Medullar impairment resolves hiccups

Toshiro Obuchi¹, Jun-ichi Wakahara², Naoyuki Fujimura³, Akinori Iwasaki²

¹Department of Thoracic Surgery, St. Mary's Hospital, Kurume, Japan; ²Department of Thoracic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; ³Department of Anesthesiology, St. Mary's Hospital, Kurume, Japan

Contributions: (I) Conception and design: T Obuchi; (II) Administrative support: None; (III) Provision of study materials or patients: T Obuchi; (IV) Collection and assembly of data: J Wakahara, N Fujimura; (V) Data analysis and interpretation: T Obuchi; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Toshiro Obuchi, MD. Department of Thoracic Surgery, St. Mary's Hospital, 422 Tsubuku-hon-machi, Kurume 830-8543, Japan. Email: fukuoka.obuchi@gmail.com.

Background: In a previous article we reported the time that hiccups stop as the instant when CO_2 levels in both expiratory gas (EtCO₂) and inspiratory gas (InspCO₂) reach approximately 50 mmHg. To support our findings, in this article we aim to clarify the precise values of the CO₂ level in arterial blood (PaCO₂) and venous blood (PvCO₂) during plastic bag rebreathing.

Methods: A healthy male volunteer was asked to perform a rebreathing experiment using a 20 L air-filled plastic bag. During the experiment, his blood oxygen saturation level (SpO₂), EtCO₂ and InspCO₂ were measured until the volunteer gave up. PaCO₂ and PvCO₂ were measured at the following four points: P_0 , when the rebreathing started; P_1 , when both EtCO₂ and InspCO₂ indicated the same value; P_2 , when both reached 50 mmHg; and P_3 , when SpO₂ dropped to 90%.

Results: InspCO₂ increased from the beginning and showed the same value as EtCO₂ at P₁. PaCO₂ at P₁ was almost the same value as both InspCO₂ and EtCO₂. After P₁, InspCO₂, EtCO₂ and PaCO₂ increased at the same rate, and at P₂, they reached the level of PvCO₂. After P₂, all four markers continued to show the same value as they gradually increased.

Conclusions: Creating conditions inside the body in which $PaCO_2$ increases to the same level as $PvCO_2$ will stop hiccups consistently. Although other physiological pathways to stop hiccups may exist, for a successful outcome it is important that the balance of power between the cerebellum and the medulla is drastically altered.

Keywords: Hiccups; medulla; carbon dioxide (CO₂)

Submitted May 10, 2018. Accepted for publication May 28, 2018. doi: 10.21037/jtd.2018.06.21 View this article at: http://dx.doi.org/10.21037/jtd.2018.06.21

Introduction

Many people hold deep-seated beliefs surrounding home remedies for hiccups and often assume their method of choice will be equally effective for someone else despite a lack of supporting evidence (1). Rather than dismiss these remedies outright, as scientists, we instead embrace the challenge to reveal the underlying physiological mechanisms.

According to the results of our experiments employing our plastic bag rebreathing method, we have reported that the time hiccups stop must be when CO_2 levels in both expiratory gas (EtCO₂) and inspiratory gas (InspCO₂) reach approximately 50 mmHg (2). In addition, using the findings, we elicited that the CO₂ level in arterial blood (PaCO₂) should simultaneously reach approximately 50 mmHg at the time hiccups stop; however, there was only supportive data to imply our conjecture regarding PaCO₂ in the former report (2).

We conducted another experiment to further investigate what actually happens to blood CO_2 levels during plastic bag rebreathing. Using the results, we will discuss the

Journal of Thoracic Disease, Vol 10, No 6 June 2018

Table 1 Values of InspCO ₂ , EtCO ₂ , PaCO ₂ , PaCO ₂ , and SpO ₂ from P ₀ through P ₃				
Point (time, s)	Pº [0]	P ₁ [90]	P ₂ [210]	P ₃ [360]
InspCO₂ (mmHg)	0.0	39.1	50.0	61.9
EtCO ₂ (mmHg)	35.0	39.1	50.0	61.9
PaCO ₂ (mmHg)	43.6	39.8	48.2	61.0
PvCO ₂ (mmHg)	47.5	48.2	50.1	61.9
SpO ₂ (%)	97	99	97	88

Table 1 Values of InspCO₂, EtCO₂, PaCO₂, PvCO₂, and SpO₂ from P₀ through P₃

InspCO₂, CO₂ level of inspiratory gas; EtCO₂, CO₂ level of expiratory gas; SpO₂, peripheral capillary oxygen saturation; PaCO₂, partial pressure of CO₂ in arterial blood; PvCO₂, partial pressure of CO₂ in venous blood.

physiological meanings behind reactions in the experiment, spotlighting the correlation between mimicking choking and stopping hiccups.

