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A new approach to predict lymph node metastasis in solid lung 
adenocarcinoma: a radiomics nomogram
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Background: Lymph node metastasis (LNM) of lung cancer is an important factor related to survival 
and recurrence. The association between radiomics features of lung cancer and LNM remains unclear. We 
developed and validated a radiomics nomogram to predict LNM in solid lung adenocarcinoma.
Methods: A total of 159 eligible patients with solid lung adenocarcinoma were divided into training (n=106) 
and validation cohorts (n=53). Radiomics features were extracted from venous-phase CT images. We built a 
radiomics nomogram using a multivariate logistic regression model combined with CT-reported lymph node 
(LN) status. The performance of the radiomics nomogram was evaluated using the area under curve (AUC) 
of receiver operating characteristic curve. We performed decision curve analysis (DCA) within training and 
validation cohorts to assess the clinical usefulness of the nomogram.
Results: Fourteen radiomics features were chosen from 94 candidate features to build a radiomics 
signature that significantly correlated with LNM. The model showed good calibration and discrimination 
in the training cohort, with an AUC of 0.871 (95% CI: 0.804–0.937), sensitivity of 85.71% and specificity 
of 77.19%. In the validation cohort, AUC was 0.856 (95% CI: 0.745–0.966), sensitivity was 91.66%, and 
specificity was 82.14%. DCA demonstrated that the nomogram was clinically useful. The nomogram also 
showed good predictive ability in patients at high risk for LNM in the CT-reported LN negative (cN0) 
subgroup.
Conclusions: The radiomics nomogram, based on preoperative CT images, can be used as a noninvasive 
method to predict LNM in patients with solid lung adenocarcinoma.
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Introduction 

Lung cancer is the leading cause of cancer deaths 
worldwide. Non-small cell lung cancer (NSCLC) accounts 
for about 85% of all lung cancers (1). Radical resection, 
including complete tumor resection and systematic lymph 
node (LN) dissection, is the standard treatment for  
I–IIIB stage NSCLC. LN metastasis (LNM) is an important 
factor affecting prognosis: 5-year survival with LNM is  
26–53% (2). Therefore, noninvasive preoperative evaluation 
of LNM is important for lung cancer staging, surgical 
planning, and prognosis. 

In current practice, CT evaluation of LNM relies on 
morphological changes, including size, shape, presence of 
necrosis, and external invasion of capsule. The accuracy of 
these indicators is low (3). Integrated PET/CT is a relatively 
accurate noninvasive imaging technique, with relatively 
high specificity for LN staging in patients with lung cancer. 
However, its higher examination fees and low prevalence 
limit their clinical application. Recently, radiomics has 
attracted increased attention of radiologists and clinicians 
because of its quantitative advantages. Radiomics uses a 
large number of automated data characterization algorithms 
to transform image data from a region of interest into the 
quantitative high-throughput feature space (4). Radiomics 
features can reflect biological information regarding 
the tumor, such as cell morphology, molecular and gene 
expression, which can noninvasively provide information 
regarding diagnosis, evaluation of prognosis, and prediction 
of treatment response (5). 

Radiomics analysis of primary lesions in colorectal 
cancer, bladder cancer, and breast cancer predicts the 
potential for LNM, and has higher sensitivity and 
specificity than do conventional evaluation methods (6-8). 
Adenocarcinoma (ADC) is the most common histological 
subtype of lung cancer. As compared to sub-solid ADC, 
patients with solid ADC are more likely to have LNM 
and poor prognosis. To our knowledge, there have been 
no studies regarding prediction of LNM in primary 
lung cancer using radiomics features. We hypothesize 
that a radiomics approach will achieve high accuracy 
for prediction of LNM in solid lung ADC. As opposed 
to previous radiomics approaches that require manual 
contour of lesions, we apply deep learning-driven 
automatic lesion segmentation for radiomics feature 
extraction. The purpose of this study was to develop and 
validate a deep learning masked radiomics nomogram 
model for the prediction of LNM in solid lung ADC.

Methods

Patients

This retrospective study was approved by our institutional 
review board. Medical record review was performed in 
accordance with institutional ethics review board guidelines.

