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Introduction

During the last 10 years, cardiac fibrosis has assumed a 
central role in the cardiovascular field and could be defined 
as one of the rising topic in the cardiac research. The 
quantification of scientific papers (original manuscript and 
reviews) focused on ‘cardiac fibrosis’ present on PubMed 
database lends credence and veracity to the statement 
above. The bar graph of Figure 1 indicates the number 
of publication centred on fibrosis in the heart, which is 
interestingly almost tripled in the last decade.

Myocardial infarction (MI), together with other 
detrimental stimuli (i.e., pressure overload), is the starting 
point of all the adverse structural alterations of extracellular 
matrix (ECM) occurring in the left ventricular (LV) 
remodelling (1,2). Since LV pathological changes are due to 
the post-MI reparative processes (i.e., inflammation, cardiac 

fibrosis), the study of these events by a cellular and molecular 
point of view is fundamental for its impact on clinical 
practice. In fact, it is extremely important to counteract 
and limit the infarcted area expansion and, to do this, 
physician routinely perform coronary artery reperfusion (3).  
Nonetheless a specific therapeutic approach blocking 
inflammation and the subsequent fibrotic reparative process 
is still missing (4,5).

The crescent knowledge on the dynamic features of 
myocardial ECM has unveiled new roads for limiting 
myocardial fibrosis in terms of type I collagen accumulation 
and its severe clinical consequences, such as heart failure (HF) 
(6-9). Interestingly, beyond the structural proteins, ECM 
contains also non-structural compounds with regulatory 
roles, such as proteases, which foster changing in collagen 
structure and content in a rapid temporal fashion (10).  
Moreover, recent studies have suggested a plethora of 
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potential therapeutic targets that may influence cardiac 
wound healing and repair (11). 

This review is aimed to consider cellular and molecular 
mediators involved in post-MI repair, pointing out the 
attention on two protein families that could potentially play 
a key role in the amelioration of adverse remodelling and 
cardiac fibrosis development.

Cardiac ventricular fibrosis

Although the process of cardiac fibrosis could be considered 
an adaptive and protective mechanism, over the time it 
progresses in an uncontrolled way, driving irreversible 
remodelling and determining significant impairment in 
heart function (6).

The ventricular remodelling is a dynamic and complex 
process resulting from activation of cellular events and 
molecular pathways which involve several cardiac cell types 
such as cardiomyocytes, fibroblasts, vascular and immune 
cells. In pathological conditions, clinical ventricular 
remodelling may depict three major patterns: (I) a 
concentric remodelling, when pressure overload determines 
cardiomyocyte thickening and ECM protein deposition; 
(II) an eccentric remodelling, resulting from a volume 
overload that produces cardiomyocyte lengthening; and (III) 
a post-MI remodelling, which is determined by a combined 
pressure and volume overload on the non-infarcted area (12).  
In this review we point out on post-MI remodelling, which 
occurs after MI damage subsequent to cardiomyocyte 

necrosis and leads to a wound healing process named 
reparative fibrosis (13,14). From a molecular point of view, 
in this type of fibrosis the new deposed ECM, particularly 
reach in collagen fibres, takes the place of necrotic cells.

A huge number of studies, well reviewed by Prabhu et al. 
in 2016, have shown the important role played by several 
molecular and cellular inflammatory mediators in the 
establishment of the fibrotic process (4). In depth, cardiac 
repair after MI results from a series of events which begin 
with an initial phase of sterile inflammation and immune 
cell infiltration, also called inflammatory phase. This 
fundamental step leads to digest and clear damaged cells 
and ECM. A large number of well-known danger-associated 
molecular patterns is involved in this specific step. Among 
them, HMGB1, S100 proteins, the extra domain A of 
fibronectin (ED-A FN), several cytokines and chemokines, 
such as interleukin (IL)-1α, IL-6, TNF-α are noteworthy 
(15-18). After that, a reparative phase occurs determining 
the resolution of the inflammation state, the proliferation 
of fibroblasts and their differentiation into myofibroblasts 
(MFB), scar formation and neovascularization (19,20). 
Although inflammation plays a fundamental role in the 
progression of post-MI ventricular remodelling, to date is 
not available a selective therapeutic tool able to effectively 
turn it off.

