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Background: Esophageal squamous cell carcinoma (ESCC) is a common malignancy with high mortality. 
Because of the lack of clarity in the relevant genes and mechanisms involved, and the current difficulty for 
oncotherapy in providing therapeutic solutions, there is an urgent need to study this matter. While gene 
probe studies have been used to select the most virulent genes and pathways, paucity of case controls during 
gene screening and lack of conclusive results to expound the etiology and pathogenesis of the disease, have 
reduced study reliability.
Methods: We chose six datasets from independent studies in the Gene Expression Omnibus (GEO) 
database and used gene set enrichment analysis and meta-analysis to select key genes and pathways. 
Results: We found four down-regulated and four up-regulated pathways through gene set enrichment 
analysis, and 406 differential genes through meta-analysis. Based on The Cancer Genome Atlas (TCGA), 
995 differentially expressed genes were screened out. Comparing the 406 gene set with the 995 gene set, we 
found 19 common genes, of which 6 had a common pathway and were screened out as key genes regulating 
and controlling the prognosis of ESCC. 
Conclusions: Among the 19 genes, we found three genes that affect the chemotherapy of ESCC: BUB1B, 
BUB1, and TTK. Another three genes NDC1, NUP107, and NUP155 on the RNA transport pathway were 
also found. Altogether, these six genes are not only crucial in the development of ESCC, but also determine 
the prognosis of patients. The key genes and pathways identified in the present study will be used for the 
next stage in our study, which will involve gene elimination and other experimentation methods. 

Keywords: Esophageal squamous cell carcinoma (ESCC); pathway; key gene; gene set enrichment analysis (GSEA); 

meta-analysis 

Submitted Feb 15, 2018. Accepted for publication Sep 07, 2018.

doi: 10.21037/jtd.2018.09.55

View this article at: http://dx.doi.org/10.21037/jtd.2018.09.55

5726



5715

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(10):5714-5726jtd.amegroups.com

Journal of Thoracic Disease, Vol 10, No 10 October 2018

Introduction

Originating from the esophageal mucosa or gland, 
esophageal squamous cell carcinoma (ESCC), which is a 
predominant type of esophageal carcinoma, is malignant 
and aggressive with typically poor prognosis (1). According 
to the data provided by the International Agency for 
Research on Cancer, of the incidence of 27 cancers in 
184 countries in 2012, we found that the crude rate of 
esophageal carcinoma worldwide is 6.5/100,000 while the 
incidence of China is 16.4/100,000; thus, China’s incidence 
of esophageal carcinoma far exceeds the global average. 
Furthermore, squamous cell carcinoma accounts for about 
90% of the global esophageal carcinoma, while the 5-year 
survival rate of ESCC patients, although diagnostic methods 
and treatments have improved over the last few years,  
remains generally poor (2).

Gene chips have been widely used in cancer research, and 
the analysis of genome-wide mRNA expression chips—a kind 
of gene chips can help identify the disease-related genes, and 
provide an important theoretical basis for the pathogenesis 
of ESCC. For instance, Subramanian used a method of gene 
set enrichment analysis (GSEA) (3,4) to reveal significant 
differences in the expression between normal people’s and 
patients’ samples. GSEA, in contrast with other analytical 
methods, shows its distinction in gene detection by testing 
groups, rather than individual genes. In order to provide a 
better personalized therapy for ESCC patients, we upgraded 
the analytical method to construct the disease-related gene 
regulatory network by combining GSEA with meta-analysis. 
These two methods were utilized to select significant genes 
for gene ontology (GO) annotation.

