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Introduction

Lung cancer is the most common cause of death from 
cancer worldwide (1). For patients with non-small cell lung 
cancer (NSCLC) who are being considered for curative 
intent treatment, 18F-fluorodeoxyglucose positron emission 
tomography (FDG PET)/computed tomography (CT) 
imaging has become the standard of care in baseline staging, 
and has also shown benefit for radiotherapy planning  
(RTP) (2-4).

The implementation and applications of FDG PET 
and CT for NSCLC have changed over time. FDG PET 
was initially acquired as a standalone modality, and was 
demonstrated to be superior to CT alone in the staging of 
lung cancer (5,6). When PET was acquired in conjunction 
with a CT using an integrated scanner (PET/CT), the 
combined information has shown to have higher staging 
accuracy than PET imaging alone (7-12). Evaluation of 

combined PET/CT images has traditionally been based 
on visual interpretation, and was predominantly applied 
for tumor detection, staging and treatment selection. 
Subsequently, the value of FDG PET/CT in manual 
target volume delineation (TVD) for radiotherapy was also 
demonstrated (13). In the more recent years, PET tracers 
other than FDG have come available for evaluation of 
different biological tumor characteristics. Advancements 
in multimodal technology now create possibilities for  
PET/CT imaging in new applications, including (semi-)
automatic definition of target volumes, quantitative 
response assessment, determining patient prognosis, and 
predicting treatment outcome in NSCLC (14-20).

Radiomics has been introduced as a sophisticated way 
to extract and mine a large number of quantitative image 
features believed to provide a comprehensive picture 
of tumor phenotypes, for example related to necrosis, 
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angiogenesis and radioresistant cells (21). The assessment 
of biological processes with PET radiomics features may 
further improve tumor characterization (22). The relation 
between CT image texture patterns and tumor biology 
has provided further insights into tumor phenotype and 
genotype (19,23,24); such a relationship for PET still 
warrants extensive investigation (25-27). Meanwhile, 
studies already indicated that radiomics features contain 
prognostic information regarding response to therapy or 
treatment outcome in lung cancer studies (19,28-31). In 
addition, radiomics features may also contribute to visual 
or (semi-)automatic definition of gross tumor volume 
(GTV) (32). Ultimately, proper use of PET/CT imaging 
could contribute in all steps of the treatment procedure 
and optimal use may lead to better tumor characterization, 
treatment decision making, treatment guidance, tumor 
response assessment, and local tumor control.

Based on these factors, the use and role of PET imaging 
has expanded from a primarily diagnostic tool to a more 
central role in the context of personalized medicine. This 
review discusses the current state of art in applications 
of FDG PET/CT for prognostication and TVD in 
NSCLC, and describes the challenges related to the clinical 
implementation of these new developments.

A literature research was conducted to assess recent 
advancements in the use of PET/CT imaging for 
prognostication and radiotherapy TVD in NSCLC. A 
search query was undertaken at the PubMed database, using 
a combination of the following keywords: (“PET”) and 
(“non-small cell lung cancer” or “NSCLC”) and (“target 
volume delineation” or “segmentation” or “prognostic” 
or “prognostication” or “radiomics” or “textural features” 
or “precision medicine”). The search query yielded a total 
of 410 papers. Only studies written in English, related to 
PET/CT for prognostication and TVD in the treatment 
of NSCLC with radiotherapy and of relevance to this 
overview were included. To illustrate this, papers regarding 
PET guided patient examination, PET and particle therapy, 
surgery, PET/CT adapted RT, PET and dosimetric 
planning, PET and lung toxicity, PET and lung ventilation 
studies, drug assessment, or economic related were 
excluded. No limitations were set on the year of publication. 
However, in the case of review papers, solely the most 
recent ones for each topic were included. Other reasons 
for exclusion were inaccessibility, case reports, editorials or 
conference abstracts, resulting in 77 papers. In addition, 
references within retrieved articles were analyzed to expand 
the search. In the end, this led to 124 papers covering the 

relevant topics, which were studied and incorporated in the 
descriptive evaluations below.