Methods

The study protocol was examined and approved by our Research Review Board (No. 17-0310, approved on March 10, 2017). An extension of the study period to the end of March 2019 was approved on April 3, 2018. Written consent was obtained from the volunteer prior to this experiment.

According to our former report, we knew $EtCO_2$ and $InspCO_2$ would show the same values at around 90 seconds in to the plastic bag rebreathing method when using a 20 L air-filled plastic bag (2). And if the airtight seal was not compromised, both $EtCO_2$ and $InspCO_2$ would exceed 50 mmHg before blood oxygen saturation level (SpO₂) dropped below 90%. Incidentally, the level of 50 mmHg in both $EtCO_2$ and $InspCO_2$ represents the point at which hiccups stopped in the two previous experiments with two patients suffering from persistent hiccups (2).

We enlisted a 55-year-old healthy male 1.87 m in height and weighing 77 kg as a volunteer for the experiment. An arterial line (A-line) was taken on his left wrist, and 1,500 units of heparin sodium was injected from the line. He held a CO₂ sensor in his mouth to measure both EtCO₂ and InspCO₂, and a 20 L clear plastic bag (520 mm × 600 mm) filled with air was placed over his head with an airtight seal around the neck. We attached a pulse oximeter on his left toe to measure SpO₂ and instructed him to rebreathe into the plastic bag for as long as possible. EtCO₂, InspCO₂, and SpO₂ levels were continuously measured until the end of the experiment. Arterial blood and venous blood were simultaneously taken at the following four points: P₀, when the plastic bag rebreathing started; P₁, when both EtCO₂ and InspCO₂ showed the same value; P_2 , when both reached 50 mmHg; and P_3 , when SpO₂ decreased to 90%. Arterial blood was taken through the A-line by a doctor, and venous blood was taken from his right arm by a nurse. These blood samples were quickly analyzed using a blood gas analyzer (ABL735; Radiometer, Tokyo, Japan) (3). The measuring instruments for EtCO₂, InspCO₂ and SpO₂ were an EtCO₂ meter (MicrostreamTM; Medtronic, Minneapolis, USA) and a multi-monitoring system (DS-8200; FUKUDA DENSHI, Tokyo, Japan) (4,5).

Results

 P_1 occurred at 90 s from the start, P_2 at 210 s, and P_3 at 360 s, respectively (*Table 1*). Incidentally, SpO₂ levels were recorded every 15 seconds during the experiment, registering at 91% at 345 seconds and 88% at 360 seconds. SpO₂ at P_3 was recorded as not 90% but 88% in *Table 1*.

InspCO₂ sharply increased from P_0 to P_1 and then lost speed after reaching the same level as EtCO₂, both slowly continuing to rise (*Figure 1*). EtCO₂ was almost plateaued from P_0 to P_1 , but then began to gradually increase along with InspCO₂.

 $PaCO_2$ decreased slightly from P_0 to P_1 (*Figure 2*). After showing almost the same value as both EtCO₂ and InspCO₂ at P_1 , it then began to gradually increase along with EtCO₂ and InspCO₂. On the other hand, $PvCO_2$ very slightly increased or almost plateaued from P_0 to P_2 , at which point it then gradually increased along with the other three parameters.

Discussion

Since hiccups are usually self-limiting, they are harmless for most people. However, in rare cases hiccups can become severe, such as patients with cancer undergoing 3624

Figure 1 Graph of $InspCO_2$, $EtCO_2$ and SpO_2 during our plastic bag method. Both arterial blood and venous blood were simultaneously taken at P₀, P₁, P₂ and P₃. InspCO₂, CO₂ level of inspiratory gas; $EtCO_2$, CO₂ level of expiratory gas; SpO_2 , Peripheral capillary oxygen saturation.