Inclusion criteria were as follows: (I) there was 
pathological diagnosis of ADC conforming to the 2015 
WHO classification of lung cancer; (II) patients underwent 
thoracoscopic lobectomy, segmentectomy, wedge resection 
with systematic LN dissection; (III) the medical record 
contained definitive data regarding pathological type and 
metastasis to dissected LNs (intrapulmonary, hilar and 
mediastinal); (IV) within two weeks of surgery, all patients 
underwent routine and contrast-enhanced CT of the entire 
thorax using the same CT machine with the same algorithm 
(B30) and thickness (2 mm); (V) solid nodule appears as 
a rounded or irregular soft-tissue attenuation on CT; 
(VI) there was no previous chemotherapy, radiotherapy, 
or extrathoracic metastases; (VII) laboratory analysis of 
routine tumor markers were detected within a week before 
surgery, including CEA, CA125 and CA153. The positive 
threshold values for CEA, CA125, CA153, were >5, >35  
and >25 ng/mL according to the normal ranges used at our 
institution, respectively. 

Exclusion criteria were as follows: (I) clinical data were 
incomplete, or statistical analysis could not be performed; 
(II) there was a history of other malignancies or combined 
malignancies; (III) CT imaging was reconstructed using 
different algorithms, thicknesses, or reconstruction was 
performed on a different CT machine.

According to the inclusion and exclusion criteria 
(Supplementary file 1, Figure S1), we limited patient 
participation between January 2016 and August 2017 at 
our hospital. We divided the patients into two independent 
cohorts: 106 patients treated between January 2016 and 
February 2017 constituted the training cohort, and 53 
patients treated between March 2017 and August 2017 
constituted the validation cohort. A total of 159 patients 
were enrolled, including 91 males and 68 females, age  
22–81 years (mean 58.76±11.41 years).

Other clinical data, such as surgical records, pathological 
diagnoses, and LN dissection results, were retrieved from 
medical records. For review of LNs, CT images were 
observed on a PACS workstation. The window width 
and level were adjusted to optimize the examination of 
mediastinal and hilar LNs. We used multiple criteria for 
the evaluation of LN status on CT. Negative (benign) 
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criteria were as follows: nodular calcification and intranodal 
fat tissue; positive (malignant) criteria were as follows: 
short-axis diameter more than 10 mm, focal low density 
suggesting necrosis, surrounding fat infiltration suggesting 
extrafascial extension, and convex margin in hilar LNs (9).  
The longest dimension of the primary tumor was 
measured as CT-reported tumor size. A radiologist with 
20 years of experience in thoracic CT imaging (Y Guan) 
and a radiologist with 10 years of experience (X Yang) 
independently assessed CT-reported LN status and 
tumor size. Final decisions were reached by consensus. 
Preoperative clinical stages were determined according to 
the most recent international staging criteria (8th edition) 
for lung cancer. 

CT image acquisition 

All patients received routine and contrast-enhanced CT of 
the entire thorax, in a multi-detector CT system (Definition 
AS+ 128-Slice; Siemens Healthcare, Germany). CT scan 
parameters were as follows: tube voltage, 120 kV; automatic 
tube current modulation (35–90 mAs); pitch, 0.9; field of 
view, 180 mm × 180 mm; matrix, 512×512; reconstructed 
slice thickness 2 mm, and slice increment 2 mm. After 
routine non-enhanced CT, venous-phase scans started  
35 seconds after the contrast media reached 100 HU. 
Contrast medium (300 mg/mL, iopamidol injection, 
Bracco) was administered with a dose of 2 mL/kg body 
weight, at a rate of 3.0 or 3.5 mL/s. All images are exported 
in DICOM format for image feature extraction.

Lesion segmentation and radiomics features extraction

For nodule segmentation, we employed a 3D U-net model 
(10,11), trained with lung image database consortium 
(LIDC) datasets (Supplementary file 2, Figure S2). A 
total of 94 radiomics features (Supplementary file 3,  
Table S1) were extracted from venous-phase CT images 
using Pyradiomics, an open source radiomics extraction 
toolkit (12). The composition of radiomics features and 
the reasons for selection of venous-phase CT images are 
described in the supplementary data.

LN status–related feature selection and radiomics score 
mode construction

We used the least absolute shrinkage and selection operator 
(LASSO) logistic regression algorithm to select significant 

LN status features, with non-zero coefficients from among 
the 94 imaging features (Supplementary file 3, Table S1), 
within the training cohort. A formula was generated using a 
linear combination of selected features that were weighted 
by their respective LASSO coefficients. A radiomics score 
was calculated for each patient by the formula to reflect 
the risk of LNM. The predictive accuracy of the radiomics 
signature was quantified by the area under curve (AUC) of 
receiver operator characteristic (ROC) curve in both the 
training and validation cohorts.

Development of individualized radiomics nomogram

Multivariate logistic regression was used to evaluate 
the significant risk factors for prediction of LNM from 
radiomics score, age, CT-reported tumor size, CT-reported 
LN status, CEA, CA125 and CA153. The variance 
inflation factor (VIF) was used for collinearity diagnosis 
in the multivariate logistic regression analysis. Backward 
step-wise selection was then applied using the likelihood 
ratio test with Akaike’s information criterion as the 
stop rule. Based on the multivariate logistic regression 
analysis, a radiomics nomogram was constructed to 
provide a quantitative tool that could predict the 
probability of individual LNM.