Prognostic factors in NSCLC

In the last decades, the overall survival (OS) of lung cancer 
patients has not improved tremendously (33). The selection 
of treatment strategies for NSCLC patients is mainly based 
on empirical models. The most important prognostic 
indicator is the disease stage, which is determined by the 
extent of the primary tumor, nodal involvement, and the 
presence of distant metastasis according to the TNM 
classification (34). Disease staging also plays an important 
part in guiding therapy (6). In locally advanced NSCLC, 
however, treatment selection based on TNM staging and 
other clinical variables may not be accurate enough for 
survival probability prediction (35,36). As technology 
improves and more treatment options become available, the 
search for more accurate prognostic factors is warranted in 
the context of personalized medicine.

Conventional evaluations

The value of many well-established prognostic factors, 
such as the distinction between stage IIIA, IIIB, and IIIC, 
performance status (PS), histology, and other clinical 
and therapeutic variables, have been confirmed in locally 
advanced NSCLC (37). Other studies have shown that 
basic imaging-derived features in pre-treatment and post-
treatment scans provide clinically relevant prognostic 
information for patients with NSCLC of various stages. 
Examples include tumor size and volume on CT, and 
standardized uptake value (SUV) based metrics like 
SUVmax, SUVpeak, and SUVmean, or metabolic active tumor 
volume (MTV) on FDG PET (38-44). As a combined 
parameter, total lesion glycolysis (TLG) was shown to be 
more promising than MTV, and in combination with other 
parameters such as shape based features complementary 
prognostic information could be extracted from PET 
images (19,45,46). These metrics are all related to tumor 
burden and metabolic characterization. An overview of 
studies about image-based prognostication using PET in 
NSCLC together with their findings is given in Table 1.

Even though basic PET metrics have been proclaimed 
to be of prognostic or predictive value, there are still 
contradictions found in the literature where certain SUV 
metrics do not show any prognostic value, when used with 
other prognostic factors (47). Paesmans et al. conducted  
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a meta-analysis about the prognostic value of SUVmax in 
NSCLC and concluded that these contradictory findings 
could be due to influence of disease stage or tumor 
histology, or due to differences in assessment methods (16). 
These dependencies may not hold for all PET features, 
hence PET features still may play a role in prognostication.

Radiomics textural features for improved prognostication

PET radiomics represents the high-throughput mining 
of quantitative image features from PET imaging to 
characterize tumor phenotypes. Radiomics features include 
first order features, that are based on the gray level intensity 
and its distribution in the image, but do not consider 
the three dimensional (3D) distribution of gray levels. 
Examples are the max, mean, standard deviation, skewness, 
and kurtosis of SUV within a volume of interest. The 
prognostic value of these ‘simple’ features may be weaker in 
large well differentiated tumors that are known to exhibit 
higher hypoxia, necrosis, or anatomic and physiologic 
complexity, which translates to higher complexity in the 
spatial distribution of PET tracer uptake (16). 

Radiomics features also include second and higher order 
features, called textural features, which may cover this 
higher complexity by describing the relationship between 

the voxel intensity and their position within an image. This 
relationship can be calculated with various mathematical 
methods, such as the gray level co-occurrence matrix 
(GLCM) for pairwise arrangement of voxels (48), the gray 
level run-length matrix (GLRLM) for alignment of voxels 
with the same intensity (49), the gray level size-zone matrix 
(GLSZM) for characteristics of zones with identical voxel 
values (50), and the neighborhood grey tone difference 
matrix (NGTDM) for determining changes in neighboring 
voxel intensities (51). As an example, GLCM entropy 
measures the variability in neighborhood intensity values 
and may be useful to characterize necrotic cores, a factor 
that has been associated with worse prognosis. Higher 
entropy represents a more heterogeneous FDG PET 
activity within the tumor, as is depicted in Figure 1. Another 
example includes GLSZM features that mostly relate to the 
size of subregions within a tumor with similar intensities, 
which hypothetically characterizes cell subpopulations with 
distinct clonogenic growth. Some of these textural features 
have shown prognostic value for clinical outcome and tumor 
response (17,29,52-54). An overview of studies about the 
prognostic value of textural features in NSCLC together 
with their findings is given in Table 2.