Despite the initial trigger leading to fibrous tissue 
depends on different types of stimulus, there are several 
molecules leading to increased production of pro-fibrotic 
mediators, such as the anti-inflammatory IL-10 and the 
transforming growth factor-β (TGF-β), which acts locally 
as “master switch” from inflammation to reparative process 
(12,21). In depth, TGF-β is a pleiotropic cytokine, critically 
regulating a wide variety of cell functions like growth, 
proliferation, differentiation, but also ECM deposition. 
Three structurally similar isoforms of TGF-β (TGF-β1,  
2 and 3), encoded by three distinct genes, have been 
identified in mammalian species (22). TGF-β1 is the 
prevalent isoform and it has been found almost ubiquitously, 
whereas the other isoforms are expressed in a more limited 
spectrum of cells and tissues (21). TGF-β is produced by 
many cell types and is secreted as a latent small complex 
(LSC) composed by C-terminal mature TGF-β and its 
N-terminal pro-domain, the latency-associated peptide 
(LAP) (23). This complex is further linked to the latent 
TGF-β binding proteins (LTBP), an ECM fibrillin-
like protein family, to form the large latency complex 
(LLC). Once secreted, LLC is covalently cross-linked to 
the ECM proteins by the activity of extracellular tissue 

Figure 1 Scientific production of the last 10 years in the cardiac 
fibrosis field. Number of original manuscript and review articles 
spanning from 2007 to 2017 found in PubMed database (https://
www.ncbi.nlm.nih.gov/pubmed) searching the string “cardiac 
fibrosis”.
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transglutaminase (24-26). In this conformation, TGF-β 
is unable to associate with its receptor, so its activation is 
primarily regulated by its release from the LLC.

Over the past several years, it has been demonstrated 
that stimuli which can induce protein denaturation (e.g., 
acid or alkaline pH in extracellular milieu, brief increases 
in temperature and exposure to oxidants) or proteolysis 
by the activity of proteases, thrombospondin-1, matrix-
metalloproteinase (MMP)-2, and MMP-9 determine 
the release, and so the activation of TGF-β (27-29). The 
released TGF-β is able to bind the constitutively active 
TGF-β type IIreceptor (TβRII). Then, the ligand-receptor 
complex recruits the type I receptor of TGF-β (TβRI), also 
known as ALK5, which is expressed by many different cell 
types. In endothelial cells there is a second TβRI, named 
ALK1. The activation of both TβRI types, due to their 
trans-phosphorylation, propagates downstream intracellular 
signals through the SMAD proteins. While SMAD2 and 
SMAD3 are activated by ALK5 phosphorylation, SMAD1, 
SMAD5 and SMAD8 are all activated by ALK1 (30).

To date, it is well-known the key role of TGF–β1 in 
mediating cardiac hypertrophy (31) by stimulating (I) 
cardiomyocytes hypertrophy; (II) fibroblast activation 
and proliferation; and (III) ECM protein synthesis (i.e., 
collagen) in cardiac tissue (12,32). Notably, the activation of 
a small fraction of latent TGF-β1 is sufficient to generate 
maximal cellular response (27). In vitro and in vivo studies 
with models lacking TGF-β1 strongly contributed to 
highlight its involvement in several cell functions and, in 
the meantime, unveiled its pleiotropic role and the great 
complexity of its management. In this context, gene therapy 
experiments conducted on a MI model by local transfection 
of TβRII extracellular domain suggested that early 
inhibition of TGF-β1 may exacerbate cardiac dysfunctions, 
while late neutralization of TGF-β signalling may protect 
from interstitial fibrosis and hypertrophic remodelling (33). 
Moreover, it has been observed that inhibition of TGF-β 
after MI resulted in an early mortality caused by cardiac 
rupture, whereas cardiomyocyte-specific suppression of 
both TβRI and TβRII stimulated anti-inflammatory and 
cytoprotective responses (34). Thus, the detrimental effects 
of early TGF-β inhibition after MI may not lead to a direct 
action on cardiomyocyte survival, but may determine a loss 
of anti-inflammatory function on all cardiac cell types (e.g., 
inflammatory cells, endothelial cells, fibroblasts).

