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Introduction 

Asthma is one of the most common respiratory diseases in 
the world, which can affect human health seriously. There 
are about 300 million asthma patients in the world (1). 
Moreover, According to the World Health Organization, 
there will be 400 million asthma patients in the world in 
2025, which will bring a huge burden to society (1). 

Despite its prevalence, there is little research on the 
cytotoxicity of asthma in pathophysiology of asthma. The 
main features of asthma are reversible bronchial obstruction 
and airway hyper-responsiveness (AHR) caused by chronic 
airway inflammation (2). Reactive oxygen species and nitrogen 
species (RONS), which are produced by inflammatory 
cells in the asthmatic airway, may cause oxidative damage 
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to lipids, proteins, and nucleic acids and exacerbate asthma  
progression (3). Here we chose 8-isoprostane, 8-OHdG and 
3-NT as indicators to measure oxidative damage in lipids, 
nucleic acids, and proteins respectively. 

Moreover, the airway inflammation and oxidative damage 
are very likely to result in a genetic toxicity to the airway 
epithelial cells. Previous studies have found that base lesions 
and DNA single-strand breaks (SSBs), which are induced 
by nitric oxide and peroxynitrite are the major mechanisms 
of large-scale gene sequence rearrangement (4,5). DNA 
double-strand breaks (DSBs) are one of the most serious 
genetic toxicity forms of damage. Fast and accurate 
repair of DSBs plays a key role in genome stability (6).  
Homologous recombination (HR) and nonhomologous 
end joining (NHEJ) are the two major repair pathways 
of DNA DSBs. DNA-PK is a key enzyme involved in 
NHEJ, which is composed of a 450-kDa catalytic subunit  
(DNA-PKcs) and two DNA-binding subunits (Ku70 and 
Ku80). We used NU7441, a well-characterized inhibitor 
of DNA-PKcs, to further explore the role of DNA damage 
repair in the pathogenesis of asthma. 

There are plenty of DNA-PKcs in human body. But 
only less than 1% of them are needed in DNA damage 
response (7), suggesting that DNA-PK also participates in 
other processes in addition to DSB repair. Some studies 
concluded that DNA-PK had the ability to regulate 
innate immune responses and pro-inflammatory signaling 
pathways (8,9). After that, researchers also found that DNA-
PK affected the drug resistance of glioblastoma through the 
PI3K-Akt pathway and drug insensitivity can be reversed by 
NU7441 (10). These results mentioned above have shown 
that DNAPK is a potential new target for asthma treatment. 
In this study, we establish an asthmatic murine model 
challenged by OVA to study the oxidative damage and 
DNA damage in asthmatic mice as well as the role of DNA-
PKcs inhibitor NU7441 in it. We found that asthma led to 
a significant increase in oxidative damage and DNA damage 
in lung tissues. NU7441 worsened the DNA damage 
in asthmatic mice as an inhibitor of DNA repair, but it 
surprisingly suppressed OVA-induced airway inflammation, 
suggesting NU7441 as a novel treatment research area for 
asthmatic patients. 

Methods 

Animals 

Sixty specific pathogen free (SPF) female BALB/c mice, 

6 weeks old and (18±2) g weight, purchased from Beijing 
HFK Bio-technology Co. Ltd. were divided into 4 groups 
equally and randomly: normal group, asthmatic group (OVA 
group), asthmatic mice treated with NU7441 (NU group), 
and asthmatic mice treated with vehicle for NU7441 
(OVA + vehicle group). All mice were raised in a SPF 
residence, which satisfied the People’s Republic of China 
National Standard (GB 14925-2010, China). This study was 
approved by the Animal Ethics Committee of China-Japan 
Friendship Hospital (ID of the ethic approval: 170105). 

 

Experimental protocol 

All 4 groups except normal group were sensitized with 100 µL 
sensitization liquid [20 µg ovalbumin OVA (Grade VI, 
Sigma, USA) and 3 mg Al(OH)3 emulsified in saline] per 
mice by intraperitoneally on days 0, 7, 14, and challenged 
with 1% OVA aerosol for 30 min from days 21. The 
normal group was sensitized and challenged with saline 
instead of OVA. NU7441 (Santa Cruz Biotechnology, Santa 
Cruz, CA) at dose of 10 mg/kg or vehicle [5% dimethyl 
sulfoxide (DMSO)] was administered intraperitoneally 
once a day on days 21 to days 30, 30 min after OVA 
challenge. The dosage and route of NU7441 administration 
were determined based on previous study (11), since the 
plasma pharmacokinetics of the drug was examined. The 
experimental protocol diagram was shown in Figure 1. 

