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Introduction

Methods for cerebral protection during aortic arch 
surgery are still a matter of debate. Deep hypothermia 
has traditionally been used to minimize cerebral energy 
demand and allow a limited period of circulatory arrest 

deep hypothermic circulatory arrest (DHCA). Major 
breakthroughs were obtained through the application 
of selective brain perfusion techniques during the phase 
of circulatory arrest, which include either anterograde 
perfusion through the carotid arteries (CA) selective 
antegrade perfusion (SAP), or retrograde perfusion via the 
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Conclusions: RCP is able to perfuse the brain parenchyma in humans during DHCA. 

Keywords: Retrograde cerebral perfusion (RCP); deep hypothermic circulatory arrest (DHCA); S-100β

Submitted Sep 07, 2017. Accepted for publication Jan 22, 2018.

doi: 10.21037/jtd.2018.01.166

View this article at: http://dx.doi.org/10.21037/jtd.2018.01.166

1568



1564

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(3):1563-1568jtd.amegroups.com

Gaudino et al. RCP

superior vena cava (SVC) retrograde cerebral perfusion 
(RCP) (1-4). RCP was the first technique to be introduced 
and has the major advantage of both safety and simplicity. 
Using this method, blood is directed retrogradely to the 
brain through the SVC and no manipulation of the epi-
aortic vessels is required. On the other hand, SAP, although 
more physiologically appealing, requires cannulation and 
snaring of one or more of the epi-aortic branches and has 
the potential for dissection or embolization, especially 
in patients with atherosclerotic aneurysm or acute aortic 
dissection.

After an initial phase of almost universal adoption of 
RCP, most surgical groups shifted to the more complex 
SAP. Two recent surveys showed that currently in both 
Europe and Japan less than a third of the aortic centers use 
RCP (5,6). This shift in neuroprotection was essentially 
due to concerns of the ability of RCP to provide sufficient 
brain perfusion. In fact, studies in animal models suggested 
that RCP was unable to perfuse the brain and that RCP 
blood reaches the arterial system via arterio-venous shunts, 
without passing through the cerebral parenchyma (7). 

This protocol was conceived as a proof-of concept study 
to verify that RCP provides effective brain perfusion during 
DHCA by using a well-known neurochemical marker, the 
S-100 protein (8). S-100 is an intracellular calcium binding 
protein with α and β subunits, where the β subunit is 
highly brain specific. The β-β units are present in glial and 
Schwann cells, whereas the α-β subunits appear in glial cells 
only (8). Even though the role of S-100β as a marker of 
brain damage has been repeatedly questioned (9), increased 
S-100β levels in both serum and cerebrospinal fluid have 
been reported after different types of brain trauma and 
during DHCA (10). 

In this study, S-100β has not been used as a marker of 

brain damage. Instead, the very high neuro-specificity of 
the protein, gave us the ability to use S-100β to establish 
whether the blood that flows retrogradely from the 
epiaortic vessels during RCP has passed through the brain 
parenchyma. 

We hypothesized that a significant difference in S-100β 
levels between the blood infused in the SVC and the 
effluent blood returning in the CA during RCP, should be 
regarded as a sign of the circulation of RCP blood through 
the brain parenchyma. 

Methods

This study protocol complies with the principles laid 
down in the Declaration of Helsinki and was approved 
by the local Institutional Review Board [2016] (IRB ID: 
1505016218). Written informed consent was obtained from 
every participating patient.

We enrolled 10 non-consecutive patients undergoing 
elective arch surgery using DHCA and RCP. Enrollment 
was based on the willingness of the patients to participate to 
the study and on the availability of the necessary personnel.

Surgery was performed in standard fashion, according 
to our described technique (11). DHCA was initiated at 
tympanic temperature of 18 ℃. During the entire period 
of arrest RCP was administered through the SVC cannula 
after snaring of both venae cavae at rate of 150–300 mL/min  
at 14 ℃, keeping the central venous pressure ≤30 mmHg.

Circulating S-100β levels were measured at baseline 
(baseline samples were always collected before skin incision 
from a peripheral venous line) and immediately before 
DHCA. During DHCA and RCP samples for S-100β 
analysis were taken simultaneously from the SVC and the 
left CA after 10 minutes of arrest and immediately before 
resumption of the circulation.

S-100β sampling was performed using the CanAg® 
S-100β Enzyme Immunoassay, a quantitative enzyme-linked 
immunosorbent assay (ELISA). The coefficient of variation 
of this assay is less than or equal to 6.3% (12). 

Data are expressed as mean ± standard deviation and 
median if appropriate. Comparison between S-100β levels in 
the SVC and the left CA was performed with paired, 2-tailed 
t-test. Pearson’s coefficient correlation was used to explore 
the association between S-100β levels and time of DHCA.

Results

Details of the ten patients enrolled in the study are 

Table 1 Preoperative patients’ demographics

Characteristics Data

Male/female 4/6

Mean age (years) 68±15

Smoking history 4

Hypertension 10

Chronic pulmonary disease 3

Previous stroke 1

Mean aneurism diameter (cm) 5.8±0.6

Left ventricular ejection fraction (%) 48.8±4.8
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summarized in Table 1.
Most of the cases were women in their seventh decade. 

Hypertension and smoking were the most prevalent vascular 
risk factors. Mean aneurysm size at the time of surgery was 
5.8 cm.

Eight patients underwent hemiarch replacement and 
two had total arch replacement. In one patient, the arch 
procedure was a redo operation and another case had 
concomitant aortic root replacement. Mean cardiopulmonary 
bypass time was 133.1±22.8 minutes and DHCA duration 

was 22.4±7.9 minutes (median 19 minutes).
There was no operative mortality. One patient suffered 

a postoperative stroke. The in-hospital course was 
unremarkable for the remaining 9 cases.