One of the key function of TGF-β1 is the well-
known phenotype switch of fibroblast into MFB (35). 
Morphologically, MFB are characterized by the presence 

of a contractile apparatus composed by bundles of α-SMA 
microfilaments and contractile proteins. This apparatus 
provides a mechano-transduction system able to generate 
forces by stress fibres, that can be transmitted and 
transduced by the surrounding ECM into intracellular 
signals (36-40). To further produce the tension necessary 
to activate this mechano-transduction, ECM production 
by MFB is enhanced in the process of remodelling. The 
most prominent MFB-derived ECM products are type I, 
III, IV, V, and VI collagen (41). However, the most reliable 
marker of MFB-derived ECM is the ED-A FN (42) which 
is also expressed in low amounts by cultured fibroblasts 
(36,43) and by vascular smooth muscle cells, both in vivo and  
in vitro (44). Recently, type VI collagen attracted attention as 
it is up-regulated during myocardial interstitial fibrosis (45) 
as well as during the fibrotic process in other tissues. It is 
important to point out that MFB are not present in healthy 
myocardium, but they are detectable in this region following 
cardiac injury (46). The origin of MFB in the infarcted 
area may be ascribed to resident fibroblasts (47) and/or 
circulating bone marrow progenitors (48), but this remains 
a debated issue. Precisely, interstitial fibroblasts that survive 
to ischemic insult and/or cells recruited from neighbouring 
viable areas may undergo MFB differentiation in response 
to increased levels of bioactive TGF-β and the subsequent 
changes in ECM composition. Additional sources of MFB in 
the healing infarcted area may be represented by endothelial-
to-mesenchymal transition of endothelial cells (49),  
epicardial epithelial cells (50), as well as pericytes (51). 
Moreover, marked induction of chemokines in response to 
extensive cardiomyocyte necrosis may result in recruitment 
and activation of additional subsets of reparative fibroblasts 
that play an important role in scar formation (4).

Arising targets to limit fibrosis

The amelioration of cell engraftment in cell therapy 
after MI, to date, is one of the fundamental issue still 
open in the field of cardiac regenerative medicine. It is 
noteworthy to mention this matter, since fibrosis plays 
one of the major guilty role in the incorrect engraftment 
and subsequent scanty survival of injected cells to treat the 
impaired cardiac tissue (52,53). In fact, the pathological 
remodelling of the heart undergoing chronic fibrosis is a 
significant cause of mortality in cardiovascular disease and 
there are still no available therapies to reverse or limit its 
effects (6). Thus, researchers are evaluating novel targets 
towards the intricate pattern of pathological fibrosis to 
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discover potential therapies in the context of cardiac 
regeneration. Among the several proteins involved as key 
participants in the cardiac fibrotic pathways, recently both 
the integrins and a disintegrin and metalloproteinase with 
thrombospondin motifs (ADAMTS) proteins have been 
put in the spotlight. These protein families are strongly 
related to the TGF-β signalling and involved in the ECM 
remodelling process which is not only linked to post-MI 
context, but also to other pathological scenarios (54-57). In 
particular, the integrins are transmembrane glycoproteins 
connecting cells with ECM proteins and modulating tissue 
homeostasis and architecture. The ADAMTS superfamily 
comprises extracellular enzymes involved in different 
pathways including maturation of pro-collagen and 
pathophysiological tissue remodelling (55).

In this review we particularly focus on those proteins 
belonging to the integrin and ADAMTS families that 
are expressed in the heart and have the potentiality to 
counteract the cardiac pathological fibrotic process.

The integrins

The integrins literally constitute the bridge between cells 
and ECM proteins maintaining a sophisticated structure able 
to anchor cells and sustain tissue functions in physiological 
conditions. Nonetheless, integrins are strongly involved in 
the pathological context of several tissue impairments (58). 
Integrins are a large family of glycoproteins and act both 
as adhesive receptors and intracellular signalling events 
mediators. The integrins are heterodimeric receptors 
composed by a dimer of an unrelated α and β subunits (59).  
Currently, in mammalian cells there are 18 α and 8 β 
known subunits which are able to form at least 24 distinct 
combination of integrin heterodimers (60). Each subunit 
contains a large extracellular domain (700–1,100 amino 
acids), a transmembrane α-helix domain and a short 
cytoplasmatic tails ranging from 20 to 60 amino acids (61). 
The integrin binding to ECM glycoproteins, including 
collagens, fibronectins, laminins, and cellular receptors 
(i.e., VCAM-1 and ICAMs), is strongly dependent to the 
presence of divalent cations, typically Ca2+ and Mg2+ (60,62). 
Concerning molecular functions, integrins participate to a 
wide range of biological events, including organogenesis, 
cell-cell and cell-ECM attachment and transduction 
of signals involved in cell proliferation, differentiation, 
migration and death. In the cardiovascular system, integrins 
are expressed in cells of vasculature, blood as well as 
neurons, cardiac myocytes, and non-muscle cardiac cells. 