Methods

Datasets selection

We systematically for x using the key phrase “Esophageal 
Carcinoma” in the Gene Expression Omnibus (GEO) (5) 
with a subject limit of expression profiled by an array and 
the species limit of humans 115 identified datasets were 
found up to the date of September 1st, 2017. Any dataset 
that met the following standards was selected for inclusion: 
(I) datasets were about genome-wide RNA expression; 
(II) datasets provided a comparison between the patient 
and control; (III) datasets contained more than 3 samples; 
(IV) the samples were from esophageal tissue; (V) datasets 
compared ESCC to normal controls from the same patients 
with ESCC. Finally, there were six gene expression datasets 

that met the selection criteria (Table 1). 

Significant gene detecting through gene set enrichment 
analysis

Software packages developed in the version 2.10.1 of 
Bioconductor (6) were applied for standardized preprocessing. 
The Robust Multichip Averaging (7,8) algorithm in the affy 
conductor package was used for each Affymetrix raw dataset, 
to calculate the background adjusted, normalized and log2 
probe-set intensities. The measure of variability was within 
the interquartile range (IQR), and a cut-off was set up to 
remove IQR values under 0.5 for all of the remaining genes. 
If one gene was targeted for multiple probe sets, we retained 
the probe set with the largest variability. Pathway analysis 
of each dataset was performed independently. GSEA was 
performed using the category version 2.10.1 package. Gene 
sets contained more than ten genes were retained, Student’s 
t-test statistical score was implemented for each pathway and 
also the mean of the genes was calculated. Additionally, a 
permutation test was performed 1,000 times to obtain the P 
value of each pathway.

Meta-analysis

Six datasets were analyzed by independent sample using the 
Student’s t-test method. Meta-analysis was carried out in SAS 
9.42. We calculated the chi-square values of the remaining 
genes of each database above, and retained the differently 
expressed genes with chi-square values under 0.05. The 
selection process was based on the following formula (9)

k
i

e
i=1

 = 2 log P2χ − ∑

The Cancer Genome Atlas (TCGA)

We downloaded the clinical data and expression profiles 
of esophageal carcinoma into TCGA database, and 
removed the esophageal adenocarcinoma group and the 
control group data. Then, we analyzed the survival data 
package of R language, used cox-regression analysis, and 
adjusted P<0.05 so that we could acquire the significant 
differential genes and obtain their Kaplan-Meier (K-M) 
survival curves. These genes, together with the genes found 
in the meta-analysis above, were then used to screen the 
most differentially expressed genes and obtain significant 
pathways. 
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Gene annotation

While searching the intersection of the 406 genes that 
were obtained from meta-analysis with the 995 genes 
obtained from TCGA, 19 genes had statistical differences 
that could affect survival prognosis, and were consequently 
screened out. We only selected the genes that have been 
mapped to any explicit KEGG (10) pathway for the sake 
of having a better insight of the results from the GSEA 
and meta-analysis. The consistent genes were annotated 
by the software, Blast2go. The 19 significant genes were 
used to obtain the pathways of the KEGG from DAVID 
Bioinformatics Resources 6.7 and annotated by Blast2go. 

Finally, we put significant genes into the Su Esophagus  
2 Oncomine database (www.oncomine.org) for validation.

Results

Common significant pathways were obtained from six 
esophageal carcinoma tissue datasets by GSEA. According 
to the inclusion criteria, there were six datasets containing 
116 esophageal carcinoma tissues and 116 normal 
tissues screened out. They are GSE17351, GSE20347, 
GSE23400, GSE38129, GSE77861 and GSE100942. More 
details about the datasets are shown on Table 1. The GSEA 
method was used on each dataset to identify significantly 
altered genes and significant common pathways. Tissues 
used to extract the total RNA were matched by pairs from 
esophageal carcinoma, and normal tissue that was adjacent 
to esophageal carcinoma. Genomic profiles were matched 
in pairs in samples above, which reduced the influence 
of the multiple factors on GSEA and meta-analysis with 
the purpose of ensuring the reliability of the conclusions 
obtained. After performing the GSEA conclusion, we 
identified four up-regulation pathways as well as four down-
regulation pathways from six groups of datasets in the path 
comparison. The four up-regulation pathways were aminoacyl-
tRNA biosynthesis, proteasome, ribosome biogenesis in 
eukaryotes and homologous recombination. The four down-
regulation pathways were histidine metabolism, arachidonic 
acid metabolism, fatty acid degradation and valine, leucine and 
isoleucine degradation (Table 2). Then, we used the volcano 