The calibration curve was constructed to assess the 
nomogram. The Hosmer-Lemeshow test was performed to 
evaluate the goodness-of-fit of the nomogram, and the AUC 
was calculated to quantify the discriminating performance 
of the nomogram.

Validation of the individualized radiomics nomogram

The validation cohort was used for internal validation of 
the radiomics nomogram. The logistic regression formula 
formed in the training cohort was applied to all patients in 
the validation cohort. The radiomics score and total points 
were calculated for each patient. Finally, the calibration was 
performed and the AUC was calculated.

Clinical application value of the individualized radiomics 
nomogram 

To evaluate the clinical application value of the radiomics 
nomogram, decision curve analysis (DCA) was conducted 
by quantifying the net benefits for a range of threshold 
probabilities in both the training and the validation 
cohorts.
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Statistical analysis 

We used the LASSO logistic regression model with 
penalty parameter tuning that had been conducted 
using 10-fold cross-validation based on minimum 
criteria. The likelihood ratio test with backward step-
down selection was applied to the multivariate logistic 
regression model. Detailed descriptions of the LASSO 
algorithm and DCA are provided in the supplementary data  
(Supplementary files 4,5).

R statistical software (v3.4, Bell Laboratories, Murray 
Hill, NJ, USA) was used for all statistical tests. We used the 
“glmnet” package to perform the LASSO logistic regression 
model analysis. The VIFs were calculated using the “car” 
package. The ROC curves were plotted using the “pROC” 
package. Nomogram construction and calibration plots 
were performed using the “rms” package. The Hosmer-
Lemeshow test was performed using the “generalhoslem” 
package, to quantify the discrimination performance of the 
radiomics nomogram. DCA was performed using “dca.R.”. 
A two-sided P<0.05 was considered statistically significant.

Results

Characteristics of patients in the training and the 
validation cohorts 

The study flowchart and automatic segmentation-based deep 
learning technique is shown in Figure 1. The characteristics 
of patients in both the training and the validation cohorts 
is displayed in Table 1. There was no difference in LNM 
rate between the two cohorts, with 46.2% (49/106) in the 
training cohort and 47.2% (25/53) in the validation cohort, 
respectively (P=0.91). In the combined cohort, 41.9% 
(31/74) of the pathologically LN (pN) positive patients 
were understaged, and 17.6% (15/85) of the pathologically-
negative LN patients were overstaged as clinical LN (cN) 
positive according to CT evaluation.

Selection of features and construction of the radiomics 
signature  

A total of 94 features were extracted from the venous-

Figure 1 The study flowchart (A) and automatic segmentation-based deep learning technique (3D U-net) (B).
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Table 1 Baseline characteristics of patients the training and validation cohorts

Characteristics
Training cohort (n=106) Validation cohort (n=53)

LNM (+) (n=49) LNM (−) (n=57) P value LNM (+)（n=25） LNM (−) (n=28) P value

Age, mean ± SD (years) 59.75±10.74 59.71±11.80 0.994 57.52±8.89 56.11±13.59 0.660

Age (n) 0.818 0.317

<65 years 32 36 20 19

≥65 years 17 21 5 9

Gender (n) 0.101 0.805

Male 31 27 16 17

Female 18 30 9 11

CT-reported tumor size, 
mean ± SD (cm)

3.25±1.19 2.50±0.89 <0.001 3.90±1.58 2.51±0.96 <0.001

CT-reported tumor size (n) 0.009 0.002

≤3 cm 23 41 9 22

>3 cm 26 16 16 6

CT-reported LN status (n) <0.001 0.003

LN-negative 19 46 13 24

LN-positive 30 11 12 4

Histology grade (n) 0.271 0.071

Moderately differentiated 24 34 13 21

Poorly differentiated 25 23 12 7

pT stage (n) <0.001 0.006

T1 17 40 6 21

T2–T4 32 17 19 7

CEA level (n) 0.116 0.021

Normal 31 44 12 22

Abnormal 18 13 13 6

CA125 level (n) 0.050 0.176

Normal 38 52 21 27

Abnormal 11 5 4 1

CA153 level (n) 0.001 0.019

Normal 41 57 20 28

Abnormal 8 0 5 0

Radiomics score, mean ± 
SD (range)

14.38±0.87 (12.85–
16.31)

13.05±0.92 (10.93–
14.82)

