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Introduction

The identification of molecular aberrations in key 
components of signal transduction pathways leading to 
tumor growth and survival, so called oncogene-addicted 
tumors, has dramatically changed the treatment landscape 
of non-small cell lung cancer (NSCLC). Mutations in the 
epidermal growth factor receptor (EGFR) and anaplastic 
lymphoma kinase (ALK) rearrangements are so far the most 
frequent and clinically important targets. A new class of 
therapeutic agents, tyrosine kinase inhibitors (TKIs), that 

inhibit the enzymatic activity of these oncogenic drivers has 
become a concept where the receptor TKIs for EGFR and 
ALK have been in focus for treatment of NSCLC (1-18). 
EGFR TKIs gefitinib, erlotinib, afatinib and osimertinib, 
and the ALK inhibitors crizotinib, ceritinib, and alectinib 
have been approved in Europe and the United States for 
the treatment of advanced NSCLC. Through the genome 
sequencing projects of lung cancer (19,20), we have learnt 
that a majority of NSCLC, especially adenocarcinomas, 
harbour at least one driver mutation that can potentially 
be a target for therapy and this has opened up for many 
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new targeted therapies being studied in clinical trials. The 
clinical benefit of these targeted therapies is often large 
with sometimes dramatic responses and improved quality-
of-life for the patients. Objective response rates (ORR) 
of 60–70% are reported with these different TKIs and a 
disease control rate [DCR; ORR + stable disease (SD)], 
also including SD, of up to 80–90%. Quite often the 
same oncogenes are found to be drivers for tumor growth 
in different kinds of tumors, one example being BRAF 
mutations that have been identified as an oncogenic event 
both in malignant melanomas and in a smaller fraction of 
lung adenocarcinomas (around 1–2%). Other examples for 
NSCLC include aberrations in HER2, MET, PIK3CA, 
ROS1, RET, AKT, DDR2, and KRAS. Most recently, 
targeted therapies for ROS1 and BRAF have been approved 
for the treatment of advanced NSCLC. Furthermore, new 
generations of EGFR and ALK TKIs have been developed, 
some of them also being active in treatment-refractory 
tumors where acquired resistance to first-generation TKIs 
has developed. The development in the field is rapid and an 
increasing number of targeted therapies can be expected to 
be approved for the treatment of advanced NSCLC in the 
coming years. 

Another paradigm shift in the treatment of NSCLC, 
as well as numerous other tumor types, has been the 
introduction of immunotherapy (IO) with immune 
checkpoint inhibitors targeting programmed cell death-1 
(PD-1) or its ligand PD-L1, that has shown a clear clinical 
benefit with increased overall survival (OS) versus standard 
chemotherapy, both in the second-line setting and as first-
line treatment in selected patients (21-25). A predictive 
biomarker, protein expression of PD-L1, is now being 
used in clinical routine to enrich for patients with a higher 
likelihood of responding to PD-1/PD-L1 inhibitors. 
Considering the complexity of the immune system and the 
observation that a substantial fraction of patients treated 
with immune checkpoint inhibitors do not derive a clinical 
benefit has been the driving force for further studies on 
other potential predictive biomarkers for checkpoint 
inhibition besides PD-L1. PD-1/PD-L1 inhibitors 
approved so far for the treatment of NSCLC include 
nivolumab, pembrolizumab and atezolizumab. Inhibitors of 
another immune checkpoint, CTLA-4, are being studied 
in lung cancer and one of them, ipilimumab, has already 
gained approval for the treatment of malignant melanoma. 
In order to increase the clinical benefit of IO different 
combination treatments are being studied, including 
combined treatment with IO and chemotherapy and even 

combinations with anti-CTLA-4 and anti-PD-1/PD-L1 
antibodies that are currently being tested in phase 3 trials 
with promising results so far in phases 1 and 2 trials (26,27).

IO has revolutionized treatment of advanced NSCLC 
for patients without oncogenic-driven tumors. However, 
in tumors with clinically actionable mutations, no clear 
evidence exists on the correct use of IO. Most clinical 
data come from subgroup analyses with low number of 
patients in larger randomized trials, and these data do not 
support the use of IO after TKI in this category of NSCLC 
patients. If IO is more beneficial in the first-line setting 
or in combination with TKIs is still a major clinical issue 
which has not yet been addressed in large clinical trials.