PET textural features are calculated on a group of 
voxels within a region-of-interest (ROI). A common 

Table 1 Prognostication with conventional PET image features in NSCLC

Ref Subject Features No. of pts Results Conclusion 

(36) Tumor prognosis and 
response assessment 
with FDG PET

First 
order

51 SUV
max

, PS, and stage were significantly 
prognostic for disease-specific survival. 
SUV

max
 and performance were prognostic 

for OS

SUV
max

 is an important prognostic 
factor for survival of inoperable 
NSCLC and predictive for treatment 
response

(37) Response assessment 
with FDG PET

First 
order

40 >20% decrease in SUV
mean

 predicted longer 
PFS (9.7 versus 2.8 months)

PMR after 3 weeks significant 
prognostic factor for PFS; OS 
remained poor

(38) Response assessment 
with FLT and FDG PET

First 
order

51 >15% decrease in SUV
max 

after both 14 and 
56 days associated with longer PFS

PMR significant prognostic factor for 
PFS; OS was only prognostic after 14 
days

(39) Tumor prognosis with 
FDG PET

First 
order

309 MTV and TLG significantly associated with 
increased risk of death (HR =1.27;  
HR =1.22, respectively)

Volume-based PET parameters are 
significant prognostic factors for OS

(40) Tumor prognosis with 
FDG PET

First 
order

52 Multivariate analysis demonstrated that TLG 
is significantly associated with OS  
(HR =1.03) and PFS (HR =1.04)

TLG is a significant independent 
prognostic factor of PFS and OS

PET, positron emission tomography; NSCLC, non-small cell lung cancer; PS, performance status; SUV, standardized uptake value; PMR, 
partial metabolic response; PFS, progression free survival; OS, overall survival; MTV, metabolic tumor volume; TLG, total lesion glycolysis; 
HR, hazard ratio.
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ROI that is used for PET radiomics analysis is MTV. 
The relationship between MTV and radiomics textural 
features has been investigated and studies demonstrated 
that specific PET textural features are closely correlated to 
MTV (17,29,52,55). Therefore, in these cases prognostic 
textural features would rather act as a surrogate than as an 
independent variable. On the other hand, several studies 
demonstrated that this dependency is decreasing with 
increasing MTV (17,55), suggesting that for larger tumors 
these specific PET features may become of relevance. This 
is probably caused by the partial volume effect for small 
tumors, making it difficult to obtain reliable PET radiomics 
features for tumors smaller than 10 cc (56). For instance, 
to determine the GLCM entropy, tumors were required 
to be at least more than 10 cc to reduce correlations with 
MTV (17,55). Unfortunately, these findings were based on 

only four PET textural features and are not representative 
for all radiomics features, since this volume dependency 
differs amongst textural features. A high GLCM entropy 
(see Figure 1 for an example) in combination with a large 
MTV (>35 cc) led to a worse prognosis in 101 patients 
with stage I-III NSCLC receiving surgery, chemotherapy, 
chemoradiotherapy, or a combination (17). Ohri et al. 
performed PET radiomics analysis in 201 patients with 
locally advanced NSCLC and concluded that a feature 
called GLCM Sum Mean had prognostic value for tumors 
with an MTV larger than 93 cc (54). On the contrary, Pyka 
et al. concluded that GLCM entropy was predictive for 
disease-specific survival in 45 early stage NSCLC patients 
with mainly small tumors (mean MTV 34 cc, ranging from 
1.74 to 178 cc) receiving primary stereotactic radiation 
therapy (53). However, only 12 patients were used to assess 