<0.001 14.47±0.66 (13.13–
15.53)

13.12±0.83 (11.25–
14.64)

<0.001

LNM, lymph node metastasis; SD, standard deviation.
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phase CT images of the training cohort. We screened these 
features and chose the 14 that had non-zero coefficients 
(Supplementary file 6, Table S2) as potential predictors using 
the LASSO logistic regression model (Figure 2A,B). The 
calculation formula for the radiomics score (Supplementary 

file 7) based on the selected features is presented in the 
supplementary data. The radiomics score for LN-positive 
patients was higher than that of negative LNM patients 
in the training cohort [(14.38±0.87) vs. (13.05±0.92), 
P<0.001]. This was then confirmed in the validation cohort 

Figure 2 Selection of texture features by the least absolute shrinkage and the operator (LASSO) binary logistic regression model. (A) Tuning 
parameters (λ) selected in the LASSO model applied 10-fold cross-validation via the minimum criteria. The Y-axis indicates the binomial 
deviances. The lower X-axis indicates the log(λ). Numbers along the upper X-axis represent the average number of predictors. Red dots 
indicate average deviance values for each model with a given λ. Vertical bars through the red dots show the upper and lower limits of the 
deviances. Dotted vertical lines were drawn at the optimal values using the minimum criteria with 1 standard error (the 1-SE criteria). The 
optimal λ value of 0.0227 with log(λ) =−3.782 was chosen; (B) LASSO coefficient profiles of the 94 features. According to the 10-fold cross-
validation in (A), the dotted vertical line was plotted. The 14 features with non-zero coefficients are indicated in the plot; (C,D) the ROC 
curve of the radiomics signature. There was good discrimination in both the training and the validation cohorts. ROC, receiver operator 
characteristic.
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[(14.47±0.66) vs. (13.12±0.83), P<0.001]. The radiomics 
signature also showed a favorable predictive efficacy, with 
an AUC of 0.854 in the training cohort [95% confidence 
interval (CI), 0.784–0.924, sensitivity =77.55%, specificity 
=78.94%.] and 0.803 in the validation cohort (95% CI, 
0.683–0.923, sensitivity =72.00%, specificity =85.71%) 
(Figure 2C,D).

Development of an individualized nomogram

The univariate logistic regression analysis identified 
independent predictors, including age, CT-reported 
tumor size, CT-reported LN status, CEA, CA125, CA153 
and radiomics score (Table 2). The radiomics score and 
CT-reported LN status were recognized as independent 
predictors for LNM in primary lung ADC patients, using 
the multivariate logistic regression model (Table 2). The 
VIFs of the seven predictors mentioned above varied from 
1.043 to 1.833, suggesting no collinearity in the diagnosis.

We then constructed a model including radiomics score 
and CT-reported LN status and used it as nomogram to 
predict the probability of LNM in the training cohort 
(Figure 3A). The calibration curve of the radiomics 
nomogram demonstrated good agreement with the training 
cohort (Figure 3B). There was no statistical significance in 
the Hosmer-Lemeshow test (P=0.368). We then confirmed 
the favorable calibration of the radiomics nomogram in 
the validation cohort (Figure 3C). The Hosmer-Lemeshow 
test showed no statistical significance (P=0.138). The AUC 
of radiomics nomogram in the training cohort was 0.871 
(95% CI, 0.804–0.937; sensitivity =85.71%, specificity 
=77.19%). In the validation cohort, AUC was 0.856 (95% 

CI, 0.745–0.966; sensitivity =91.66%, specificity =82.14%) 
(Figure 3D,E). Hence, the radiomics nomogram showed 
good performance in the training and validation cohorts.

DCA is shown in Figure 4. We found that if the threshold 
probability of a patient was between 0.46 and 0.83, the 
radiomics nomogram for predicting LNM would be more 
beneficial than the strategies “treat all” or “treat none”.

In addition, we evaluated the discriminatory efficiency 
of the radiomics nomogram in 159 patients and in the LN-
negative (cN0) subgroup (n=101) using ROC analysis. The 
comparison of the discriminatory accuracy between the 
radiomics nomogram and the radiomics signatures and CT-
reported LN status alone is shown in Figure 5A. We found 
that the AUC of the radiomics nomogram was 0.864 (95% 
CI, 0.807–0.921), suggesting that the nomogram provided 
better predictive efficacy. The discriminatory ability in the 
cN0 subgroup was also confirmed to be good (AUC, 0.875; 
95% CI, 0.803–0.947, Figure 5B). After obtaining the risk 
score, we then defined an optimal risk score cutoff value 
of 0.42 on the basis of the maximum Youden index in the 
training cohort, and divided the patients into low-risk and 
high-risk groups. Importantly, patients in the high-risk 
group showed a greater possibility for LNM in all patients 
and in the cN0 subgroup (Figure 5C,D). Meanwhile, nine 
patients with CT-reported LN positivity were found to have 
reactive hyperplasia by histopathology. This was consistent 
with the prediction outcome of the radiomics nomogram. 