Table 1 Characteristics of datasets selected in the studies

GEO 
accession

Contributor
Submission  

date
Region

Experimental  
design

Chip Organism Probes Disease Normal

GSE17351 Nakagawa H 1-Sep-09 USA Paired, tissues GPL570  
[HG-U133_Plus_2] 

Homo sapiens 35166 5 5

GSE20347 Clifford RJ 15-Mar-11 USA Paired, tissues GPL571  
[HG-U133A_2]

Homo sapiens 22277 17 17

GSE23400 Su H 1-Sep-10 USA Paired, tissues GPL96  
[HG-U133A] 

Homo sapiens 22283 53 53

GSE38129 Hu N 30-Dec-15 USA Paired, tissues GPL571  
[HG-U133A_2] 

Homo sapiens 22277 30 30

GSE77861 Erkizan HV 15-Aug-17 USA Paired, tissues GPL570  
[HG-U133_Plus_2]

Homo sapiens 54675 7 7

GSE100942 Zhang X 15-Jul-17 Hong Kong Paired, tissues GPL570  
[HG-U133_Plus_2]

Homo sapiens 54675 4 4

GEO, Gene Expression Omnibus.

Table 2 Summary of six datasets using GSEA

Up-regulation pathway

Aminoacyl-tRNA biosynthesis

Proteasome

Ribosome biogenesis in eukaryotes

Homologous recombination

Low-regulation pathway

Histidine metabolism

Arachidonic acid metabolism

Fatty acid degradation

Valine, leucine and isoleucine degradation

GSEA, gene set enrichment analysis.
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plot method (Figure 1), to roughly screen the genes for the  
first time.

Conclusion of the meta-analysis

Due to the differences between experimental platforms and 
the different choices of samples, standardization methods 
and analysis methods, it’s not surprising that different 
experimental platforms yield differing data. Taking the 
results of multiple independent studies on the same subject 
as the object of the research and based on strict design, 
the meta-analysis uses appropriate statistical methods to 
comprehensively analyze multiple research results that 
are both objective and quantitative. The advantage of  
meta-analysis is that by using this method, we can improve 
the reliability of conclusions and reduce the inconsistencies 
in the results of study by increasing the sample content. 
With an independent sample, Student’s t-test, six datasets 
were analyzed, and we obtained the P value of each 

gene, retaining only the differently expressed genes with  
chi-square values under 0.05. We inserted the genes’ names 
into the software SAS 9.42 for statistical analysis, and used 
the selected meta-formula for integration analysis. Thus, a 
total of 406 genes were screened out (P<0.05).

Conclusion of the TCGA

We downloaded the clinical data and expression profiles 
of esophageal tumor into TCGA database, removed 
the esophageal adenocarcinoma group and the control 
group data, used the survival data package of R language, 
used cox-regression analysis, and adjusted P’ value <0.05  
(P’ value stands for the P value in TCGA) so that a 
total of 995 significant differential genes and their K-M 
survival curves were obtained. Although these genes are all 
confirmed to be related to prognosis, they have different 
effects on the prognosis of patients. To improve the patient’s 
prognosis, we compared these genes with those found in 
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Figure 1 Volcano plot of six datasets.
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the meta-analysis mentioned above, allowing us to identify 
the genes that play an important role in the development 
of ESCC, as well as the ones that are closely related to the 
prognosis. By studying the pathways where these genes are 
located, we can better understand the mechanism of ESCC 
and provide a targeted research direction for the future 
improvement of patient prognosis.