Results of the S-100β sampling are summarized in Figure 1.  
The mean S-100β level at baseline was 92.5±54.9 µg/L. 
Immediately before DHCA mean circulating S-100β level 
was 670.7±355.2 µg/L. After 10 minutes of DHCA the level 
of S-100β in the left CA was significantly higher than in 
the SVC (936.9±326.3 vs. 810.9±307.4 µg/L, P=0.0021). 
This difference was enhanced at the second DHCA sample 
(1113.8±334.2 vs. 920.5±340.0 µg/L, P=0.0002). There was 
a statistically significant correlation between the duration of 
DHCA and the percent difference in S-100β level between 
the SVC and the left CA (Pearson’s correlation coefficient 
=0.902, see Figure 2). 

Discussion

RCP was the first method of cerebral perfusion adopted 
during operations on the aortic arch in DHCA. Since the 
seminal paper of Ueda (4), several authors (including us) 
have used RCP with excellent clinical results. Estrera et al. 
used RCP as the main brain protective strategy in 1,107 
patients undergoing aortic arch repair and reported a 2.8% 
incidence of permanent neurological deficit (13). We have 
previously published a series of 879 consecutive aortic arch 
operations using DHCA and RCP with an incidence of 

Figure 1 Results of S-100β assay. DHCA, deep hypothermic circulatory arrest; SVC-1, superior vena cava after 10 minutes of circulatory 
arrest; SVC-2, superior vena cava immediately before end of circulatory arrest; LCA-1, left carotid artery after 10 minutes of circulatory 
arrest; LCA-2, left carotid artery immediately before end of circulatory arrest.

Figure 2 Pearson’s coefficient correlation between the duration 
of circulatory arrest and the percent difference in S-100β level 
between the superior vena cava and the left carotid artery.
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stroke of 1.4% (11).
However, in recent years RCP has been progressively 

abandoned in favor of the more complex SAP. Recent 
surveys showed that only a third of aortic centers in Europe 
and Japan currently use RCP for elective arch surgery (5,6).

The progressive abandonment of RCP arose mainly 
from the concern based on animal studies (7) that RCP 
blood reaches the arterial system via arterio-venous 
shunts without passing through the cerebral parenchyma 
and that RCP is thus unable to provide effective brain 
perfusion. The results of experimental and clinical data on 
the subject have been conflicting. Cheung and associates 
measured O2 extraction, pH, and PCO2 from the RCP 
inflow and outflow in humans which demonstrated near 
maximal brain oxygen extraction suggesting relative 
cerebral hypoperfusion during RCP (14). A cadaveric 
study using in vitro venous retroperfusion showed that 
in humans most of the valves of the internal jugular 
vein are competent and potentially obstruct RCP (15).  
Transcranial Doppler studies aimed at evaluating the flow 
velocity in the middle cerebral artery during RCP gave 
mixed results (16). On the other hand, Wong and Bonser 
coupling metabolic and Doppler studies found reversal of 
brain blood flow during RCP in 10 patients (17). Pagano 
and colleagues, in an elegant study using Technetium 99 
brain perfusion scan, were able to show cerebral flow during 
RCP in three patients (18). More recently, Endo and co-
authors using a modified RCP technique and a retinal 
camera reported flow in the retinal vessels during RCP in 8 
cases of total arch replacement (19). 

Several animal models used different approaches and 
methodologies to investigate the subject. The results were 
again mixed with some experiments supporting the efficacy 
of RCP and others denying it (20-23).

We decided to use S-100β, a protein with very high 
neuro-sensitivity, as a marker of circulation in the cerebral 
parenchyma. We did not use S-100β as a marker of 
brain damage, as this has been repeatedly questioned (9). 
However, the circulating level of S-100β has been shown 
to progressively increase during DHCA (10). As S-100β is 
specific to the brain (8), we hypothesized that a significant 
difference in S-100β levels between the blood infused in the 
SVC and the effluent blood returning in the left CA during 
RCP, should be regarded as a sign of the circulation of RCP 
blood through the brain parenchyma. 

We found that the level of S-100β in the left CA was 
always significantly higher than in the SVC and that 
there was a statistically significant correlation between 

the duration of DHCA and the percent difference in 
S-100β level (Pearson’s correlation coefficient =0.902, see  
Figures 1 and 2). 

These results strongly suggest that RCP is able to 
perfuse the brain parenchyma in humans during DHCA.

Our findings provide the physio-pathological background 
to the clinical observation that RCP is an effective brain 
protection strategy in patients undergoing operations in 
DHCA. In fact, two recent meta-analysis on the comparison 
of the neurological outcomes of RCP vs. antegrade 
perfusion were unable to prove any clinically significant 
difference between the two techniques (24,25).

This study was designed as a simple proof of concept. 
We did not aim at evaluating the adequacy of RCP to the 
cerebral oxygen demand nor at evaluating the efficacy of the 
different protocols for performing RCP. Further extensive 
investigation on this subject is required. 

Also, even though we paid great attention in sampling 
effluent blood well within the left CA, the possibility of a 
contamination from extracranial sources cannot be ruled 
out completely. However, as S-100β is produced almost 
exclusively in the brain, dilution due to blood from non-
cerebral regions would have led to an underestimation and 
not an overestimation of cerebral perfusion during RCP.

Conclusions

In conclusion, this study demonstrates that RCP provides 
brain perfusion in humans undergoing DHCA. Further 
studies on the adequacy of RCP flow to cerebral oxygen 
demand and on the most appropriate technique to perform 
RCP are required.
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