Figure 2 Graph of InspCO₂, EtCO₂, SpO₂, PaCO₂ and PvCO₂ during our plastic bag method. PaCO₂ showed the same value as both InspCO₂ and EtCO₂ at P1. PaCO₂ reached the same value as PvCO₂ at P₂. Four parameters increased in the same degree after P₂. InspCO₂, CO₂ level of inspiratory gas; EtCO₂, CO₂ level of expiratory gas; SpO₂, peripheral capillary oxygen saturation; PaCO₂, partial pressure of CO₂ in arterial blood; PvCO₂, partial pressure of CO₂ in venous blood.

chemotherapy; about 4-10% of cancer patients on chemotherapy (another research group has reported it was about 40% of them) suffer from severe chronic hiccups (6-8). Hiccups that continue beyond 48 hours are considered persistent, and episodes longer than 2 months are termed intractable (1). A problem for patients with persistent hiccups is that not only home remedies, but medical interventions are also often ineffective (1,7,8). From this point of view, evidence that our plastic bag rebreathing method consistently cured a number of patients with persistent hiccups could offer clues behind the mechanisms at work (2).

 P_1 and P_2 are of significant physiological importance in our experiment. P_1 is the point at which not only InspCO₂ reached the same value as EtCO₂, but the point at which PaCO₂ reached almost the same value as well; namely, $InspCO_2 = EtCO_2 = PaCO_2$. We think this phenomenon represents the moment that the concentration of CO2 in the air inside the bag reaches the same value as $PaCO_2$; no longer is there a pressure gradient between arterial blood and lung air. After P1, once CO₂ is expelled from the lung into the air inside the bag through expiratory gas, the same volume of CO₂ begins infiltrating arterial blood through inspiratory gas. We can deduce that the duration from P_0 to P_1 depends on the size of plastic bag: the smaller plastic bag, the shorter the duration. And if no plastic bag is employed (as in the case of holding one's breath), the period is theoretically very short. The plastic bag thus works to supplement lung capacity in our rebreathing method.

 P_2 is the point that PaCO2 reached almost the same value as PvCO₂; namely, InspCO₂ = EtCO₂ = PaCO₂ = PvCO₂ = approximately 50 mmHg. This phenomenon means that the concentration of CO₂ in the entire bloodstream is equalized. After P₂, there is no longer a CO₂ pressure gradient between PvCO₂ and PaCO₂ [Δ (PvCO₂ - PaCO₂) = 0 mmHg], and CO₂ accumulates in the body without being discharged. However, a sufficient amount of O₂ still remains in the air and blood until P₃.

What does P_2 mean physiologically? Originally, P_2 was considered the point at which hiccups stopped. But the experiment revealed that P_2 also represents the point at which $\Delta(PvCO_2 - PaCO_2)$ became 0 mmHg. The period between P_2 and P_3 , the dangerous point at which SpO₂ began sharply dropping, must then represent what the brain feels is the last chance to escape from the situation in order to survive. During this period the brain must emit intense signals to take in fresh air before suffocation occurs.

Normally, breathing is controlled by both the cerebellum and the medulla (9). The cerebellum allows us to consciously control our breathing when necessary, but the medulla-controlled autonomic nervous system holds a clear power dominance. In fact, we can only continue holding our breath or hyperventilating for a short time before the medulla makes us unbearably uneasy and forces

Journal of Thoracic Disease, Vol 10, No 6 June 2018

us to quit. The medulla usually has dominance over the cerebellum in terms of breathing control, but that is not the case when it comes to facing to a life-threatening crisis. Imagine a scenario in which we suddenly feel O_2 deficiency while under water. During this situation, if the medulla worked normally, the autonomic nervous system would force us to begin breathing even under water. However, we can consciously hold our breath until we surface because the cerebellum orders us to keep holding our breath for survival. The cerebellum is clearly able to dominate over the medulla in such a crisis. This begs an important question: does the cerebellum take control over the medulla, or is the medulla weakened through external factors?

Before answering the question, an important correlation should be made between the medulla and the phenomenon of human hiccups (10). It is believed that the epicenter of hiccup production is located in the medulla, and although its exact location is still unknown, there are a number of supporting reports that medullary tumors caused persistent hiccups (1,10-13). If the hiccup epicenter is located inside the medulla, this means that when the hiccup epicenter emits rogue signals the medulla automatically responds. The medulla's response is misinterpreted by the body as normal orders from the medulla, which implies that the cerebellum does not control hiccups.