Few studies have shown that integrins are involved in heart 
formation (63) and function, but also in the development of 
cardiac diseases (64).

Interestingly, the transcriptional control exerted by 
TGF-β can strongly affect integrin-mediated processes 
basically through its regulatory activity on the expression 
of integrin ligands (i.e., tenascin, vitronectin, fibronectin, 
members of the laminin and collagen families) and on the 
stimulation of some integrin-associated protein expression. 
In 2004, Keski-Oja et al. proposed a non-proteolytic 
mechanism of TGF-β activation, named “traction model” 
since it occurs through cell traction forces exerted by the 
actin cytoskeleton. These forces are translated by integrin 
into a conformational change of the LLC complex leading 
to the exposure, and the consequent activation, of TGF-β 
(65-68). Of note, the LAP of TGF-β1 and TGF-β3, but 
not TGF-β2, contain the arginine-glycine-aspartate (RGD) 
motif which can be bound by the αv-containing integrins, 
αIIbβ3, α5β1 and α8β1 (56). Interestingly, non-proteolytic 
activation of latent TGF-β has been demonstrated  
in vitro for αvβ3, αvβ5 and αvβ6, as well as for β1-containing 
integrins with a still unidentified α-subunit (68). However, 
the physiological relevance of the TGF-β activation by  
β1-containing integrins still remains controversial. 

Among this large protein family, αv integrins form a 
subgroup of five members (αvβ1, αvβ3, αvβ5, αvβ6, and αvβ8) 
all able to recognize a group of overlapping ligands which 
generally contain the canonical RGD motif (69). These 
integrins are widely expressed on multiple cell types and, 
during development, the different αv-associated β subunits 
show distinct expression patterns (70-72) that, together with 
the wide range of potential ligands, imply several functions for 
different receptors. Significant expression of αv integrins has 
been noted in particular cell types, such as neural crest (73),  
glial, muscles (70,74,75), and epithelial cells (76,77) as well as 
osteoclasts (78), blood vessels during development (79-83), 
and cardiac fibroblasts (84).

Inactivation of αv integrins by αv−/− mice models yielded 
the death during embryonic development or soon after 
birth as a result of intracranial and/or gastrointestinal 
hemorrhage (85). Although the limited survival of mice 
lacking all αv integrins, the availability of live mice 
lacking a single αv integrin has made possible a series of 
studies identifying a number of previously unexpected  
in vivo roles for these proteins. On the basis of the studies 
involving knockout mice and/or the use of specific integrin 
antagonists, are emerging novel insights of this integrin 
subfamily, which play important and specific roles in (I) 
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determining growth and permeability of blood vessels; 
(II) regulating tissue inflammation and fibrosis; and (III) 
developing several common lung diseases (86). Importantly, 
the αv integrin-mediated activation of TGF-β has been 
highlighted in vivo by mutation of the RGD site of LAP 
leading to defects observed in TGF-β1-null mice (87). In 
addition, genetic ablation of the β6-subunit, or conditional 
deletion of αv or β8 from dendritic cells, causes exaggerated 
inflammation as a result of impaired TGF-β signalling 
(88,89). The phenotype of mice lacking both the αvβ6 and 
αvβ8 integrins recapitulates the abnormalities observed in 
TGF-β1 and TGF-β3, but not in TGF-β2, knockout mice, 
indicating that the integrins αvβ6 and αvβ8 can account for 
the full activation of TGF-β1 and TGF-β3 in vivo. 