Discussion

The International Association for the Study of Lung Cancer 
(IASLC), based on a newly established large database, 

Table 2 Risk factors for LNM in primary lung adenocarcinoma

Variable and intercept
Univariate logistic regression Multivariate logistic regression

OR (95% CI) P value OR (95% CI) P value

Age (<65 vs. ≥65 years) 0.91 (0.41–2.02) 0.820 NA NA

CT-reported tumor size (≤3 vs. >3 cm) 2.90 (1.31–6.59) 0.004 NA NA

CT-reported LN status (negative vs. positive) 6.60 (2.83–16.38) <0.001 2.85 (1.02–8.22) 0.048

CEA level (normal vs. abnormal) 1.97 (0.85–4.67) 0.120 NA NA

CA125 level (normal vs. abnormal) 6.92 (1.71–46.71) 0.016 NA NA

CA153 level (normal vs. abnormal) 5.9×107 (1.01–10.22) 0.990 NA NA

Radiomics score 6.33 (3.27–14.52) <0.001 5.39 (2.73–12.53) <0.001

LNM, lymph node metastasis; OR, odds ratio; NA, not available.
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Figure 3 Radiomics nomogram for the prediction of LNM. (A) Construction of the radiomics nomogram, including the radiomics score and 
CT-reported LN status; (B,C) calibration curve of the radiomics nomogram in the training (B) and the validation cohort (C), respectively. 
Calibration curves described the calibration of each model for the agreement between the predicted risk of LNM and observed outcome. 
The actual LNM rate was represented on the Y-axis and the predicted LNM probability was represented on the X-axis. The diagonal dotted 
line indicates good performance of prediction by an ideal model and the red dotted line represents the actual performance of the nomogram; 
(D,E) the ROC curves of the radiomics nomogram in the training (D) and validation cohort (E), respectively. LNM, lymph node metastasis; 
ROC, receiver operator characteristic. 
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showed that cN and pN status were closely related to 5-year 
survival rates (13). Systematic dissection of LNs in lung 
cancer patients has been widely accepted, but the extent of 
LN dissection has been the focus of controversy (14-16).  
Studies (14) have shown that extent of LN resection 
does not increase peri-operative morbidity or mortality 
after surgery for stage I lung cancer in the elderly. Some 
investigators (16) recommend a cutoff of 16 LNs for post-
operative prognostic stratification for patients with LN-
negative disease. On the other hand, adjuvant chemotherapy 
is recommended for patients with NSCLC who have any 
sign of LNM (17). Therefore, identification of LNM is 
a crucial step in management and treatment decision in 
patients with NSCLC.

Radiomics provides quantitative measurements of 
heterogeneity based on distribution of grey levels and 
is not affected by subjective analysis. Some studies (7,8) 

have shown that the predictive accuracy of CT radiomics 
signature was favorable for LNM in patients with colorectal 
cancer and bladder cancer. However, the segmentation 
of lesions in these studies relies on the expert’s manually 
contouring, which is painful for the doctor. Recent 
developments in deep learning provide methods performing 
organ and lesion segmentation. Combined automatic 
lesion segmentation and advanced prediction methods 
with radiomics provide clinicians with powerful tools. As 
a validation of this proposed workflow, we applied a deep 
learning-generated nodules mask to a radiomics pipeline in 
patients with primary lung ADC. Our aim was to determine 
whether an established automatically-generated radiomics 
signature could be used for the preoperative prediction  
of LNM.

The 3D U-net is often used for organ or lesion 
segmentation in medical imaging (18,19). We adapted 
it for nodule segmentation using four scales to cover 
different nodule sizes. In the LIDC datasets, the median 
dice coefficient among four radiologists was 0.83, whereas 
our 4-scale 3D U-net model achieved 0.83 in the training 
cohort, 0.79 in the validation cohort, and 0.80 the test 
cohort. Although its mask it not as good as a radiologist, 
it has the advantage of being automated. Less variability 
might accelerate the radiomics predication pipeline.