The purpose of this review is to summarize the existing 
evidence about the use of IO in oncogenic-addicted tumors 
and highlight the issues that should be addressed in the 
future in order to optimize the treatment of these tumors.

IO in EGFR-mutated tumors

EGFR-mutations affect mainly the binding sites of EGFR 
TKIs and are detected in exons 18-21 of the encoding 
tyrosine kinase gene (28-30). These mutations are almost 
exclusively found in lung adenocarcinoma, with more than 
85% of cases comprising of exon 19 deletions or the L858R 
point mutation in exon 21, both of which are clinically 
actionable targets (28,30,31). EGFR-mutations are found in 
10–20% of Caucasians and in 30–50% of Asians with lung 
adenocarcinoma, with higher prevalence in never smokers 
and women (29,32).

First-generation EGFR TKIs, erlotinib and gefitinib, 
second-generat ion afat inib and third-generat ion 
osimertinib, have been approved for the treatment of 
EGFR-mutated NSCLC in the first and later lines, and 
osimertinib even in the second-line setting for tumors 
which develop resistance to first-line TKIs through the 
EGFR T790M mutation (1-11). 

Several immune checkpoint inhibitors targeting PD-1 
or PD-L1 have shown robust clinical efficacy in advanced 
NSCLC in the second-line setting. Pembrolizumab, a 
PD-1 inhibitor, has recently been approved in the first-line 
setting, in patients with high PD-L1 expression (≥50%) (25),  
and has shown promising activity in combination with 
chemotherapy with a clear progression-free survival (PFS) 
benefit over platinum-based chemotherapy, in a randomized 
phase 2 trial in treatment-naïve patients irrespective 
of PD-L1 expression (26). In both of these trials with 
pembrolizumab, no patients with activating EGFR-
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mutation or ALK-rearrangement were included.
In the second-line setting, nivolumab, a PD-1 inhibitor, 

has been approved for the treatment of squamous and non-
squamous NSCLC (21,22). In the trial for non-squamous 
NSCLC, EGFR-mutated patients did not derive any 
survival benefit from nivolumab with a HR 1.18 (95% 
CI: 0.69–2.00), compared to the whole study population 
where nivolumab-treated patients had a better OS with a 
HR 0.75 (95% CI: 0.2–0.91) (21). In the trial conducted 
for squamous NSCLC, as expected, there were no patients 
with EGFR-mutated or ALK-rearranged tumors (22). 
Pembrolizumab has also shown superior efficacy compared 
to docetaxel in previously treated PD-L1 positive NSCLC 
patients with a HR for OS of 0.67 (95% CI: 0.56–0.80). In 
subgroup analyses, EGFR-mutation positive patients did 
not derive any statistically significant benefit from IO with a 
HR of 0.88 (95% CI: 0.45–1.70) (23).

Atezolizumab, a PD-L1 inhibitor, significantly improved 
OS compared with docetaxel in previously treated 
NSCLC patients in the phase 2 POPLAR trial (33) and 
the phase 3 OAK trial (in OAK trial irrespective of PD-L1  
expression) (24). In POPLAR, no subgroup analysis for 
EGFR-mutation positive patients has been published. In 
OAK, HR for OS was 0.73 (95% CI: 0.62–0.87) in favour 
of atezolizumab for the whole study population, whereas 
1.24 (95% CI: 0.71–2.18) for EGFR-mutation positive 
patients. Another PD-L1 inhibitor, durvalumab, has 
shown robust clinical activity with a clear PFS benefit after 
chemoradiotherapy in stage 3 locally advanced unresectable 
NSCLC (34). In this trial, the PACIFIC trial, HR for PFS 
for the whole study population was 0.55 (95% CI: 0.45–0.68) 
in favour of durvalumab consolidation therapy, whereas for 
EGFR-mutation positive patients HR was not significant, 
0.76 (95% CI: 0.35–1.64). 