A B

C D

Figure 1 FDG PET images showing primary tumors from different stage III NSCLC patients. (A) and (B) have a high entropy indicating 
that the variability is high in neighborhood intensity values. (C) and (D) have a more homogeneous distribution of SUV within the tumor, 
which corresponds to a low entropy value. PET, positron emission tomography; NSCLC, non-small cell lung cancer; SUV, standardized 
uptake value.
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this specific endpoint and divided in two unbalanced groups 
(2 versus 10) for comparison, which is a serious limitation. 
These results point in the direction that for larger 
tumors, PET textural features contain complimentary 
information above a specific tumor volume. The volume 
threshold differs per textural feature. We suggest assessing 
volume dependencies in detail for each textural feature in 
large patient cohorts, when building prognostic models 
containing PET textural features.

The literature also reports on correlations between first 
order SUV metrics and higher order features (texture) 
(29,52). Additionally, PET textural features also depend on 
image segmentation and image reconstruction settings (57),  
SUV binning (58,59), and feature calculation method (17).  
And although it is clear how these choices influence 
relationships between PET textural features or their 
reproducibility, it is not always clear how these factors 

affect the prognostic value. In the search for independent 
prognostic PET textural features, some investigators find 
optimal cutoff values that result in prognostic variables, 
but do not validate their results (52). Fave et al. (60) argued 
that testing multiple cutoffs to find the best one without an 
independent validation dataset for testing, could yield overly 
optimistic results. In combination with the inclusion of 
multiple variables that have not been corrected for multiple 
hypothesis testing, the models will probably not perform 
well in other patient cohorts. From the studies shown in 
Table 1, the issue of multiple-hypothesis testing was solely 
addressed by Ohri et al. (54), but none of them had validated 
their results externally. Internal or external validation is 
lacking in most studies, but is required to strengthen results 
regarding model performance. In absence of an external 
validation cohort, it is advised to split the initial cohort into 
a training and a test set. We would like to emphasize that 

Table 2 The prognostic value of PET textural features in NSCLC

Ref Subject Features No. of pts Results Conclusion

(17) Tumor prognosis with 
FDG PET

First order and 
textural features

101 Entropy, MTV, and stage were significant 
prognostic factors for OS. The HR was 
3.81 between a low and high risk group 
based on the 3 features above

Entropy and MTV contain 
complimentary information next to 
TNM staging

(29) Tumor prognosis and 
response assessment 
to Erlotinib with FDG 
PET

First order and 
textural features

47 Contrast at 6 weeks (HR =1.81) and % 
change in first-order entropy (HR =1.14) 
were significantly prognostic for OS. 
Percentage change in first-order entropy 
was also associated with treatment 
response (OR =0.30)

Contrast and % change in first-
order entropy are significantly 
prognostic for OS and the latter also 
associated with treatment response 
following RECIST

(51) Tumor prognosis and 
response assessment 
with FDG PET

First order and 
textural features

53 ROC curves for textural features to 
predict RECIST response ranged from 
0.54 to 0.82. High coarseness was an 
independent prognostic factor for OS 
(HR =4.86); high coarseness, contrast, 
busyness, and complexity were 
significantly prognostic for PFS (HR 
=2.41; 0.60; 0.97; 0.87)

Textural features were highly 
predictive for RECIST responders 
compared to first order features and 
were prognostic for PFS

(52) Tumor prognosis with 
FDG PET

First order and 
textural features

45 Entropy was determined as a significant 
independent factor in multivariate 
analysis (HR =7.48) for disease-specific 
survival

Tumor heterogeneity as described 
by FDG-PET texture is associated 
with response to radiation therapy 
in NSCLC

(54) Tumor prognosis in 
FDG PET

First order and 
textural features

201 Internally validated optimism-corrected 
C-statistic was 0.63 for a model which 
predicted OS with both high MTV and 
high Sum Mean included 

A textural feature was identified as 
prognostic for OS in large tumors 
only (>93.3 cc)

PET, positron emission tomography; NSCLC, non-small cell lung cancer; SUV, standardized uptake value; PMR, partial metabolic 
response; PFS, progression free survival; OS, overall survival; MTV, metabolic tumor volume; HR, hazard ratio; OR, odds ratio; CI, 
concordance index.