Measurement of AHR

The invasive AHR measurement was performed 24 h 
after the last challenge as previously described (12), and 6 
mice per group were anesthetized with 1% pentobarbital 
sodium (Merck, Germany) before the performing. AHR to 
methacholine (Sigma, USA) was measured by the AniRes 
2005 lung function system (Bestlab, AniRes 2005, Version 
3.0, China). Lung function was recorded as the level of 
inspiratory resistance (RI), expiratory resistance (RE) and 
dynamic compliance (Cdyn). 

 

BALF cell counting and classification 

The left 9 mice were anesthetized to get prepared for 
tracheal intubation and blood collection from heart. 
The blood samples were stored at −80 ℃ for subsequent 
analyses. After that, the right lung was instilled 5 times with 
1 mL pre-cooled (4 ℃) saline to collect BALF (0.6–0.7 mL).  
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Then, BALF was centrifuged at 2,000 rpm for 7 min to 
separate supernatant, which was collected and stored at 
−80 ℃ for subsequent analyses. The precipitates were 
resuspended in 0.1 mL phosphate buffered saline (PBS,  
0.02 mol/L, pH 7.2) for cell counting and classification. 
Total cell number was counting on a Fuchs-Rosenthal 
Chamber. Cell classification was performed after Wright-
Giemsa staining (Baso Diagnostics Inc., China). 

 

Measurement of cytokines, 8-isoprostane and 8-OHdG in 
BALF 

Cytokines (IL-4, IL-13, IL-8, and TNF-α), 8-isoprostane 
and 8-OHdG levels were detected in BALF with enzyme 
linked immunosorbent assay (ELISA) kits (R & D Systems, 
Minneapolis, MN, USA). 

 

Histopathological analysis 

The left lungs were infiltrated in 10% formalin immediately 
for 72 hours after the BALF. After that, they were 
embedded in paraffin and 5-µm-thick sections were sliced. 
Histopathological changes were observed after HE staining 
using a brightfield microscopy (ZEISS Axioplan 2 imaging 
MOT, Jena, Germany) by two pathologists. 

 

Immunohistochemistry assay 

The paraffin sections were also used to test the levels of 
γH2AX (Abcam, Cambridge, UK) by immunohistochemistry 
assay. Pre-experiment was conducted to optimize the 
concentration of γH2AX antibody. If a cell or tissue was 
turned into yellow or brown, it would be recorded as positive 
immunostaining. Histological assay was analyzed by Image 
Pro Plus6.0 (Media Cybernetics, Rockville, MD, USA) at 400× 
magnification. Measurements were performed blindly and 

under similar light, gain, offset, and magnification conditions. 

3-nitrotyrosine (3-NT) in lung tissues 

The remaining lungs were homogenized with a glass 
homogenizer before cutting into small pieces. And an 
ultrasonication (Scientz, Ningbo, China) was also used to 
rupture the cell membranes. Then the supernatant was taken 
after centrifuging for 15 min at 5,000 rpm for analysis. Lung 
levels of 3-NT were measured with a ELISA kit (Blue Gene, 
Shanghai, China) according to the protocol instructions. 

 

Immunoblotting 

The right  lung t issues  were stored at  −80 ℃  for 
immunoblotting as described after being cleaning up 
connective tissues and lymph nodes (13). Antibodies 
used were targeted at Ku70, Rad51, PARP-1 (Santa Cruz 
Biotechnology, Dallas, Tex, USA), γH2AX (Abcam, 
Cambridge, UK), and β-actin (Abcam, Cambridge, UK). 