All data from these subgroup analyses from larger 
randomized phase 3 trials are summarized in Table 1. These 
data do not support the use of IO in the second-line setting 
for EGFR-mutation positive tumors, although no safe 
conclusions can be drawn due to the limited number of 
patients and the subgroup character of the analyses. Real-
world data from the Italian nivolumab expanded access 
programme (EAP) are in line with those observed in the 
above-mentioned subgroup analyses. Survival and response 
rates with nivolumab in the Italian cohort of this EAP 
were similar to those observed in the nivolumab arm of the 
CheckMate 057 study (21), whereas survival was reduced in 
never-smokers with EGFR-mutation positive tumors (35).  
A recently published meta-analysis came to a similar 

conclusion (36), demonstrating that immune checkpoint 
inhibitors compared to docetaxel significantly prolonged 
OS over that with docetaxel overall (HR 0.68, 95% CI: 
0.61–0.77, P<0.0001) and in the EGFR wild-type subgroup 
(HR 0.66, 95% CI: 0.58–0.76, P<0.0001), but not in the 
EGFR-mutant subgroup (HR 1.05, 95% CI: 0.70–1.55, 
P<0.81).

IO in ALK-rearranged NSCLC 

ALK rearrangements, where EML4-ALK is the dominating 
rearrangement, is found in 3–7% of NSCLC, almost 
exclusively in younger adenocarcinoma patients with 
former light or no smoking history (37). Several ALK 
TKIs, including crizotinib and ceritinib, have shown 
superior efficacy compared to chemotherapy in the first and 
subsequent lines of therapy (14-18), and alectinib has shown 
superior efficacy and lower toxicity compared to crizotinib 
in the first-line setting (12,13). 

Gainor et al. reported a very low ORR in ALK-rearranged 
or EGFR-mutated NSCLC patients treated with IO, ORR 
was lower than 5% in 58 IO treated patients (38). As shown 
in Table 1, in most of the randomized controlled trials with 
immune checkpoint inhibitors, there were either no patients 
with ALK-rearrangements included or low numbers which 
did not permit any meaningful subgroup analysis. In 
addition, no prospective data exist which address the use of 
IO in ALK-positive patients, and therefore no conclusions 
about the use of IO in ALK-positive patients can be drawn 
at this time point.

IO in other oncogenic-addicted tumors

New data have emerged during the past few years for the 
treatment of oncogenic-driven NSCLC with novel TKIs. 
The ROS1 fusion oncogene is detected in 1–2% of lung 
adenocarcinoma patients (39) for which crizotinib, ceritinib 
and lorlatinib have shown promising clinical activity in 
phases 1 and 2 trials, but no data exist regarding the effect 
of immune checkpoint inhibition in ROS1-positive tumors 
(17,40-42).

Mitogen-activated protein kinase (MAPK) pathway is 
commonly activated in tumors of NSCLC and mutated 
BRAF is an actionable target. A phase 2 trial with the BRAF 
inhibitor dabrafenib in BRAF-mutated NSCLC (V600E, 
1–2% of lung adenocarcinoma patients) has shown modest 
activity with an ORR of 33% (43). The combination of 
dabrafenib with the MEK inhibitor trametinib has shown 
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improved clinical activity in both pre-treated and untreated 
BRAF-mutated patients in two phase 2 trials with an ORR 
over 60% (44,45). There is so far no clinical data regarding 
the role of IO in BRAF-mutated lung adenocarcinoma. 
Preclinical trials from melanoma patients have shown 
that inhibition of the MAPK pathway enhances host anti-
tumor immunity by elevating melanoma antigen expression 
and improving T-cell infiltration and function (46-52). 
Combining BRAF TKIs with IO seems to be a reasonable 
treatment strategy, since the above-mentioned changes may 
serve to prime the tumor microenvironment for response to 
immunotherapy. In a phase 1/2 melanoma trial, ipilimumab 
was combined with dabrafenib, or with dabrafenib and 
trametinib in a triplet arm. Early report of this trial showed 
preliminary activity in all patients in the doublet arm (53).  
No dose-limiting observations were reported in the doublet 
arm, whereas the triplet combination of dabrafenib + 
trametinib + ipilimumab was poorly tolerated and was 
closed due to safety findings. 

Other TKIs targeting HER-2 mutations, MET exon 
14 splice mutation or amplification, RET translocation, 
and NTRK translocation are in early clinical trials with 
variable results (54). The role of IO is unclear for patients 
bearing these mutations and there are no data regarding 
combination treatment with TKIs and IO for these 
actionable targets.