According to our experiments, hiccups should always stop around P₂, at which point the brain must send off a strong alarm for survival. The conditions around P2 are similar to the above underwater scenario. If the medulla only yielded respiration control to the cerebellum but continued to function, the hiccup epicenter would also remain active. On the contrary, if the medulla became completely incapacitated, the hiccup epicenter inside the medulla would also be switched off. Therefore, the answer to the question regarding the power balance between the cerebellum and the medulla in a crisis is that the medulla weakens. In its weakened state, signals from the autonomic nervous system would no longer interfere with orders from the cerebellum. We believe hiccups will stop if we are able to create a situation that tricks the medulla into thinking it is faced with a crisis, as seen at P₂. The medulla including the hiccup epicenter and primitive functions of respiration control will be strongly suppressed.

There are countless home remedies for hiccups in the world (1,13); in Japan, it is believed that hiccups will stop when the person is startled. Many of them sound unreliable or unscientific, but after our experiments, we have come to realize that some remedies (such as holding one's breath)

may have some supporting evidence behind them. Although other physiological pathways to stop hiccups may exist, in theory hiccups could be immediately resolved if human lung capacity was sufficient enough to allow PaCO₂ and PvCO₂ to reach approximately 50 mmHg [and Δ (PvCO₂ – PaCO₂) =0 mmHg] while holding one's breath. Although physical restrictions render this method impossible for most people, the same result can be achieved by supplementing lung capacity with an airtight plastic bag. But it is important that the balance of power between the cerebellum and the medulla is drastically altered.

We believe the simple conclusion is that hiccups will always be resolved when functions of the medulla drastically weaken, such as when facing a crisis. It is our hope that these findings could be the catalyst to exploring a new horizon in human physiology.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Ethical Statement: The study protocol was examined and approved by our Research Review Board (No. 17-0310, approved on March 10, 2017). Written consent was obtained from the volunteer prior to this experiment.

References

- 1. Chang FY, Lu CL. Hiccup: mystery, nature and treatment. J Neurogastroenterol Motil. 2012;18:123-30.
- Obuchi T, Shimamura S, Miyahara N, et al. CO2 Retention: The key to Stopping Hiccups. Clin Respir J 2018. [Epub ahead of print].
- Radiometer. Available online: https://www.radiometer. co.jp. Accessed May 2, 2018.
- Microstream-capnography. Available online: http://www. medtronic.com/covidien/en-us/index.html. Accessed May 2, 2018.
- DS-8200. Available online: http://www.fukuda.com/index_ usa.html. Accessed May 2, 2018.
- Porzio G, Aielli F, Verna L, et al. Gabapentin in the treatment of hiccups in patients with advanced cancer: a 5-year experience. Clin Neuropharmacol 2010;33:179-80.

Obuchi et al. Hiccups stop when medulla weakens

- Takahashi T, Hoshi E, Takagi M, et al. Multicenter, phase II, placebo-controlled, double-blind, randomized study of aprepitant in Japanese patients receiving high-dose cisplatin. Cancer Sci 2010;101:2455-61.
- Liaw CC, Wang CH, Chang HK, et al. Cisplatin-related hiccups: male predominance, induction by dexamethasone, and protection against nausea and vomiting. J Pain Symptom Manage 2005;30:359-66.
- Critchley HD, Nicotra A, Chiesa PA, et al. Slow breathing and hypoxic challenge: cardiorespiratory consequences and their central neural substrates. PLoS

Cite this article as: Obuchi T, Wakahara JI, Fujimura N, Iwasaki A. Medullar impairment resolves hiccups. J Thorac Dis 2018;10(6):3622-3626. doi: 10.21037/jtd.2018.06.21

One 2015;10:e0127082.

- Becker DE. Nausea, vomiting, and hiccups: a review of mechanisms and treatment. Anesth Prog 2010;57:150-6; quiz 157.
- 11. Pechlivanis I, Seiz M, Barth M, et al. A healthy man with intractable hiccups. J Clin Neurosci 2010;17:781-3.
- Gambhir S, Singh A, Maindiratta B, et al. Giant PICA aneurysm presenting as intractable hiccups. J Clin Neurosci 2010;17:945-6.
- 13. Kumar A. Gag reflex for arrest of hiccups. Med Hypotheses 2005;65:1206.

3626