 

Comet assay 

The comet assay was performed essentially as described by 
Hininger (14). After quick thawing in a water bath at 37 ℃,  
the frozen total blood samples were mixed with Ca2+ and 
Mg2+ free PBS at a ratio of 1:1 up to 100 µL. Then the 
mixer was embedded in a layer of 100 µL 0.75% low 
melting point agarose gel on frosted slides. After that, 
it was immersed in a cell lysis buffer (2.5 mol/L NaCl,  
0.1 mol/L Na2EDTA, 10 mmol/L Tris-Hcl, pH 10.0–10.5, 
with freshly added 1% Triton X-100 and 10% DMSO) 
for 1 hour in dark. Subsequently, the slides were incubated 
in freshly-made alkaline buffer (300 mmol/L NaOH and  
1 mM EDTA, pH 12.6) for 30 minus to unwind the DNA. 
After that, the samples were electrophoresed for 25 min at 25 

Figure 1 Experimental protocol: Mice were sensitized with OVA or saline on days 0, 7, 14. From days 21, mice were challenged with 1% 
OVA aerosol or saline for 10 days. NU7441 or vehicle or saline was administered on days 21 to days 30. Twenty-four hours later, mice were 
anesthetized for sample collection. OVA, ovalbumin.
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volts (0.90 V/cm) and 300 mA. Then the slides were immersed 
in PBS for 15 min twice to neutralize alkali. Finally, the slides 
were stained with 20 µL ethidium bromide solution (2 µg/mL). 
All the steps were performed in a dark environment. 

 

Statistical analysis 

Data are expressed as means ± standard error of the mean 
(SEM). One-way ANOVA Dunnett test was chosen for 
statistical analysis between groups. P values <0.05 were 
considered to be statistically significant. All data were 
analyzed using the SPSS 19.0. 

 

Results 

Assessment of airway responsiveness 

As shown in Figure 2, OVA-challenged Mice had higher 
RI and RE and lower Cydn than the Normal group (OVA, 
OVA + vehicle, NU7441 vs. Normal, P<0.001). Compared 

with OVA group, RI, RE, and Cdyn were only significantly 
changed at the concentration of 0.15 mg/kg in NU7441 
mice (P<0.05). There was no significant difference in those 
data between OVA group and Vehicle group. 

 

The number of total and differential cell counts in the 
BALF 

The number of total and differential number of cells in 
OVA and OVA + vehicle group was the highest, followed 
by NU7441 group, and was the lowest in Normal group 
(Figure 3). Compared with Normal group, the number 
of eosinophils in OVA group was much higher (P<0.05). 
NU7441 suppressed both the neutrophil and eosinophil 
counts compared with OVA group (P<0.05). Different cell 
types stained with Wright-Giemsa were shown in Figure 4. 

 

Histopathological features of lung tissues 

Histopathological changes were showed in Figure 5. There 

Figure 2 The invasive AHR measurement was performed 24 h after the last challenge (n=6 per group). RI (A), RE (B) and Cdyn (C) were 
used to assess the AHR. All values are shown as means ± SEM. *, OVA group vs. Normal group, P<0.001; #, NU7441 group vs. OVA + 
vehicle group, P<0.05. OVA, ovalbumin; AHR, airway hyper-responsiveness; RI, inspiratory resistance; RE, expiratory resistance; Cdyn, 
dynamic compliance; SEM, standard error of the mean.
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were obvious features of airway inflammation in groups 
which were exposed to OVA, including inflammatory cell 
infiltration in the vicinity of bronchioles, alveolar cavity, 

alveolar septum and surrounding vessels, irregular enlarging 
of the residual alveolar cavity, and mucus impacted in 
alveolar cavity. There was no pathological change observed 
in the Normal group. NU7441 attenuate the inflammatory 
cell infiltration and cilia damage significantly.

 

IL-4, IL-8, IL-13, and TNF-α levels in BALF 

As seen in Figure 6, cytokines in OVA group were much 
higher than Normal group (P<0.05), which validated the 
murine asthma model was successful established. Compared 
with OVA group, NU7441 markedly reduced IL-4, IL-8, 
IL-13, and TNF-α levels (P<0.05), exhibiting a strong anti-
inflammatory effect. 

 

Oxidative damage in airway 

8-isoprostane and 8-OHdG in BALF and 3-NT in lung 
tissue were detected to measure oxidative damage in airway 
(Figure 7). OVA exposure caused a significant increase in 
these 3 indicators, which represented oxidative damage to 
lipids, nucleic acids and proteins (P<0.05). 

However, NU7441 didn’t augment this oxidative damage. 