Future directions 

The immunogenicity of a tumor and responsiveness to 
IO is determined by a complex set of immunomodulatory 
factors present both in the actual tumor cells as well as in 
cells in the surrounding tumor microenvironment (55). In 
the pivotal study by Rizvi and colleagues (56), whole exome 
sequencing was performed in tumors of NSCLC treated 
with pembrolizumab, and it was observed that higher non-
synonymous mutation burden in tumors was associated 
with improved ORR, durable clinical benefit, and PFS. 
Efficacy also correlated with a molecular smoking signature, 
higher neoantigen burden, and DNA repair pathway 
mutations. These data indicate that the genomic landscape 
of tumors is critically important in the response to immune 
checkpoint inhibitors. Tumors of NSCLC are commonly 
characterized by a high mutational burden, especially those 
chronically exposed to carcinogens in tobacco smoke, 
providing a therapeutic rationale for immune checkpoint 
inhibition. In contrast, oncogene-addicted tumors such as 
EGFR-mutated, have been shown to have a lower mutation 

burden, which may explain, at least partly, the decreased 
efficacy of immunotherapy. This was observed in a study 
by Dong et al. (57) who demonstrated that EGFR mutated 
tumors, besides a decreased mutation burden, showed a lack 
of T-cell infiltration and shrinking proportion of PD-L1+/
CD8+ tumor infiltrating lymphocytes (TILs). Patients with 
these EGFR-mutated tumors did not benefit from PD-1/
PD-L1 inhibitors while patients with EGFR wild-type 
did, providing evidence of a correlation between EGFR 
mutations and an uninflamed tumor microenvironment 
with weak immunogenicity. 

The most widely used predictive biomarker for 
checkpoint inhibition, PD-L1, seems to be differentially 
expressed depending on the molecular phenotype of the 
tumor. Data from cell lines and mouse models have shown 
that expression of PD-L1 is driven by EGFR-mutant 
tumors, and that PD-1 inhibition leads to prolonged 
survival in EGFR-mutation positive mice (58). Data from 
retrospective analyses show a strong correlation between 
high PD-L1 expression and activating EGFR-mutations 
in NSCLC patients (59). Chen et al. reported that EGFR 
activation upregulated PD-L1 through p-ERK1/2p-c-Jun, 
but no synergistic effect was observed with EGFR TKIs 
and anti-PD-1 antibody combination treatment. This could 
be related to the fact that immune escape in EGFR-mutant 
NSCLC is mainly mediated by the upregulation of PD-L1  
through EGFR activation, and therefore EGFR TKIs 
and anti-PD-1 antibody may not have additive immune 
mediated effects (60). It is unclear if the combination of IO 
and EGFR TKIs can render a possible treatment option 
in EGFR-mutation positive NSCLC patients. A phase 
1 trial with the combination of erlotinib and nivolumab 
in 21 patients with EGFR-mutation positive NSCLC 
showed a promising response rate of 20% and PFS rate at  
24 weeks was 47% (61). All patients included in this trial 
had progressed on prior EGFR TKI, except for one who 
was TKI naïve, and the toxicity profile was manageable with 
four patients experiencing grades 3–4 toxicity, including 
diarrhea, weight loss and elevation of hepatic enzymes, two 
of these patients discontinued treatment due to toxicity. 
The combination of osimertinib plus durvalumab was 
investigated as part of TATTON, a multi-arm phase Ib 
study. Twenty-three EGFR TKI-pretreated (part A, dose 
escalation) and 11 EGFR TKI-naive patients (part B, dose 
expansion) were treated with 80 mg osimertinib plus 3 or 
10 mg/kg durvalumab every 2 weeks. ORR was 67% in 
T790M-positive and 21% in T790M-negative patients who 
had received prior treatment with EGFR TKI, whereas it 
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was 70% in EGFR TKI-naive patients (62). Unfortunately, 
this promising combination was associated with a high 
incidence of interstitial lung disease (ILD) (38% of the 
whole study population). Five in 13 patients with ILD had 
grade 3/4 toxicity without any fatal case. ILD was managed 
with high-dose corticosteroids and discontinuation of 
drugs, but the incidence considered to be unexpectedly 
h igh and therefore  a  major  concern  for  fur ther 
development of this treatment strategy. The combination 
of gefitinib plus durvalumab was investigated in the 
dose expansion phase of a phase 1b study. In this study, 
EGFR TKI-naive patients (n=10) were treated with 
either concurrent durvalumab plus gefitinib (arm 1) 
or with induction gefitinib monotherapy for 4 weeks 
followed by concurrent durvalumab plus gefitinib  
(arm 2) (63). ORR was 77.8% in arm 1 and 80% in arm 2,  
respectively, but a high incidence of grade 3/4 liver 
enzyme elevation (40–70%) was observed. Another phase 
Ib study of atezolizumab combined with erlotinib has 
shown promising results with an ORR of 75%. Twenty-
eight patients were treated with this combination with 
a manageable toxicity profile. ILD was not observed, 
but 39% of the whole study population experienced 
grade 3/4 adverse events, including ALT elevation (7%), 
pyrexia (7%), and rash (7%). Adverse events leading 
to atezolizumab discontinuation occurred in 18% of 
patients (64). 