Our  r ad iomic s  s i gna ture  exh ib i t ed  f avorab le 
discrimination, with AUCs of 0.854 and 0.803 in the 
training and validation cohorts, respectively. However, 
the diagnostic sensitivity for two cohorts was relatively 
low, 77.51% and 72.00%, respectively. Thereafter, we 
took into account CT-reported LN status, tumor size, and 
clinical factors to increase sensitivity of radiomics signature. 
A multivariate logistic regression model indicated that  
CT-reported LN status was a significant predictive factor, 
distinct from the radiomics signature. Finally, the radiomics 
nomogram consisting of the radiomics signature and  
CT-reported LN status successfully stratified patients 
according to their risk of LNMs, showing good calibration 
and discrimination in the training and validation cohorts. 
The AUC of the radiomics nomogram in predicting LNMs 
of two cohorts was 0.871 and 0.856, respectively. The 
diagnostic sensitivity and specificity of the two cohorts were 
85.71% and 77.19%, 91.67% and 82.14%, respectively.

PET-CT is a non-invasive staging method of cancer that 
is increasingly employed by lung cancer multidisciplinary 
teams. Many studies (20-23) reviewed the diagnostic 
performance of PET/CT in LN staging of patients 
with NSCLC. A systematic review (23) showed that the 
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LNM. For example, if the possibility of LNM involvement of a 
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for LNM should be adopted. The decision curves in the validation 
cohort showed that if the threshold probability was between 0.46 
and 0.83, then using the radiomics nomogram to predict LNM 
added more benefit than treating either all or no patients. DCA, 
decision curve analysis.
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summary sensitivity and specificity estimates for the activity 
> background PET-CT positivity criterion were 77.4% 
and 90.1%, respectively. However, the accuracy estimates 
of these studies in ROC space showed a wide prediction 
region, and the summary sensitivity and specificity estimates 
for the SUVmax ≥2.5 PET-CT positivity criterion were 
81.3% and 79.4%, respectively. In these two groups, the 
accuracy estimates in the ROC space showed a very wide 
prediction region. Thus, the accuracy of PET-CT is 
insufficient to recommend PET-CT alone. However, the 
prediction of LNM by the radiomics nomogram reached or 

even surpassed the level of PET/CT. This may be related to 
the fact that microscopic LNM are barely detected by PET/
CT. Recent development of radiomics enabled us to easily 
obtain high-throughput data without re-scanning, reducing 
radiation exposure. We constructed a radiomics nomogram 
that facilitates preoperative individualized prediction of 
LNM. If a radiomics nomogram is widely validated, it 
would require only 1–3 minutes to obtain a predicted risk of 
LNMs from an established model.

To justify clinical usefulness, we assessed whether the 
radiomics nomogram-assisted decisions would improve 

Figure 5 Performance of the radiomics nomogram in all 159 patients and in the cN0 subgroup (n=101). The upper panels present the ROC 
curve analyses for the radiomics nomogram. The lower panels show the risk classification performance of the nomogram. (A,C) All 159 
patients; (B,D) 101 patients in the cN0 subgroup. ROC, receiver operator characteristic.
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patient outcomes by DCA. This method offers insight 
into net benefits based on threshold probability. The 
decision curve showed that if the threshold probability of 
a patient or physician is between 0.46 and 0.83, using the 
radiomics nomogram to predict LNMs adds more benefit 
than either the treat-all-patients scheme or the treat-
none scheme.

Some investigators (24-26) attempted to use CT texture 
analysis to discriminate malignant from benign LN in 
lung cancer. However, these studies analyzed only larger 
LNs and could not analyze normal-sized and occult LNM 
(micrometastases). A systematic review (27) suggested 
that micrometastases are clinically relevant in NSCLC, 
conferring worse prognosis. The innovation of our 
study is prediction of the possibility of LNM by texture 
analysis of the primary lesion, because the primary lesion 
reflects pathological features, such as tumor hypoxia and 
angiogenesis (28). 

A valuable feature of our radiomics nomogram is its 
discriminatory ability in cN0 patients. Patients diagnosed 
as cN0 are typically considered to be at low risk for LNM. 
However, some cN0 patients also harbor LNMs, and it is 
a formidable challenge to precisely identify which patients 
will experience LNM. Our nomogram showed good 
discriminatory ability in cN0 patients to identify the patients 
at high risk of LNM. Furthermore, when categorized into 
low- and high-risk groups on the basis of the cutoff values 
of the risk score derived from the nomogram, the high-
risk group had a significantly greater probability of having 
LNMs in patients with lung cancer. The high-risk group of 
cN0 patients will benefit by increasing the number of LN 
dissection intents. 