The first clue that the integrin-TGF-β interplay is 
central in fibrosis became from observation on mice lacking 
the β6-subunit, which are partially or completely protected 
pulmonary fibrosis induced by radiation or bleomycin 
(90,91). In addition, low doses of antibodies against αvβ6 
prevent radiation- or bleomycin-induced pulmonary 
fibrosis in mice, without causing inflammation (92,93). 
Furthermore, it has been shown that constitutive expression 
of αvβ6 in the basal layer of the epidermis leads to elevated 
TGF-β1 activation and the development of spontaneous 
chronic ulcers with severe fibrosis (94). In wild-type 
mice, fibrosis can be equally inhibited by treatment with 
antagonists of TGF-β signalling or by using a blocking 
antibody against αvβ6 (95,96). The αvβ6 integrin is not 
normally expressed in healthy epithelia, but its expression 
is induced in several human fibrotic disorders involving 
kidney, liver and lung in terms of sclerosis and idiopathic 
pulmonary fibrosis. Specifically, the inhibition of αvβ6-
induced TGF-β activation at sites of injury is a promising 
therapeutic tool to prevent TGF-β-mediated fibrosis. 

Mice lacking β3 and/or β5 integrins do not develop 
abnormalities similar to those caused by TGF-β signalling 
deficiency (97-99). Nevertheless, αvβ3- and/or αvβ5-
mediated TGF-β activation has been reported as an 
important clue in pathological conditions. In fact, increased 
expression levels of both these integrins have been observed 
in dermis of patients with scleroderma, a chronic disease 
involving cutaneous manifestations of fibrosis. In this 
pathological context, these integrins elicit in vitro autocrine 
TGF-β signalling in patient-derived fibroblasts (100-103).  
The TGF-β activation by αvβ5 is important also in 
pulmonary fibrosis, whereas the contribution of αvβ3 in 
this human pathology has not been yet established. In 
human fibrotic lungs, epithelial cells expressing αvβ5 and 

the protease activated receptor 1 co-localize with MFB, 
and TGF-β-mediated pulmonary fibrosis is reduced by the 
blockade of αvβ5 in a mouse model (104).

Astoundingly, Henderson et al. reported that αv-containing 
integrins on MFB are components of a core cellular and 
molecular pathway contributing to pathological fibrosis in 
multiple solid organs and suggested that the targeting of this 
pathway could lead clinical utility in the treatment of patients 
with a broad range of fibrotic diseases (105).

As previously mentioned, MFB are not present in healthy 
adult myocardium and appear after cardiac injury (106).  
It has been also reported that MFB result from the 
differentiation of resident cardiac fibroblasts (107) or from 
the trans-differentiation of endothelial cells (49,108). The 
endothelial-to-mesenchymal transition can be induced 
by TGF-β in a SMAD-dependent fashion during cardiac 
fibrosis, while BMP-7 is able to block this process acting as 
an anti-fibrotic factor (49).

Data from preclinical models suggest that integrin-
mediated TGF-β  activation is involved in several 
pathological conditions, such as scleroderma, lung, 
kidney and liver fibrosis (87). In particular, in vitro studies 
demonstrated that both integrin αvβ6 and αvβ8-mediated 
TGF-β activation play a key role in lung fibrosis. Indeed, 
the first one promotes squamous metaplasia of airway 
epithelial cells (109) while the second inhibits airway 
epithelial proliferation and migration (110). These results 
were confirmed by using β6 integrin subunit-null mouse 
model and airway fibroblast isolated from patients with 
chronic obstructive pulmonary disease (92). Moreover, it 
has been shown that the expression of αvβ6 is increased 
in the migrating epidermal cells adjacent to wound (111), 
suggesting that this integrin is also involved in skin fibrosis, 
as confirm by in vivo studies using αvβ6-deficient aged mice 
(94,112). In addition, several evidences reported that also 
αvβ3 and αvβ5 integrins, which are able to activate TGF-β 
in primary culture isolated from scleroderma fibroblasts, are 
increased in the dermal fibroblasts of biopsy sample from 
scleroderma patients (100,101,103). Furthermore, Hahm et 
al. demonstrated that αvβ6 enhances renal fibrosis by using 
Col4a3−/− mice deficient in αvβ6 integrin or, alternatively, 
Col4a3−/− mice treated with anti-β6 integrin-blocking 
antibodies (or a soluble TβRII) (95). 