S2513Journal of Thoracic Disease, Vol 10, Suppl 21 August 2018

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(Suppl 21):S2508-S2521jtd.amegroups.com

prognostic models should always be corrected for multiple 
hypothesis testing and should be validated, preferably with 
an external patient cohort.

Even though many studies reported on the prognostic 
value of PET radiomics features, results are difficult to 
compare amongst studies, and convincing evidence remains 
poor (61). Many studies about PET radiomics features 
make the remark that a standardized approach is lacking, 
which influences generalizability and makes meta-analyses 
difficult. For radiomics studies, guidelines can be found in 
the literature that promotes standardization for designated 
terms, extraction and calculation of textural features (62), 
and statistical analysis (63). We agree that standardization is 
necessary and that studies should comply with best-practice 
procedures to move forward in the field of radiomics. 
In light of these demands, a Radiomics Quality Score 
was proposed to evaluate radiomics studies in literature 
following standardized criteria (64). These criteria can also 
aid in setting up future radiomics studies and check whether 
they comply with the written guidelines. The Radiomics 
Quality Score will hopefully lead to comparable high quality 
radiomics studies, and would facilitate future meta-analyses.

Other PET tracers

The majority of evidence on PET/CT for prognostication 
concerns the use of FDG. Although very sensitive for 
staging most tumor types, a disadvantage of FDG is 
that it is not tumor specific. FDG uptake can be seen in 
inflammatory lesions, increasing the chance of false-positive 
findings. 

The tracer 3’-deoxy-3’-18F-fluorothymidine for PET 
imaging (FLT PET), which allows assessment of tumor 
proliferation, does not seem to accumulate in inflammatory 
processes. Therefore, FLT is considered a more specific 
oncological tracer than FDG, but sensitivity is lower (65). 
Its main role is currently envisioned in evaluating early 
treatment response (66-68). However, the combination of 
dual-tracer PET/CT may improve diagnostic accuracy (69)  
and may also contribute in early response assessment 
and prediction of clinical outcomes (70). One study on 
NSCLC compared the prognostic value of FLT PET to 
FDG PET first order features and showed that both FDG 
and FLT PET baseline maximum SUV were associated 
with OS. However, clinical studies proving the prognostic 
value of textural features in FLT PET imaging are scarce. 
Therefore, the additional value of FLT PET textural 
features next to well-established prognostic factors for 

evaluation of treatment response and predicting clinical 
outcomes in NSCLC has to be further studied (71).

Other tracers which are currently under investigation 
cover different aspects of lung cancer biology that may 
enable better phenotypic characterization for improved 
prognostication. 11C-methionine or l-3-18F-α-methyl 
tyrosine (18F-FAMT) characterizes amino acid transport 
and protein metabolism. These processes are upregulated 
in malignant cells as a consequence of increased cellular 
proliferation activity. In addition, 18F-fluoromisonidazole 
(18F-FMISO), 18F-fluoroazomycin arabinoside (18F-FAZA), 
and 18F-flortanidazole (18F-HX4) are hypoxic tracers. 
Hypoxia is an important factor in oncology, because this 
increases radioresistance and chemoresistance, and is 
related to poor clinical outcome (72). Lastly, there are PET 
tracers targeting integrins expressed on tumor vasculature, 
which measure levels of angiogenesis growth factors, to 
characterize angiogenesis. The clinical usage of these PET 
tracers in lung cancer has been limited so far, and pre-
clinical research is still dominating (67). These upcoming 
tracers have potential for tumor detection, characterization, 
prognostication, and response assessment, but efforts need 
to be made to ensure safety, optimal signal-to-noise, and 
reproducibility of measurements in order to move forward. 
Therefore, there is insufficient data on the use of these 
tracers for prognostication for NSCLC, either as a separate 
parameter or in combination with FDG PET.