As mentioned above, in the studies with pembrolizumab 
in the first-line setting, no EGFR-mutation positive patients 
were included (25,26). The use of immune checkpoint 
inhibitors in the first-line setting can be a possible 
treatment strategy for EGFR-mutation positive patients, 
especially taking into consideration the observation that 
PD-L1 expression decreases in EGFR-mutant cell lines 
after exposure to an EGFR-TKI (58).

Regarding ALK-rearranged tumors, there are several 
trials ongoing with the combination of ALK TKIs and 
immune checkpoint inhibitors (65) with no published data 
so far. A higher PD-L1 expression in ALK-rearranged 
NSCLC cell lines has been reported, which declined after 
treatment of these cell lines with alectinib (66,67). The 
use of immune checkpoint inhibition monotherapy in the 
first-line setting in ALK-positive NSCLC is an interesting 
concept, which should be addressed in a randomized setting. 
No other clinically relevant results exist in the literature, 
which could guide treatment with IO in ALK-rearranged 
NSCLC patients.

There may be several potential strategies to increase 

the immunogenicity of oncogene-addicted tumors and 
hence increase the efficacy of checkpoint inhibitors. One 
promising approach is to combine radiotherapy with 
immunotherapy. Radiotherapy targeted to the tumor 
leads to the release of neoantigens through tumor cell 
death, which in turn may lead to triggering of the immune 
system, including activation of tumor-specific T-cells. 
This may lead to not only a local anti-tumoral effect but 
also an immune reaction towards all systemic disease, a 
phenomenon called abscopal effect. The potential benefit 
of combining radiotherapy with IO is being studied in 
several clinical trials and has already been demonstrated, 
for example in the PACIFIC trial mentioned above (34). 
Other possible strategies to increase the efficacy of IO is 
to combine with other systemic treatments, one way being 
to treat with a combination of different immunotherapies. 
In the CheckMate 012 open-label multicohort phase 1 
study (27), two different checkpoint inhibitors, nivolumab 
and ipilimumab, were given as a first-line combination 
treatment to patients with advanced NSCLC. Results 
showed a tolerable safety profile and an encouraging clinical 
activity characterised by a high response rate (57%) and 
durable response, indicating an improved benefit over 
anti-PD-1 monotherapy. Other promising combination 
strategies that are being studied include immune checkpoint 
inhibition plus anti-angiogenic therapy as well as combining 
checkpoint inhibitors with chemotherapy. Future studies 
will tell how well these combinations can be applied to the 
treatment of oncogene-addicted NSCLC.

Conclusions 

The role of immune checkpoint inhibition for NSCLC 
with oncogenic-addicted tumors is so far unclear. In EGFR-
mutation positive patients there seems to be a worse effect 
of IO after TKI treatment compared to patients without 
actionable mutations, though no safe conclusions can be 
drawn due to the lack of randomized trials addressing this 
clinical issue. For other oncogenic driver mutations there 
is no clinical evidence regarding the effect of IO up to date. 
Preclinical data are also limited but in the case of BRAF, 
some guidance for future treatment strategies can be derived 
from melanoma trials. In order to improve treatment 
decision making for oncogenic-driven NSCLC it is of vital 
importance to design randomized trials in the future, also in 
the first-line setting, comparing TKIs to immunotherapy, 
as well as evaluating different treatment combinations and 
sequences including immunotherapy.
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