Taken this large amount of data together, it is clear that 
all these features render nowadays the integrins one of the 
most interesting therapeutic target on which investigate 
in the field of specific fibrotic disorders (113). Proofs of 
this sentence may be appreciated by the large literature, 
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ultimately and notably reviewed in this therapeutic context 
by Hatley and colleagues in 2017 (114). Although the 
integrin family was initially identified to have a key role in 
mediating cell adhesion, it is becoming even more clear that 
a subset of integrin plays the role of the culprit along with 
TGF-β in the fibrotic process.

The ADAMTS proteins

The ADAMTS proteins are members of a superfamily that 
includes 19 metalloproteases and a subfamily composed by  
7 ADAMTS lacking their catalytic activity, called ADAMTS-
like (ADAMTSL) proteins (55). While the ADAMTS are 
involved in different pathways, including maturation of pro-
collagen and tissue remodelling in several pathophysiological 
conditions (i.e., angiogenesis, arthritis), the ADAMTSL are 
component of the ECM with functions potentially linked to 
the regulation of ADAMTS protein activity (57).

In the cardiovascular context, the role of ADAMTS 
proteins is arousing growing interest since some of 
them have been recently found in the culprit plaques of 
patients with MI and others show versican cleaving activity 
(6,115-117). Specifically, an up-regulation of ADAMTS2, 
ADAMTS3, and ADAMTS13 have been observed in 
coronary lesions of patients with MI highlighting their 
possible participation in cardiovascular disease (116). 
Interestingly, both the ADAMTS2 and the ADAMTS3 
have pro-collagen N-propeptidase activity, while the 
ADAMTS13 is a von Willebrand factor cleaving protease. 
ADAMTS2 is expressed in several tissues, in addition to the 
heart, and it is involved in multiple processes. Among them, 
ADAMTS2 primary function is to activate the types I, II, III 
and V pro-collagen by the promotion of their cleavage (118). 
Mutations in ADAMTS2 determine enzyme malfunction 
and cause the Ehlers-Danlos syndrome type VIIC, a rare 
connective tissue disorder determined by the failure of type I  
pro-collagen cleavage (119). Dong et al. reported in the 
fibrotic pathological context of hepatic cirrhosis the pro-
fibrotic role of ADAMTS2 where resulted highly expressed 
and positively correlated with TGF-β levels. In turn, 
TGF-β probably induces ADAMTS2 expression through 
the SMAD signalling (120). Conversely, Wang et al. 
recently evidenced a protective role for ADAMTS2 in rat 
angiotensin II-dependent cardiomyocyte hypertrophy and in 
a murine model of cardiac hypertrophy induced by pressure 
overload. Moreover, they also demonstrated in patients 
with dilated cardiomyopathy that cardiac hypertrophy 
is hampered by ADAMTS2 expression levels (118).  

Indeed, under pathological conditions ADAMTS2 is 
able to protect the heart preventing hypertrophy by 
the inactivation of the PI3K/AKT signalling pathway, a 
recognized key mediator of cardiac hypertrophy. For this 
role in modulating cardiac fibrosis and its easy and effective 
manipulation as extracellular protein, ADAMTS2 has been 
proposed as novel pharmacological tool (118).

Among the three proteins found up-regulated in the 
coronary lesions of patients with MI, ADAMTS3 plays 
the most complex role due to its involvement in several 
biological processes not always related to collagen 
maturation (i.e., blood coagulation, neoangiogenesis, 
development, male fertility). To our knowledge its role in 
cardiovascular fibrosis have not been already clarified (121). 

Although ADAMTS13 is principally related to the 
development of thrombotic thrombocytopenic purpura—a 
rare disease characterized by thrombocytopenia, hemolytic 
anemia, and thrombi formation in the microvasculature—
there is increasing evidence that its malfunctioning has 
a role in adverse cardiovascular events, including HF 
(122-127). Interestingly, the peculiar von Willebrand 
factor cleavage activity of ADAMTS13 has been recently 
exploit to investigate its effect on chronic myocardial 
injury in a pressure overload mouse model. Specifically, 
the recombinant human ADAMTS13 administration 
determined in vivo a strong improvement in myocardial 
remodelling and functionality due to the ADAMTS13 
action in preventing inflammation, platelet recruitment and 
microvessel obstruction (128). Of note, the recombinant 
human ADAMTS13 is currently used in a clinical trial for 
the treatment of thrombotic thrombocytopenic purpura, 
so it may be exploitable as a new therapeutic tool against 
fibrotic cardiac damage (129).