TVD in locally advanced NSCLC

The definition of target volumes for radiotherapy of 
NSCLC was traditionally based on anatomical imaging 
with CT, in combination with findings from e.g., physical 
examination, endoscopy and biopsies. Multiple advances 
in CT imaging have further improved its spatial and 
contrast resolution with benefit for tumor delineation, for 
example using multi-slice detectors and respiratory motion 
correction techniques (73-76). In addition, it has been 
shown that CT images can be enhanced for discrimination 
of tumor and normal tissues, using e.g., intravenous 
contrast or dual-energy CT (77-79). However, despite these 
improvements, CT alone does not provide sufficiently clear 
information to reliably and consistently discriminate tumor 
and normal tissues in all situations (80-82).

After the introduction of  integrated PET/CT, 
its additional value for target definition was rapidly 
acknowledged. The relevance of good and reproducible 
quality of the images and accurate anatomical registration 
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with planning CT were acknowledged. This resulted in 
the standardization of PET/CT for radiotherapy TVD (2).  
Several studies confirmed the value of adding PET 
imaging to planning CT to reduce inter-observer variation 
in TVD in RTP in NSCLC patients, and is specifically 
helpful in TVD when the tumor boundaries are not easily 
distinguished from surrounding healthy tissue (81-84). 
Even with the use of PET imaging there is still variability 
amongst observers (85,86). The remaining question is 
how to derive the most optimal target volumes using the 
information gleaned from combinations of PET and CT. 

Visual interpretation

Most early clinical studies have used a visual interpretation 
technique for target definition from combined FDG 
PET and CT scans (83,84). As in any observer-dependent 
procedure, it is essential to standardize this interpretation 
where possible. In one study, the benefit of using strict 
protocols was shown (85). Another study demonstrated 
that interdisciplinary cooperation between the radiation 
oncologist and nuclear medicine specialist is beneficial for 
consistent contouring (87).

Automatic TVD

Many groups have investigated the use of automated 
segmentation techniques to either guide or generate 
the relevant target volume (14,15,88-91). A previous 
International Atomic Energy Agency (IAEA) publication 
provided guidance on the use and role of PET/CT imaging 
for RTP in a range of tumor sites (92) and an update was 
given in 2015 with additional practical guidelines for the use 
of FDG PET/CT for the purposes of radiotherapy TVD 
in NSCLC (3). These guidelines state that target volumes 
generated following any automatic segmentation algorithm 
should always be verified, and edited where needed, by 
a trained observer. The skepticism towards automatic 
contouring in general, demonstrates that there are still 
hurdles to overcome in automatic contouring before it is 
fully accepted in the clinic.

T h e  m o s t  c o m m o n  a p p l i c a t i o n  o f  a u t o m a t i c 
segmentation on PET imaging (PET-AS) is definition of 
the MTV, however studies tried to go even further and 
proposed methods for GTV definition. Many different 
PET-AS algorithms have been proposed to define the edge 
of the GTV for this purpose (14,93,94). It was thought 
that these algorithms would provide contours that are 

more consistent and better represent true tumor borders, 
when compared to visual interpretation by radiation 
oncologists. Unfortunately, none of these methods have 
been tested on large patient datasets and in the presence of 
a ground truth, probably because pathological correlation 
has proven difficult (95,96). On top of that, the different 
PET-AS algorithms all failed under specific circumstances, 
which prevented recommending a single algorithm (15). 
A possible solution for this variable performance of PET-
AS methods was suggested in the form of a consensus 
algorithm that combines different PET-AS methods (97). 
Another difficulty with PET-AS is the variability of SUV 
values due to factors other than tumor activity alone, such as 
patient factors and technical factors (98). More recently, the 
AAPM task group has said to undertake steps to establish 
a standardized procedure for PET-AS algorithms, which 
could help with the acceptance and implementation of these 
delineation methods in the clinic (15). Perhaps the question 
is whether the focus should be solely on PET imaging for 
TVD or should be more on the combination of multiple 
imaging modalities, if there are already many studies that 
show its shortcomings.