Figure 3 Total cell number of the BALF was counting on a Fuchs-
Rosenthal Counting Chamber after trypan blue staining (n=9 
per group). Numbers of neutrophils (Neu), eosinophils (Eos), 
macrophages (Mac), and lymphocytes (Lym) were calculated 
after Giemsa staining. *, OVA group vs. Normal group, P<0.001; 
#, NU7441 group vs. OVA + vehicle group, P<0.001. OVA, 
ovalbumin; BALF, bronchoalveolar lavage fluid.

Figure 4 The images of BALF cytospin at 1,000× magnification. (A) Normal group; (B) OVA group; (C) NU7441 group and (D) OVA + 
vehicle group. BALF, bronchoalveolar lavage fluid; OVA, ovalbumin.
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Figure 5 Representative histopathological images of lung tissue (HE staining) were showed: (A) normal group; (B) OVA group; (C) 
NU7441 group and (D) OVA + vehicle group with magnification of 400×. There were obvious features of airway inflammation in (B) and 
(D), including inflammatory cell infiltration in the vicinity of bronchioles, alveolar cavity, alveolar septum and surrounding vessels, irregular 
enlarging of the residual alveolar cavity, and mucus impacted in alveolar cavity. NU7441 attenuate the inflammatory cell infiltration and cilia 
damage significantly as seen in (C). OVA, ovalbumin.

Figure 6 Cytokines (IL-4, IL-13, IL-8, and TNF-α) in BALF were measured using ELISA (n=9 per group). *, OVA group vs. Normal 
group, P<0.001; #, NU7441 group vs. OVA + vehicle group, P<0.001. OVA, ovalbumin; BALF, bronchoalveolar lavage fluid; ELISA, enzyme 
linked immunosorbent assay.
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DNA damage in BALF cells 

As shown in Figure 8, alkaline comet assay was conducted to 
measure DNA damage. The alkaline comet assay is a single-
cell gel electrophoresis assay for detecting extensive DNA 
damage including DSB, SSB and base lesions in cells. DNA 
damage in OVA group mice was potentiated compared 
with Normal group (P<0.05). NU7441 enhanced this DNA 
damage compared with OVA + vehicle group (P<0.05). 

 

DNA DSBs in lung tissues 

To further detect DNA DSB damage in each group, we 
choose γH2AX as a marker. DSBs can be measured visually 
by immunohistochemistry assay. As shown in Figure 9, 
in contrast with Normal group, the frequency of γH2AX 
positive cells in OVA group was significantly increased 
(16.61%±2.91% vs. 0.05%±0.13%, P<0.001). Vehicle had no 
effect on it, while NU7441 group augmented frequency of 
γH2AX-positive cells (17.34%±3.73% vs. 29.07%±5.13%, 
P<0.001). 

 

DNA repair proteins in lung tissues 

Four key DNA repair proteins were selected to explore 
DNA repair responses in asthma: γH2AX, Ku70, Rad51 and 

PARP-1. Ku70 and Rad51 are key proteins in NHEJ and 
HR repair pathways respectively, and PARP-1 is involved 
in SSBs repair responses. As shown in Figure 10, levels of 4 
proteins were robust augmented in OVA group compared 
with Normal group (P<0.001), suggesting that asthma 
significantly increased the expression of key DNA repair 
proteins. Compared with OVA + vehicle group, NU7441 
markedly increased γH2AX and Rad51 levels, while Ku70 
and PARP-1 levels were reduced (P<0.05). 

Discussion 

Asthma is a chronic airway inflammatory disease with 
obvious heterogeneity. Injury and shedding of bronchial 
epithelial cells is one of the common pathological signs 
in asthmatic patients, which is considered as a result of 
chronic airway inflammation in previous view. However, 
some recent studies have found that the inflammation 
and oxidative damage that allergen induced are likely to 
have genotoxic effects on bronchial epithelial cells (3,15). 
Furthermore, aeroallergens might also have a direct DNA-
damaging effect on bronchial epithelium (16). Infiltration of 
inflammatory cells, especially eosinophils and neutrophils, 
is one of the important pathological features of asthma. 
In this study, the number of total cells, eosinophils and 
neutrophils in asthmatic mice was higher, which evidenced 