Another interesting function attractive for researchers 
r e g a r d s  A D A M T S 1  a n d  A D A M T S 4  w h i c h  a r e 
capable to cleave versican, the primary proteoglycan 
component of the vasculature. In the cardiovascular 
context, ADAMTS1 and ADAMTS4 ability in ECM 
rearrangement results crucially detrimental both for the 
ventricular remodelling after MI and the regulation of 
fibrous cap stability in atherosclerotic plaque (117,130). 
The damaging role of ADAMTS1 is basically due 
to its cleavage activity of versican that, once cleaved, 
stimulates vascular smooth muscle cell migrations (131).  
Besides, ADAMTS1 has many beneficial functions 
including anti-angiogenic activity, versican turnover 
during mouse cardiac development, and type I collagen 
degrading activity (57,132-135). Interestingly, the ability 
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of ADAMTS1 to degrade type I collagen has been recently 
demonstrated in a mouse model of chronic viral myocarditis 
(CVMC), a disease that, at chronic stage, is characterized 
by ECM accumulation in heart tissue contributing to 
cardiac function loss (115). In this context, ADAMTS1 
myocardial protein expression has been found to be 
inversely correlated with the expression levels of type I 
collagen, and positively correlated with the carboxyterminal 
telopeptide of type I collagen, a degradation marker of 
type I collagen, released during its breakdown (115). 
Furthermore, in vitro studies provided evidence that, during 
the progression of CVMC to dilated cardiomyopathy, IL-17  
as well as TGF-β are able to up-regulate ADAMTS1 
expression, increasing type I collagen degradation (136). 
The same function of ADAMTS1 has been demonstrated in 
murine CVMC model after treatment with the angiotensin 
II converting enzyme inhibitor (ACEi) captopril. In this 
scenario ADAMTS1 contributes to the anti-fibrotic effect of 
captopril by accelerating type I collagen degradation (115).  
Although nowadays the exact underlying mechanism 
remained to be determined, the link between ACEi and 
ADAMTS1 opens new perspectives for potential combined 
therapy (115,137).

Concerning ADAMTS4, it has a fundamental role in 
degradation versican and aggrecan and thus it is counted 
among the pro-fibrotic ADAMTS proteins (117,138). This is 
basically because a link between the ADAMTS4 activity and 
HF development has been described (138). In depth, in the 
myocardium of rats subjected to pressure overload by aortic 
banding was observed an increased ADAMTS4 versicanase 
activity. Furthermore, the inhibition of ADAMTS4 
expression and activity by pentosan polysulfate (PPS) 
treatment improved cardiac contractile performance (138).  
On the basis of these discoveries together with the proven 
positive effect of PPS in reducing the infarct size in 
reperfusion models, the inhibition of ADAMTS4 is now 
depicted as a promising novel therapeutic approach in HF. 
Of note, the modulation of ADAMTS4 activity could be of 
great importance also in the atherosclerotic context where 
TGF-β-dependent inhibition of ADAMTS4 secretion by 
macrophages contributes to plaque stabilization (117).

Another member of the ADAMTS family linked to 
TGF-β signalling is ADAMTS5 which is principally 
involved in cartilage aggrecanase activity and joint fibrosis 
(139,140). In detail, ADAMTS5 determines in vivo the 
balance of proteoglycan turnover in the derma and, when 
absent, the TGF-β signalling intensification (140). In 
murine model of atherosclerosis ADAMTS5 promotes 

also lipoprotein retention. It has been properly found 
that ADAMTS5 determines the physiological release of 
versican and aggrecan fragments, and that its reduction is 
accompanied by the accumulation of biglycan and versican, 
the major LDL-binding species (141).