The most important factor is that PET-AS neglects all 
other available information, like anatomical information 
from CT and in some cases MRI, the locations of tumor-
positive biopsies, and findings at endoscopic examinations. 
Therefore, the information obtained from PET should be 
considered complementary. Combining the information 
contained in the PET and CT scans may lead to more 
successful auto-contouring (95). Still, resulting contours 
should be checked visually and edited to other sources of 
information where needed.

Radiomics for target definition

The application of textural features for use in TVD has 
yet to garner attention, leading to a minimal number 
of published studies. Early attempts to automate tumor 
contouring using textural features were promising. For 
example Wang et al. (99) designed a radiomics based 
automatic contouring method by training a ROI-based 
decision-tree–based K-nearest neighbor (K-nn) classifier 
using 14 PET and 13 CT textural features. The K-nn 
classifier is a classical machine learning method, and 
here its purpose was to detect and classify image voxels 
in NSCLC. It was demonstrated that a combination of 
these textural features from PET and CT images could 
distinguish between abnormal and normal tissue in the 
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head and neck and that their classifier method was able to 
generate accurate and consistent delineations compared to 
other automatic and to manual delineations. Further studies 
using a larger sample size and with pathologic validation are 
necessary to determine its clinical value in thoracic diseases.

Interestingly, it is said that the more advanced deep 
learning method (100), also able to classify objects, 
outperforms these classical machine learning methods. A 
recent comparison, however, of lymph node metastasis 
classifications in NSCLC patients between classical machine 
learning methods and a deep learning approach showed 
comparable results (99). Nevertheless, a big advantage of 
deep learning is its ability to generate data driven features 
instead of relying on hand crafted features and is thus 
potentially more powerful (100). This comes with a higher 
risk of over-fitting if not appropriately trained and validated, 
and typically needs more data. Its use in medical image analysis 
is increasing as algorithms become more sophisticated and 
more data becomes available (101,102), which might lead to 
new insights in tissue classification and delineation.

Discussion

The literature presented in this review indicates that FDG 
PET/CT has a substantial role in prognostication and 
RTP for NSCLC. First order metrics such as SUVmax and 
certain PET textural features were prognostic for survival 
and treatment response assessment. It is noted, however, 
that many publications about PET radiomics are based 
on relatively small datasets without robust internal and/
or external validation which challenges clinical translation. 
Both prognostication and GTV definition should not rely 
on PET alone, but rather on its addition to and integration 
with other independently validated sources of information. 
The optimal implementation of such strategies is expected 
to continue to evolve over the coming years.

Current challenges

Challenges in prognostication with PET imaging cover 
a broad range of topics including image acquisition and 
reconstruction settings, tumor segmentation, image feature 
calculation, and statistical methods. Standardization of 
these topics for PET radiomics studies would promote 
reproducibility of study results, which is typically 
lacking (103). This lack of standardization challenges 
prognostication as variations in all these topics may 
introduce changes that are not due to underlying biology. 

It is already shown that this may lead to false positive 
results (61), and therefore standardization of these topics is 
warranted to move further in the field.

A challenge to overcome in image acquisition is 
in finding optimal image quality, hence preserving 
heterogeneity information. Respiratory motion during 
PET imaging causes lesion smearing (104,105), which 
reduces contrast in the image and therefore affects the 
quantification of heterogeneity. Use of partial volume and 
respiratory motion correction techniques may improve 
quantification accuracy (56,106). Also differences in matrix 
grid size can confound results, as larger voxel sizes tend to 
be more affected by the partial volume effect. This leads to 
a more uniform intensity distribution, which subsequently 
has an impact on most radiomics PET features (107), and 
study designs need to take this into account. Hence, it is 
known that differences in image quality or matrix grid size 
affect textural feature outcome, and further studies should 
focus on its impact on the prognostic value.