Gene annotation for key genes

By taking the intersection of the 406 meta-analysis and the 
995 TCGA databases, we selected a total of 19 common 
genes to be screened from the meta-analysis and TCGA 
databases. The 19 genes had statistical differences and 
could affect survival prognosis. The names, P’ and P value 
of the 19 common genes are shown in Table 3. In addition, 

Table 3 Common genes screened from the meta-analysis and TCGA databases

Gene name Location P value P’ value Type

NUP155 5p13.2 1.22E-15 0.018650 Up

ASAP2 2p25.1; 2p24 0.001135 0.030007 Up

RAD54B 8q22.1 6.98E-13 0.020964 Up

SH3GLB2 9q34.11 0.00E+00 0.016012 Down

CLDN10 13q32.1 0.002535 6.15E-04 Down

ACPP 3q22.1 2.31E-13 0.038153 Down

ABCA12 2q35 0.038204 0.040447 Up

CHMP2A 19q13.43 1.71E-09 0.010392 Down

DNMT1 19p13.2 2.22E-16 0.026660 Up

VARS 6p21.33 0.034115 0.021041 Up

EXTL2 1p21.2 0.033779 0.029618 Up

MSH2 2p21-p16.3 1.19E-06 0.043425 Up

BUB1B 15q15.1 5.55E-16 0.031915 Up

SNRNP40 1p35.2 0.005732 0.048899 Up

IRF9 14q12 7.23E-05 0.040779 Up

TTK 6q14.1 1.94E-13 0.010229 Up

NDC1 1p32.3 9.18E-09 0.031411 Up

BUB1 2q13 0.00E+00 0.016732 Up

NUP107 12q15 0.00E+00 0.006171 Up

P’ value, P value in TCGA. TCGA, The Cancer Genome Atlas. 

Meta R

Survival R

387 19 976

Figure 2 Venn chart of 19 common genes.
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we drew the Venn Diagram (Figure 2) to visually display 
the process of taking the intersection. Furthermore, we 
downloaded the gene network map of 19 key genes from 
the String database (Figure 3) to better demonstrate the 
relationship among these genes. As for these 19 genes, we 
performed a GO annotation (Figure 4) and looked for their 
common KEGG pathways by DAVID. We utilized Blast2go 
for gene annotation, and the result was that 19 genes were 
divided into three parts named the Cellular Component, 
the Molecular Function and the Biological Process. We 
found two common KEGG pathways from DAVID 
Bioinformatics Resources 6.7, which were the Cell cycle 
and the RNA transport pathways, with each pathway having 

three key genes. These six key genes’ K-M survival curves 
were obtained (Figure 5). The cell cycle pathway contained 
the following three genes (Figure 6): BUB1B (BUB1 mitotic 
checkpoint serine/threonine kinase B), BUB1 (BUB1 
mitotic checkpoint serine/threonine kinase), and TTK (TTK 
protein kinase). The RNA transport pathway contained 
the following three genes (Figure 7): NDC1 (NDC1 
transmembrane nucleoporin), NUP107 (nucleoporin 107), 
and NUP155 (nucleoporin 155).

Finally, we put these six key genes into the Su Esophagus 
2 database in Oncomine for validation. The six key genes 
were found to be highly expressed, with statistical difference 
(Figure 8).
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Discussion

Currently, analysis of gene chip data is an important part 
of the study of tumor-related genes. The international 
esophageal carcinoma situation is severe, and the lack 
of esophageal cancer gene chip data analysis makes 
the pathogenesis of esophageal a poorly understood 
phenomenon. We combined GSEA and meta-analysis 

to analyze six datasets and compared them with TCGA 
database intending to find important genes and pathways 
that affect the development and prognosis of ESCC, as well 
as to reveal the role of these genes in the pathogenesis of 
esophageal carcinoma. 