There are some limitations to the present study. First, 
the sample size was relatively small, because we adopted 
standard CT data with the same machine, reconstruction 
algorithm and section thickness. Second, a minority of 
patients in our study did both CT and PET-CT before 
surgery because of the high cost of PET-CT and the 
high radiation exposure. We will add related cases in 
future studies and compare studies results with PET-CT. 
Third, we were not able to externally validate the method. 
Fourth, LNM in lung cancer is affected by gene expression 
profiles, such as those of microRNA-31 and C-Met 
(29,30). We did not take this into account. Fifth, we did 
not consider new features discovered by deep learning. 
At the time of this study, we considered deep learning 
to be a mask input to the radiomics pipeline. In the 
future, combined radiomics features with deep learning-

discovered features might further improve the predictive 
accuracy automatically.

Conclusions

In conclusion, we presented a radiomics nomogram 
consisting of both a radiomics signature and CT-reported 
LN status. The nomogram showed favorable predictive 
accuracy for preoperative LNM and can be used for 
CT-reported LN-negative patients. These results may 
contribute to preoperative staging, prediction of treatment 
response and prognostic evaluation of lung cancer.

Acknowledgements

Funding: The research was supported by Open Project 
of  State  Key Laboratory  of  Respiratory  Disease 
(SKLRD2016OP011) and Science and Technology 
Planning Project of Guangdong Province (Grant No. 
2017A040405065).

Footnote

Conflicts of Interest: The authors have no conflicts of interest 
to declare.

Ethical Statement: This retrospective study was approved 
by the Institutional Review Board of the First Affiliated 
Hospital of Guangzhou Medical University [Medical 
Ethical Review (MER) 2017-38]. Medical record review was 
performed in accordance with institutional ethics review 
board guidelines. 

References

1. Jemal A, Center MM, DeSantis C, et al. Global patterns 
of cancer incidence and mortality rates an trends. Cancer 
Epidemiol Biomarkers Prev 2010;19:1893-907. 

2. Goldstraw P, Chansky K, Crowley J, et al. The IASLC 
Lung Cancer Staging Project: Proposals for Revision of 
the TNM Stage Groupings in the Forthcoming (Eighth) 
Edition of the TNM Classification for Lung Cancer. J 
Thorac Oncol 2016;11:39-51. 

3. Silvestri GA, Gould MK, Margolis ML, et al. Noninvasive 
staging of non-small cell lung cancer: ACCP evidenced-
based clinical practice guidelines (2nd edition). Chest 
2007;132:178S-201S.

4. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding 



S818

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(Suppl 7):S807-S819jtd.amegroups.com

Yang et al. A radiomics nomogram to predict LNM of lung cancer

tumour phenotype by noninvasive imaging using 
a quantitative radiomics approach. Nat Commun 
2014;5:4006.

5. Huang Y, Liu Z, He L, et al. Radiomics Signature: A 
Potential Biomarker for the Prediction of Disease-Free 
Survival in Early-Stage (I or II) Non-Small Cell Lung 
Cancer. Radiology 2016;281:947-57. 

6. Dong Y, Feng Q, Yang W, et al. Preoperative prediction of 
sentinel lymph node metastasis in breast cancer based on 
radiomics of T2-weighted fat-suppression and diffusion-
weighted MRI. Eur Radiol 2018;28:582-91. 

7. Wu S, Zheng J, Li Y, et al. A Radiomics Nomogram for 
the Preoperative Prediction of Lymph Node Metastasis in 
Bladder Cancer. Clin Cancer Res 2017;23:6904-11. 

8. Huang YQ, Liang CH, He L, et al. Development and 
Validation of a Radiomics Nomogram for Preoperative 
Prediction of Lymph Node Metastasis in Colorectal 
Cancer. J Clin Oncol 2016;34:2157-64. 

9. Nambu A, Kato S, Motosugi U, et al. Thin-section CT of 
the mediastinum in preoperative N-staging of non-small 
cell lung cancer: comparison with FDG PET. Eur J Radiol 
2010;73:510-7. 

10. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional 
Networks for Biomedical Image Segmentation. Med 
Image Comput Comput Assist Interv 2015;9351:234-41.

11. Çiçek Ö, Abdulkadir A, Lienkamp SS, et al. 3D U-Net: 
Learning Dense Volumetric Segmentation from Sparse 
Annotation. Med Image Comput Comput Assist Interv 
2016;9901:424-32.

12. van Griethuysen JJM, Fedorov A, Parmar C, et al. 
Computational Radiomics System to Decode the 
Radiographic Phenotype. Cancer Res 2017;77:e104-7.

13. Asamura H, Chansky K, Crowley J, et al. The 
International Association for the Study of Lung Cancer 
Lung Cancer Staging Project: Proposals for the Revision 
of the N Descriptors in the Forthcoming 8th Edition of 
the TNM Classification for Lung Cancer. J Thorac Oncol 
2015;10:1675-84.