Figure 7 8-isoprostane and 8-OHdG in BALF and 3-NT in lung tissue were measured with ELISA. *, OVA group, NU7441 group, OVA 
+ vehicle group vs. Normal group, P<0.05. OVA, ovalbumin; BALF, bronchoalveolar lavage fluid; ELISA, enzyme linked immunosorbent 
assay.
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that the murine asthmatic model which we established 
was successful. The major causes of oxidative damage that 
allergen induced are RONS, which are mainly produced 
by eosinophils and neutrophils. Moreover, MPO and 
EPO, the most abundant lysosomal enzyme in neutrophils 
and eosinophils respectively, can catalyze the formation 
of hypochlorous acid and hypobromous acid (16).  
These hypohalous acids can react with superoxide to 
form oxyradical, which is a highly cytotoxic oxygen free 
radical (16). Furthermore, there was a study revealed the 
correlation between these oxidative damage and DNA 
damage in asthma patients (17). Therefore, it is responsible 
that oxidative damage and DNA damage play crucial role in 
manifestation of asthma pathogenesis. 

In order to explore the oxidative damage in asthmatic 
mice, we chose 8-isoprostane, 8-OHdG and 3-NT as 
indicators to measure oxidative damage (18). 8-isoprostane 
is a stable terminal product formed by lipid peroxidation 

on cell membrane (18). Because it has a strong polarity, 
the increase of it can influence the integrity and fluidity of 
cell membrane. The increase of 8-isoprostane can lead to 
the damage to the structure and function of the cells, and 
cell death eventually (19). 3-NT is formed by oxidation of 
nitrite by MPO or EPO, both of which are abundant in 
the asthma. 3-NT also participates in protein denaturation 
and DNA damage response, which can cause cell death 
or apoptosis (20). 8-OHdG is a specific product form by 
guanine oxidative damage in DNA, and the level of it can 
quantify the oxidative damage of nucleic acid. In this study, 
we found that OVA challenge resulted in a robust increase 
in these three indicators, suggesting the oxidative damage 
to lipids, proteins and nucleic acid were higher in asthmatic 
mice. 

Figure 8 DNA damage was analyzed with alkaline comet assay: 
(A) Normal group; (B) OVA group; (C) NU7441 group and (D) 
OVA + vehicle group. *, OVA group vs. Normal group, P<0.05; #, 
NU7441 group vs. Vehicle group, P<0.05. OVA, ovalbumin. 

Figure 9 Presented a dramatic difference of immunohistochemistry 
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group; (D) OVA + vehicle group and (E) the percentage of 
γH2AX-positive cells with magnification of 40×. The frequency of 
γH2AX positive cells in (B) was significantly increased compared 
with (A). (D) had no effect on it, while (C) augmented frequency of 
γH2AX-positive cells. *, OVA group vs. Normal group, P<0.001; #, 
NU7441 group vs. Vehicle group, P<0.001. OVA, ovalbumin. 
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Figure 10 Asthma induces DNA damage responses, as indicated by immunoblotting results of 4 key DNA repair proteins. NU7441 
markedly increased γH2AX and Rad51 levels, while Ku70 and PARP-1 levels were reduced. Immunoblotting images for γH2AX, Ku70, 
Rad51 and PARP1 were shown, β-actin was used as an internal control (A). Relative density analysis of Ku70 (B), γH2AX (C), Rad51 (D) 
and PARP-1 (E) were shown respectively. Bars indicate the mean density ratio ± SEM (n=4). *, OVA group vs. Normal group, P<0.001; #, 
NU7441 group vs. OVA + vehicle group, P<0.001. OVA, ovalbumin. 
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a comet assay on BALF cells, and the results showed that 
DNA damage was more severe in asthmatic mice. Thus, 
there was a significant increase in DNA damage in OVA-
induced asthma by both qualitative and quantitative analysis. 

It should be noted that DSBs can not only be formed 
pathologically, but also be formed endogenously in 
immature B and T lymphocytes during V(D)J recombination 
physiologically (23). V(D)J recombination is the necessary 
process of adaptive immune response, which occurs only in 
lymphoid tissues. Only mature B and T lymphocytes that 
after V(D)J recombination can migrate to the lungs and other 
tissues (24). In this study, in order to avoid the confusion 
caused by V(D)J recombination, we carefully cleaned up the 
lymph nodes and fat tissues and when collecting samples. 
Therefore, the DSBs detected in tour study was unlikely to 
be from V(D)J recombination. 