It’s difficult for researchers to gain enough samples of a 
disease, so many studies only focus on a small sample that 
are available. If analysis is only for a single experimental 
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result, and limited to a single gene, a lot of useful 
information will be missed. Moreover, restricted by sample 
size, the Student’s t-test of the gene chip has a certain 
limitation, which leads to the estimation of untrustworthy 
variants, resulting in higher false positives, and the ignoring 
of different levels of expression from different samples (11). 
Gene Set Enrichment Analysis (GSEA) is a computational 
method that assesses whether a priori defined set of genes 
shows statistically significant and concordant differences 
between two biological states, and determines the presence 
or absence of a common expression by analyzing data of 
two different biological states (e.g., normal and cancerous) 
to infer the genes or pathways associated with the disease (4). 
We performed a meta-analysis with the version 9.42 SAS 
software, limited P<0.05, to find 406 differently expressed 
genes. In contrast to only comparing six gene sets to get 

common genes, which the gene sets have at the same time, 
meta-analysis avoids the following drawbacks: (I) since the 
sample size is too small, genes that are not common to six 
gene sets but are still important may be missed; (II) a simple 
comparison does not restrict the P value, which may result 
in statistical bias.

Based on the consideration of the following two reasons, 
we did not use 406 differently expressed genes from 
the meta-analysis as the final result: (I) the number and 
range of these genes are too big or wide, which makes it 
laborious to go through them in detail; (II) by meta-analysis  
alone, it is impossible to figure out whether the role the 
406 genes play in the development of ESCC is a key 
gene or just a biomarker. In TCGA database, a total of  
995 significant differential genes and their K-M survival 
curves were obtained. While searching the intersection of 

Figure 6 Cell cycle pathway (the chart is from the KEGG database, gene symbolized by ★ and correlation P values can be found in Table 3).
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the 995 genes and the 406 genes that were obtained through  
meta-analysis, 19 genes that had statistical differences and 
could affect survival prognosis were screened out. The 19 
genes were put into DAVID for GO annotation and for 
finding the common KEGG pathway. Unfortunately, the 
two pathways did not overlap with the eight pathways found 
by the GSEA. However, these two pathways and their 
genes may be closely related to ESCC. The two common 
pathways were the cell cycle and RNA transport, each 
pathway having three related genes. The three genes on 
cell cycle were BUB1B (BUB1 mitotic checkpoint serine/
threonine kinase B), BUB1 (BUB1 mitotic checkpoint 
serine/threonine kinase), and TTK (TTK protein kinase). 
The three genes on RNA transport were NDC1 (NDC1 
transmembrane nucleoporin), NUP107 (nucleoporin 107), 
and NUP155 (nucleoporin 155). The respective discussion 

of the genes of each pathway follows below.
Interestingly, BUB1B and BUB1 have a common effect 

in the cell cycle. In a variety of cancer tissues including 
ESCC, the expression of BUB1B was significantly higher 
than in adjacent normal tissues. Tumor BUB1B was 
significantly reduced after chemoradiotherapy. In ESCC-
related pharmacological studies, high levels of BUB1B 
are less sensitive to the parenteral drugs, paclitaxel and 
nocodazole (12). For the second chemoradiotherapy of 
recurrent and metastatic esophageal cancer, the potential 
efficacy of taxanes is reduced, due to the detection of 
BUB1B (13). As an important molecule in the formation 
of mitotic spindles, the application value of BUB1B as a 
drug target or biomarker in the diagnosis and treatment of 
hepatocellular carcinoma and primitive neuroectodermal 
tumors is constantly being explored (14,15). Clinically, 

Figure 7 RNA transport pathway (the chart is from the KEGG database, gene symbolized by ★ and correlation P values can be found in 
Table 3).
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studies have found that BUB1B expression is associated with 
a poor prognosis in patients with glioblastoma multiforme 
(GBM). BUB1B promotes tumor proliferation and induces 
radioimmunoassay of GBM, and BUB1B may confer to 
aggressive and effective drugs. This reaction provides a 
predictive marker. The BUB1BR/S classification of GBM 
tumors can predict the clinical course and sensitivity 
to drug treatment (16,17). The ZWINT gene is highly 
expressed in a variety of cancers, including esophageal 
cancer. Studies have shown that BUB1B and BUB1 may be 
important components of the ZWINT mitotic checkpoint 
for lung cancer (18). Although there is no clear application 
of BUB1B as a target for clinical diagnosis or treatment, 
the above studies have pointed out the direction for the 
application of BUB1B in ESCC. 