14. Shapiro M, Mhango G, Kates M, et al. Extent of lymph 
node resection does not increase perioperative morbidity 
and mortality after surgery for stage I lung cancer in the 
elderly. Eur J Surg Oncol 2012;38:516-22. 

15. Darling GE, Allen MS, Decker PA, et al. Randomized 
trial of mediastinal lymph node sampling versus complete 
lymphadenectomy during pulmonary resection in the 
patient with N0 or N1 (less than hilar) non-small cell 
carcinoma: results of the American College of Surgery 
Oncology Group Z0030 Trial. J Thorac Cardiovasc Surg 

2011;141:662-70. 
16. Liang W, He J, Shen Y, et al. Impact of Examined Lymph 

Node Count on Precise Staging and Long-Term Survival 
of Resected Non-Small-Cell Lung Cancer: A Population 
Study of the US SEER Database and a Chinese Multi-
Institutional Registry. J Clin Oncol 2017;35:1162-70. 

17. Ettinger DS, Akerley W, Borghaei H, et al. Non-small 
cell lung cancer, version 2.2013. J Natl Compr Canc Netw 
2013;11:645-53; quiz 653.

18. Shen D, Wu G, Suk HI, et al. Deep Learning in Medical 
Image Analysis. Annu Rev Biomed Eng 2017;19:221-48. 

19. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep 
learning in medical image analysis. Med Image Anal 
2017;42:60-88. 

20. Lv YL, Yuan DM, Wang K, et al. Diagnostic performance 
of integrated positron emission tomography/computed 
tomography for mediastinal lymph node staging in non-
small cell lung cancer: a bivariate systematic review and 
meta-analysis. J Thorac Oncol 2011;6:1350-8. 

21. Broderick SR, Patterson GA. Performance of integrated 
positron emission tomography/computed tomography for 
mediastinal nodal staging in non-small cell lung carcinoma. 
Thorac Surg Clin 2013;23:193-8. 

22. Liao CY, Chen JH, Liang JA, et al. Meta-analysis study of 
lymph node staging by 18 F-FDG PET/CT scan in non-
small cell lung cancer: comparison of TB and non-TB 
endemic regions. Eur J Radiol 2012;81:3518-23. 

23. Schmidt-Hansen M, Baldwin DR, Hasler E, et al. PET-
CT for assessing mediastinal lymph node involvement 
in patients with suspected resectable non-small cell lung 
cancer. Cochrane Database Syst Rev 2014:CD009519.

24. Pham TD, Watanabe Y, Higuchi M, et al. Texture Analysis 
and Synthesis of Malignant and Benign Mediastinal 
Lymph Nodes in Patients with Lung Cancer on Computed 
Tomography. Sci Rep 2017;7:43209. 

25. Andersen MB, Harders SW, Ganeshan B, et al. CT 
texture analysis can help differentiate between malignant 
and benign lymph nodes in the mediastinum in patients 
suspected for lung cancer. Acta Radiol 2016;57:669-76. 

26. Bayanati H, E Thornhill R, Souza CA, et al. Quantitative 
CT texture and shape analysis: can it differentiate benign 
and malignant mediastinal lymph nodes in patients with 
primary lung cancer? Eur Radiol 2015;25:480-7.

27. Coello MC, Luketich JD, Litle VR, et al. Prognostic 
significance of micrometastasis in non-small-cell lung 
cancer. Clin Lung Cancer 2004;5:214-25. 

28. Ganeshan B, Goh V, Mandeville HC, et al. Non-small 
cell lung cancer: histopathologic correlates for texture 



S819Journal of Thoracic Disease, Vol 10, Suppl 7 April 2018

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(Suppl 7):S807-S819jtd.amegroups.com

parameters at CT. Radiology 2013;266:326-36. 
29. Meng W, Ye Z, Cui R, et al. MicroRNA-31 predicts 

the presence of lymph node metastases and survival in 
patients with lung adenocarcinoma. Clin Cancer Res 
2013;19:5423-33. 

30. Han CB, Ma JT, Li F, et al. EGFR and KRAS mutations 
and altered c-Met gene copy numbers in primary non-
small cell lung cancer and associated stage N2 lymph 
node-metastasis. Cancer Lett 2012;314:63-72. 

Cite this article as: Yang X, Pan X, Liu H, Gao D, He J, Liang 
W, Guan Y. A new approach to predict lymph node metastasis 
in solid lung adenocarcinoma: a radiomics nomogram. J Thorac 
Dis 2018;10(Suppl 7):S807-S819. doi: 10.21037/jtd.2018.03.126