To learn about the repair process of DNA damage in 
asthmatic mice, we also detected 3 kinds of DNA damage 
repair proteins: Rad51, Ku70 and PARP-1. Ku70 and 
Rad51 are key proteins in NHEJ and HR repair pathways 
respectively, while PARP-1 plays an important role in DNA 
SSBs. There were studies confirmed that the level of Ku70 
in asthmatic lung tissue was significantly higher than that 
in healthy lung tissue, suggesting that the up regulation of 
DNA damage repair protein in asthma patients might be 
important in the pathogenesis of asthma (25). In this study, 
we found significantly increased levels of these 3 DNA 
damage repair proteins in OVA-challenged mice, suggesting 
that DNA repair response was augmented in the asthmatic 
mice. 

To further explore DNA damage repair condition in t 
asthma, we chose DNA-PKcs inhibitor NU7441, which 
participates NHEJ pathway, to study it. NU7441 is a novel 
small molecule inhibitor of DNA-PKcs. Compared with the 
previous inhibitor, NU7441 has the characteristics of low 
toxicity, good targeting and high stability in vivo (11). After 
administration of NU7441, compared with the ordinary 
asthma mice, we had not find significant changes in AHR 
indicators (RI, RE and Cydn), and the levels of oxidative 
damage indicators (8-isoprostane, 3-NT and 8-OhdG), 
suggesting that inhibition of DNA-PKcs did not aggravate 
the airway hyperresponsiveness and oxidative damage in 
asthmatic mice. AHR and oxidative damage in asthma are 
influenced by multiple factors, and DNA damage might 
be only one of these factors. In addition, the duration of 
NU7441 intervention in this study may not be sufficient 
to observe a significant difference in AHR and oxidative 
damage. 

Our study also showed effects of NU7441 on DNA 
damage and repair in asthmatic mice. The comet assay 
and γH2AX detection by immunohistochemistry and 
immunoblotting revealed that NU7441 augmented DNA 
damage in allergic airways significantly. Although some 
researches had found that inhibition of DNA-PKcs can 
suppress phosphorylation of H2AX (26), NU7441 in our 
study increased γH2AX levels significantly. One reasonable 
explanation was that although NU7441 inhibited the 
ability of DNA-PKcs to form γH2AX, high DNA DSBs 
up-regulated the expression of some other enzymes which 
can also activate H2AX [such as expression of PI3 kinase-
associated protein kinase (PK)]. Thus, NU7441 led a strong 
γH2AX signal in asthmatic mice. In addition, NU7441 
administration also up-regulated the expression of Rad-1,  
suggesting that when the NHEJ pathway is suppressed, 
the RAD51-associated HR repair pathway is feedback  
enhanced (27). There was a significant decrease in the 
express of Ku70. One possible explanation is that NU7441 
breaks the stable complex of DNA-PKcs and Ku70, 
potentially leading to Ku70 degradation (28). 

Interestingly, we found NU7441 had beneficial effects on 
asthma. The result of total and differential cell counts and 
cytokines in the BALF showed that NU7441 can repress 
airway inflammation significantly. There were evidences 
that only less than 1% of DNA-PK in human body is 
needed to repair DNA damage (7,29), suggesting that 
DNA-PK not only mediates DSB repair by NHEJ, but also 
regulates innate immune responses and pro-inflammatory 
signaling pathways (30). The previous studies found that 
NU7441 can reduce Th2-related airway inflammation 
and AHR effectively in asthmatic mice by Akt and NF-κB 
signaling pathway (8,9). There were also researchers found 
that DNA-PK affected cell drug resistance through PI3K-
Akt pathway and NU7441 can restore drug sensitivity (10).  
These findings reveal that DNA-PK has a novel and 
unexpected function on inflammation of asthma and might 
have an impact on the drug-resistance. 

In summary, we found that high levels of oxidative 
damage, DNA damage and DNA repair protein expression 
in OVA-induced asthmatic mice. DNA-PKcs inhibitor 
NU7441 can influence the DNA DSBs and DNA damage 
repair protein expression, suggesting the potential effects 
of DNA damage and repair in the pathogenesis of asthma. 
In addition, we initially found that NU7441 had an anti-
inflammation effect on asthmatic airway, suggesting that 
DNA-PK might have other functions besides DNA damage 
repair enzyme, which needs further research to explore. 
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