 
attenuated in patients receiving RIC, reflecting reduced 
lipid peroxidation levels. RIC also decreased nitrite and 
nitrate concentrations in exhaled breath condensate and 
the blood, while also improving pulmonary oxygenation 
variables in comparison with the control group. 

The protective mechanism of RIC in this specific 
clinical scenario is unknown. In the more general context 
of ischemia-reperfusion damage, RIC stimulus is believed 
to produce protective signals that are conveyed from 
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the remote tissue to the target organ (13,14). Several 
concomitant mechanisms may be involved, including blood-
borne factor release (15-17), neuronal pathway activation (18),  
as well as systemic response contribution (19). These 
protective signals can activate intracellular survival signaling 
pathways in the target organ (13,20). Several studies have 
described endogenous factors being involved in protective 
mechanisms, such as opioids (21), bradykinin (22), 
adenosine (23), endocannabinoids (24), erythropoietin (25), 
microvesicles (26), apolipoprotein A-I (27), microRNA (28),  
glycine (29,30), and kynurenine (29,31,32). One likely 
explanation is that RIC activates the release of several 
circulating humeral factors, provoking multiple endogen 
protective mechanisms. Mitochondria, recognized as the 
principal target of RIC, are the main cellular source of 
ATP under aerobic conditions, thus related to cell survival 
and major cellular functions. In contrast, mitochondrial 
permeability transition pore opening can activate cell death 
in the context of reperfusion. Interestingly, the nitrosation 
and nitrosylation of mitochondrial membrane proteins 
appear to be causally involved in cardioprotection (8).  
In mice, for example, myocardial nitrite was found to 
increase in response to shear stress and eNOS activation 
after RIC (33). Myocardial myoglobin then reduces nitrite 
to nitric oxide, which consequently inhibits mitochondrial 
complex I activity (34). Reacting to RIC, this nitrosation 
caused a reduction of complex I activity, leading to reduced 
myocardial reactive oxygen species formation (33). Given 
that most of these data were obtained from experiments in 
cardiomyocytes, however, further studies are required to 
clarify the protective mechanism associated with RIC in the 
lung surgery context. Nevertheless, though larger clinical 
trials are needed before applying RIC in pulmonary surgery, 
García-de-la-Asunción et al. are to be commended for their 
elegant study that introduced this new perspective of RIC. 
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