During apoptosis,  BUB1 is cleaved and altered 
expression is associated with treatment failure, and death 
in a variety of cancer patients (19). BUB1 is carcinogenic; 

not only does it regulate the cell cycle, but also may be 
involved in cytoskeletal control, and Aurora B is a key 
target for overexpression of Bub1-driven aneuploidy 
and tumorigenesis (20). In pharmacological research, 
dipyridamole can increase the concentration of various 
anticancer drugs represented by 5-fluorouracil in cancer 
cells, thereby improving the efficacy of the treatment of 
cancer. BUB1 may then be a molecular target for the action 
of dipyridamole (21).

Many studies have shown that TTK can affect the 
development of breast cancer (22), melanin (23), pancreatic 
ductal adenocarcinoma (PDAC) (24), hepatocellular 
carcinoma (25) and other cancers. TTK protein kinase is 
up-regulated in ESCC, which may be involved in the tumor 
progression and/or represent ESCC-specific properties. In 
the clinical trials of different drugs for ESCC treatment, 
the expression of the TTK antigen was observed, which is 
an important indicator for observing the clinical response of 

Figure 8 The boxplots of 6 key genes from Su Esophagus 2 database in Oncomine.
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patients to drugs, and also as a cancer vaccination for ESCC 
in the experiment (26,27). The above evidence provides 
direction for an individualized treatment of ESCC (28).

Among the RNA transport pathways, the three genes are 
essential components of the nuclear pore complex. These 
three genes are rarely used in ESCC, but have a certain 
role in many other diseases. NDC1-mediated ALADIN 
localization of the nuclear pore complexes is critical for 
selective nuclear protein introduction (29). The research 
on NDC1 and Nup107 is mostly about the effects of these 
two genes on sperm formation and infertility (30,31). 
The central domain of Nup107 interferes with Apaf-1  
nuclear translocation during genotoxic stress, leading 
to Chk-1 activation, and a significant reduction in cell 
cycle arrest (32). In ovarian cancer, Nup107 is associated 
with platinum sensitivity. The single nucleotide variant 
(SNV) is significantly associated with platinum resistance, 
and can be used to clinically predict patient response to 
drugs (33). NUP107 is considered to be a candidate gene 
for the detection of nephrotic syndrome and families of 
developmental delays (34,35). Based on high-throughput 
techniques, NUP107 is a potential molecular marker for 
early diagnosis of PDAC (36). NUP155 is specific in many 
tissues, but its specificity in esophageal cancer tissues 
has not been tested. As a nuclear pore complex protein, 
NUP155 has been identified as a clinical driver of atrial  
fibrillation (37,38) and NUP155 may be a new potential 
drug to target NUP214-ABL1-positive T-cell acute 
lymphoblastic leukemia (39). Some studies have explored 
the role that the three genes play on RNA transport 
pathways; however, little of this research explains the 
relationship between these genes and cancer, let alone their 
relationship with ESCC.

In summary, there are a few studies that illuminate the 
relationship between these genes and esophageal cancer. 
Currently, we only have information related to genes and 
pathways, extracted through data analysis, rather than 
experimental study. We plan to experimentally verify our 
conjecture about the mechanism of action and the specific 
functions of these genes, and discuss them in depth, so that 
we can further reveal their important role in ESCC and 
provide a theoretical basis for clinical prevention, diagnosis, 
and individualized treatment of ESCC.
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