The effect of tumor segmentation on the prognostic and 
predictive value of imaging features is also not yet clear. 
PET-AS algorithms or manual delineation by radiation 
oncologists determine which voxels within an image will 
be analyzed, thus, the variability in segmentation affects 
reproducibility when extracting imaging parameters 
from PET and CT scans (108-110). The accuracy and 
reproducibility of TVD is important as it has an impact 
on imaging parameters that are used to determine patient 
prognosis and to predict and monitor response to therapy. 
Interestingly, in NSCLC it is not yet known whether the 
GTV used for treatment planning or the MTV results in 
higher prognostication. The inclusion of low metabolically 
active regions within a tumor could contain valuable 
information and also contribute to the heterogeneity in 
a tumor, whereas on the other side it also holds the risk 
of including non-pathological tissue. Further studies 
should assess the impact of these different volumes on 
prognostication in NSCLC patients.

Interchangeable SUV measurements across centers are 
very important in PET radiomics, but the methodology 
used to determine textural features also demonstrates lack 
of consistency. There are multiple methods to calculate 
textural features, which may have impact on the prognostic 
value of these quantitative PET imaging features. In 
addition, there are textural features that rely on image 
intensity resampling or SUV discretization. Discretization 
reduces the large number of intensity values [typically 16-bit 
in PET imaging (111)] to a smaller number, e.g., 32 or 64 
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bins. Each SUV discretization method results in a new set 
of features (58). Also, textural features can be calculated in 
2D or 3D, in one direction or in multiple directions and so 
on. Hence, the number of textural features can easily reach 
to hundreds. Therefore sufficiently large patient cohorts 
need to be included combined with sophisticated statistical 
methods to prevent overfitting. With multiple possibilities 
to calculate features, it is often not clear how researchers 
achieved the final results. Hence, there is the urge to create 
guidelines for standardized PET radiomics analysis, and 
for reporting study results about prognostication with PET 
radiomics features in NSCLC. 

As more complex PET radiomics features are designed, 
and hundreds of these complex imaging features are 
included in PET radiomics studies, it is understandable 
that studies choose a hypothesis generating strategy. This 
is a legit strategy, as long as results are validated and tested 
for any kind of confounding as described before. It should 
be avoided that studies suffer from a poor design and result 
in the publication of overly optimistic results. Although 
quantitative studies about image heterogeneity in cancer 
have shown associations with aspects of tumor behavior, it 
is not fully understood how underlying biology is affecting 
the PET signal, and it is foreseen that answers to this will 
facilitate implementation in the clinic (112). Therefore, 
more studies should investigate the relationship of tumor 
biology and proven robust independent textural features.

Future perspectives for PET imaging in 
prognostication and TVD

Innovation in PET technology opens up more possibilities 
and holds perspective for the future, although not 
necessarily the solution for all above described issues. 
Examples include opportunities for PET/MR (113-116) 
and 4D PET/CT image reconstruction and partial volume 
correction methods for increased quantitative accuracy 
(106,117,118). New PET tracers might become available 
to improve tumor characterization, and potentially lead to 
new and improved prognostic biomarkers (67,119-122). 
Newer PET/CT scanners with improved sensitivity and 
spatial resolution could lead to better tumor detection and 
target volume definition (123). In addition, new digital PET 
technology will be used within hybrid PET/MR systems 
and could facilitate target volume definition by improved 
motion correction (124). Since almost every patient with 
lung cancer is scanned with PET/CT, management of this 
valuable data for quantitative image analysis on a large 

scale is strongly desired. This allows for studies with larger 
sample sizes in the future, benefiting radiomics analysis in 
specific, but also demands proper data management.

Conclusions

PET/CT has an increasing role in prognostication and 
target volume definition of NSCLC. The implementation 
of new PET based applications will facilitate the shift from 
visual interpretation and manual delineation to (semi)
automated target volume definition. In order to establish 
common ground in the clinic, studies about the prognostic 
value of quantitative PET imaging features will require 
external validation cohorts and pathological validation. 
The implementation of quantitative PET imaging features 
in a clinical setting would require substantial effort to 
standardize both imaging and methods for radiomics 
analysis. Current efforts to create larger databases will 
hopefully lead to strong evidence in prognostication with 
PET/CT imaging in NSCLC.
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