Interestingly, a study using balloon-injured arteries of rats 
showed that ADAMTS7 determines vascular smooth muscle 
cell migration and neointima formation probably through 
the degradation of thrombospondin-5, while another study 
in mouse model indicated the thrombospondin-1 as principal 
mediator of neointima formation, determining a retarded re-
endothelialization (142,143). Furthermore, it has been also 
showed that ADAMTS7 accumulates in the smooth muscle 
cells of coronary and carotid atherosclerotic plaques (144). A 
new link between ADAMTS7 and the cardiovascular context 
has been recently drawn by the association between its plasmatic 
levels and the worsening of LV function in patients with 
MI. Precisely, in a prospective study conducted by Wu et al.  
on STEMI, non-STEMI patients and controls it has been 
found that ADAMTS7 levels were greater in patients with 
LV ejection fraction ≤35%, independently from the STEMI 
or non-STEMI diagnosis (145). Despite all these results elect 
ADAMTS7 as a new target for possible post injury vascular 
intima hyperplasia treatments, further studies are needed to 
verify its exact mechanism of action in LV remodelling.

Among the ADAMTS family there are also ‘sister proteins’ 
involved in the same pathways, but determining opposite 
effects. This is the case of ADAMTS10 and ADAMTS6, 
both involved in fibrillin-1 microfibril formation, but 
with opposite functions. ADAMTS10 is required for 
focal adhesions, epithelial cell-cell junction formation, 
and microfibril deposition and it is known to cause, when 
mutated, the Weill-Marchesani syndrome, while ADAMTS6 
has an inhibitory effect on the same pathways (146).

The previously mentioned ADAMTSL proteins are 
integral components of the ECM and some of them, such 
as ADAMTSL2, ADAMTSL6 and ADAMTSL4, are 
interestingly involved in fibrosis. Specifically, ADAMTSL2, 
when mutated, is the cause of geleophysic dysplasia, an 
autosomal rare disorder mainly characterized by cardiac 
valvular thickening and progressive HF leading to 
premature death. From a molecular point of view, this 
pathology is characterized by an enhanced ECM mechanical 
stability (147). In particular, ADAMTSL2 binds both 
fibrillin-1 and the LTBP-1 determining the increase in the 
TGF-β activity levels typical of this pathology. 

Moving from the cardiovascular to a general context, 
ADAMTSL6 was found functionally involved in the 
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organization of the ECM in mice due to its capacity to 
directly bind fibrillin-1 and to promote its matrix assembly. 
Interestingly, ADAMTSL6 is highly expressed in murine 
heart tissue and its direct binding to fibrillin-1 has been 
demonstrated by surface plasmon resonance binding assay. 
Moreover, ADAMTSL6 overexpression in transgenic mice 
determined an excessive fibrillin-1 microfibril formation (148). 

For another member of the subfamily, ADAMTSL4, has 
been described a role strictly related to fibrillin-1 assembly 
and function in patients affected by ectopia lentis (149). 
In particular, the dislocation of the ocular lens in these 
subjects is determined by failed maintenance of the lens in 
the correct position because of the laxity of their suspensory 
ligaments principally composed by fibrillin-1. Of interest, 
mutations in several ADAMTS/ADAMTSL proteins affect 
the regulation of microfibrils in terms of assembly, stability 
and anchorage, resembling the phenotype observed in 
some fibrillin-1 related genetic disorders like geleophysic 
dysplasia, the Weill-Marchesani and Marfan syndrome, 
further confirming their functional link with microfibril 
network (6,150,151).

In conclusion, since several studies on ADAMTS/
ADAMTSL prote ins  prov ided ev idence  of  the ir 
involvement in cardiac fibrosis they may serve as promising 
targets to be boosted (i.e., ADAMTS2, ADAMTS13) or 
inhibited (i.e., ADAMTS4) on the basis of their main role 
for preventing cardiac hypertrophy and HF.

Conclusions 

To date, the knowledge of all molecular mediators 
involved in heart injury, repair, and remodelling after MI 
has unveiled a series of new possible therapeutic targets 
supporting cell therapy for patients. In fact, because of the 
fibrosis, the post-MI cardiac milieu is a discomfort zone to 
receive and embrace protective and potentially reparative 
cells. Pharmacological studies are now needed to define 
the exact effect of novel tools on pathological alterations 
leading to adverse remodelling after MI. Strategies able 
to modulate the fibrotic process are not only necessary to 
reduce, or even avoid, cardiac remodelling and subsequent 
HF, but may be also crucial in the future obtainment of 
effective cell-based myocardial regeneration.
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